Chris@16: // Copyright (C) 2001 Jeremy Siek, Douglas Gregor, Brian Osman Chris@16: // Chris@16: // Distributed under the Boost Software License, Version 1.0. (See Chris@16: // accompanying file LICENSE_1_0.txt or copy at Chris@16: // http://www.boost.org/LICENSE_1_0.txt) Chris@16: #ifndef BOOST_GRAPH_ISOMORPHISM_HPP Chris@16: #define BOOST_GRAPH_ISOMORPHISM_HPP Chris@16: Chris@16: #include Chris@16: #include Chris@16: #include Chris@16: #include Chris@16: #include Chris@16: #include Chris@16: #include Chris@16: #include Chris@16: #include Chris@16: #include // for make_indirect_pmap Chris@16: #include Chris@16: Chris@16: #ifndef BOOST_GRAPH_ITERATION_MACROS_HPP Chris@16: #define BOOST_ISO_INCLUDED_ITER_MACROS // local macro, see bottom of file Chris@16: #include Chris@16: #endif Chris@16: Chris@16: namespace boost { Chris@16: Chris@16: namespace detail { Chris@16: Chris@16: template Chris@16: class isomorphism_algo Chris@16: { Chris@16: typedef typename graph_traits::vertex_descriptor vertex1_t; Chris@16: typedef typename graph_traits::vertex_descriptor vertex2_t; Chris@16: typedef typename graph_traits::edge_descriptor edge1_t; Chris@16: typedef typename graph_traits::vertices_size_type size_type; Chris@16: typedef typename Invariant1::result_type invar1_value; Chris@16: typedef typename Invariant2::result_type invar2_value; Chris@16: Chris@16: const Graph1& G1; Chris@16: const Graph2& G2; Chris@16: IsoMapping f; Chris@16: Invariant1 invariant1; Chris@16: Invariant2 invariant2; Chris@16: std::size_t max_invariant; Chris@16: IndexMap1 index_map1; Chris@16: IndexMap2 index_map2; Chris@16: Chris@16: std::vector dfs_vertices; Chris@16: typedef typename std::vector::iterator vertex_iter; Chris@16: std::vector dfs_num_vec; Chris@16: typedef safe_iterator_property_map::iterator, Chris@16: IndexMap1 Chris@16: #ifdef BOOST_NO_STD_ITERATOR_TRAITS Chris@16: , int, int& Chris@16: #endif /* BOOST_NO_STD_ITERATOR_TRAITS */ Chris@16: > DFSNumMap; Chris@16: DFSNumMap dfs_num; Chris@16: std::vector ordered_edges; Chris@16: typedef typename std::vector::iterator edge_iter; Chris@16: Chris@16: std::vector in_S_vec; Chris@16: typedef safe_iterator_property_map::iterator, Chris@16: IndexMap2 Chris@16: #ifdef BOOST_NO_STD_ITERATOR_TRAITS Chris@16: , char, char& Chris@16: #endif /* BOOST_NO_STD_ITERATOR_TRAITS */ Chris@16: > InSMap; Chris@16: InSMap in_S; Chris@16: Chris@16: int num_edges_on_k; Chris@16: Chris@16: friend struct compare_multiplicity; Chris@16: struct compare_multiplicity Chris@16: { Chris@16: compare_multiplicity(Invariant1 invariant1, size_type* multiplicity) Chris@16: : invariant1(invariant1), multiplicity(multiplicity) { } Chris@16: bool operator()(const vertex1_t& x, const vertex1_t& y) const { Chris@16: return multiplicity[invariant1(x)] < multiplicity[invariant1(y)]; Chris@16: } Chris@16: Invariant1 invariant1; Chris@16: size_type* multiplicity; Chris@16: }; Chris@16: Chris@16: struct record_dfs_order : default_dfs_visitor Chris@16: { Chris@16: record_dfs_order(std::vector& v, std::vector& e) Chris@16: : vertices(v), edges(e) { } Chris@16: Chris@16: void discover_vertex(vertex1_t v, const Graph1&) const { Chris@16: vertices.push_back(v); Chris@16: } Chris@16: void examine_edge(edge1_t e, const Graph1&) const { Chris@16: edges.push_back(e); Chris@16: } Chris@16: std::vector& vertices; Chris@16: std::vector& edges; Chris@16: }; Chris@16: Chris@16: struct edge_cmp { Chris@16: edge_cmp(const Graph1& G1, DFSNumMap dfs_num) Chris@16: : G1(G1), dfs_num(dfs_num) { } Chris@16: bool operator()(const edge1_t& e1, const edge1_t& e2) const { Chris@16: using namespace std; Chris@16: int u1 = dfs_num[source(e1,G1)], v1 = dfs_num[target(e1,G1)]; Chris@16: int u2 = dfs_num[source(e2,G1)], v2 = dfs_num[target(e2,G1)]; Chris@16: int m1 = (max)(u1, v1); Chris@16: int m2 = (max)(u2, v2); Chris@16: // lexicographical comparison Chris@16: return std::make_pair(m1, std::make_pair(u1, v1)) Chris@16: < std::make_pair(m2, std::make_pair(u2, v2)); Chris@16: } Chris@16: const Graph1& G1; Chris@16: DFSNumMap dfs_num; Chris@16: }; Chris@16: Chris@16: public: Chris@16: isomorphism_algo(const Graph1& G1, const Graph2& G2, IsoMapping f, Chris@16: Invariant1 invariant1, Invariant2 invariant2, std::size_t max_invariant, Chris@16: IndexMap1 index_map1, IndexMap2 index_map2) Chris@16: : G1(G1), G2(G2), f(f), invariant1(invariant1), invariant2(invariant2), Chris@16: max_invariant(max_invariant), Chris@16: index_map1(index_map1), index_map2(index_map2) Chris@16: { Chris@16: in_S_vec.resize(num_vertices(G1)); Chris@16: in_S = make_safe_iterator_property_map Chris@16: (in_S_vec.begin(), in_S_vec.size(), index_map2 Chris@16: #ifdef BOOST_NO_STD_ITERATOR_TRAITS Chris@16: , in_S_vec.front() Chris@16: #endif /* BOOST_NO_STD_ITERATOR_TRAITS */ Chris@16: ); Chris@16: } Chris@16: Chris@16: bool test_isomorphism() Chris@16: { Chris@16: // reset isomapping Chris@16: BGL_FORALL_VERTICES_T(v, G1, Graph1) Chris@16: f[v] = graph_traits::null_vertex(); Chris@16: Chris@16: { Chris@16: std::vector invar1_array; Chris@16: BGL_FORALL_VERTICES_T(v, G1, Graph1) Chris@16: invar1_array.push_back(invariant1(v)); Chris@16: sort(invar1_array); Chris@16: Chris@16: std::vector invar2_array; Chris@16: BGL_FORALL_VERTICES_T(v, G2, Graph2) Chris@16: invar2_array.push_back(invariant2(v)); Chris@16: sort(invar2_array); Chris@16: if (! equal(invar1_array, invar2_array)) Chris@16: return false; Chris@16: } Chris@16: Chris@16: std::vector V_mult; Chris@16: BGL_FORALL_VERTICES_T(v, G1, Graph1) Chris@16: V_mult.push_back(v); Chris@16: { Chris@16: std::vector multiplicity(max_invariant, 0); Chris@16: BGL_FORALL_VERTICES_T(v, G1, Graph1) Chris@16: ++multiplicity.at(invariant1(v)); Chris@16: sort(V_mult, compare_multiplicity(invariant1, &multiplicity[0])); Chris@16: } Chris@16: Chris@16: std::vector color_vec(num_vertices(G1)); Chris@16: safe_iterator_property_map::iterator, Chris@16: IndexMap1 Chris@16: #ifdef BOOST_NO_STD_ITERATOR_TRAITS Chris@16: , default_color_type, default_color_type& Chris@16: #endif /* BOOST_NO_STD_ITERATOR_TRAITS */ Chris@16: > Chris@16: color_map(color_vec.begin(), color_vec.size(), index_map1); Chris@16: record_dfs_order dfs_visitor(dfs_vertices, ordered_edges); Chris@16: typedef color_traits Color; Chris@16: for (vertex_iter u = V_mult.begin(); u != V_mult.end(); ++u) { Chris@16: if (color_map[*u] == Color::white()) { Chris@16: dfs_visitor.start_vertex(*u, G1); Chris@16: depth_first_visit(G1, *u, dfs_visitor, color_map); Chris@16: } Chris@16: } Chris@16: // Create the dfs_num array and dfs_num_map Chris@16: dfs_num_vec.resize(num_vertices(G1)); Chris@16: dfs_num = make_safe_iterator_property_map(dfs_num_vec.begin(), Chris@16: dfs_num_vec.size(), Chris@16: index_map1 Chris@16: #ifdef BOOST_NO_STD_ITERATOR_TRAITS Chris@16: , dfs_num_vec.front() Chris@16: #endif /* BOOST_NO_STD_ITERATOR_TRAITS */ Chris@16: ); Chris@16: size_type n = 0; Chris@16: for (vertex_iter v = dfs_vertices.begin(); v != dfs_vertices.end(); ++v) Chris@16: dfs_num[*v] = n++; Chris@16: Chris@16: sort(ordered_edges, edge_cmp(G1, dfs_num)); Chris@16: Chris@16: Chris@16: int dfs_num_k = -1; Chris@16: return this->match(ordered_edges.begin(), dfs_num_k); Chris@16: } Chris@16: Chris@16: private: Chris@16: struct match_continuation { Chris@16: enum {pos_G2_vertex_loop, pos_fi_adj_loop, pos_dfs_num} position; Chris@16: typedef typename graph_traits::vertex_iterator vertex_iterator; Chris@16: std::pair G2_verts; Chris@16: typedef typename graph_traits::adjacency_iterator adjacency_iterator; Chris@16: std::pair fi_adj; Chris@16: edge_iter iter; Chris@16: int dfs_num_k; Chris@16: }; Chris@16: Chris@16: bool match(edge_iter iter, int dfs_num_k) Chris@16: { Chris@16: std::vector k; Chris@16: typedef typename graph_traits::vertex_iterator vertex_iterator; Chris@16: std::pair G2_verts(vertices(G2)); Chris@16: typedef typename graph_traits::adjacency_iterator adjacency_iterator; Chris@16: std::pair fi_adj; Chris@16: vertex1_t i, j; Chris@16: Chris@16: recur: Chris@16: if (iter != ordered_edges.end()) { Chris@16: i = source(*iter, G1); Chris@16: j = target(*iter, G1); Chris@16: if (dfs_num[i] > dfs_num_k) { Chris@16: G2_verts = vertices(G2); Chris@16: while (G2_verts.first != G2_verts.second) { Chris@16: { Chris@16: vertex2_t u = *G2_verts.first; Chris@16: vertex1_t kp1 = dfs_vertices[dfs_num_k + 1]; Chris@16: if (invariant1(kp1) == invariant2(u) && in_S[u] == false) { Chris@16: { Chris@16: f[kp1] = u; Chris@16: in_S[u] = true; Chris@16: num_edges_on_k = 0; Chris@16: Chris@16: match_continuation new_k; Chris@16: new_k.position = match_continuation::pos_G2_vertex_loop; Chris@16: new_k.G2_verts = G2_verts; Chris@16: new_k.iter = iter; Chris@16: new_k.dfs_num_k = dfs_num_k; Chris@16: k.push_back(new_k); Chris@16: ++dfs_num_k; Chris@16: goto recur; Chris@16: } Chris@16: } Chris@16: } Chris@16: G2_loop_k: ++G2_verts.first; Chris@16: } Chris@16: Chris@16: } Chris@16: else if (dfs_num[j] > dfs_num_k) { Chris@16: { Chris@16: vertex1_t vk = dfs_vertices[dfs_num_k]; Chris@16: num_edges_on_k -= Chris@16: count_if(adjacent_vertices(f[vk], G2), make_indirect_pmap(in_S)); Chris@16: Chris@16: for (int jj = 0; jj < dfs_num_k; ++jj) { Chris@16: vertex1_t j = dfs_vertices[jj]; Chris@16: num_edges_on_k -= count(adjacent_vertices(f[j], G2), f[vk]); Chris@16: } Chris@16: } Chris@16: Chris@16: if (num_edges_on_k != 0) Chris@16: goto return_point_false; Chris@16: fi_adj = adjacent_vertices(f[i], G2); Chris@16: while (fi_adj.first != fi_adj.second) { Chris@16: { Chris@16: vertex2_t v = *fi_adj.first; Chris@16: if (invariant2(v) == invariant1(j) && in_S[v] == false) { Chris@16: f[j] = v; Chris@16: in_S[v] = true; Chris@16: num_edges_on_k = 1; Chris@16: BOOST_USING_STD_MAX(); Chris@16: int next_k = max BOOST_PREVENT_MACRO_SUBSTITUTION(dfs_num_k, max BOOST_PREVENT_MACRO_SUBSTITUTION(dfs_num[i], dfs_num[j])); Chris@16: match_continuation new_k; Chris@16: new_k.position = match_continuation::pos_fi_adj_loop; Chris@16: new_k.fi_adj = fi_adj; Chris@16: new_k.iter = iter; Chris@16: new_k.dfs_num_k = dfs_num_k; Chris@16: ++iter; Chris@16: dfs_num_k = next_k; Chris@16: k.push_back(new_k); Chris@16: goto recur; Chris@16: } Chris@16: } Chris@16: fi_adj_loop_k:++fi_adj.first; Chris@16: } Chris@16: } Chris@16: else { Chris@16: if (container_contains(adjacent_vertices(f[i], G2), f[j])) { Chris@16: ++num_edges_on_k; Chris@16: match_continuation new_k; Chris@16: new_k.position = match_continuation::pos_dfs_num; Chris@16: k.push_back(new_k); Chris@16: ++iter; Chris@16: goto recur; Chris@16: } Chris@16: Chris@16: } Chris@16: } else Chris@16: goto return_point_true; Chris@16: goto return_point_false; Chris@16: Chris@16: { Chris@16: return_point_true: return true; Chris@16: Chris@16: return_point_false: Chris@16: if (k.empty()) return false; Chris@16: const match_continuation& this_k = k.back(); Chris@16: switch (this_k.position) { Chris@16: case match_continuation::pos_G2_vertex_loop: {G2_verts = this_k.G2_verts; iter = this_k.iter; dfs_num_k = this_k.dfs_num_k; k.pop_back(); in_S[*G2_verts.first] = false; i = source(*iter, G1); j = target(*iter, G1); goto G2_loop_k;} Chris@16: case match_continuation::pos_fi_adj_loop: {fi_adj = this_k.fi_adj; iter = this_k.iter; dfs_num_k = this_k.dfs_num_k; k.pop_back(); in_S[*fi_adj.first] = false; i = source(*iter, G1); j = target(*iter, G1); goto fi_adj_loop_k;} Chris@16: case match_continuation::pos_dfs_num: {k.pop_back(); goto return_point_false;} Chris@16: default: { Chris@16: BOOST_ASSERT(!"Bad position"); Chris@16: #ifdef UNDER_CE Chris@16: exit(-1); Chris@16: #else Chris@16: abort(); Chris@16: #endif Chris@16: } Chris@16: } Chris@16: } Chris@16: } Chris@16: }; Chris@16: Chris@16: Chris@16: template Chris@16: void compute_in_degree(const Graph& g, InDegreeMap in_degree_map) Chris@16: { Chris@16: BGL_FORALL_VERTICES_T(v, g, Graph) Chris@16: put(in_degree_map, v, 0); Chris@16: Chris@16: BGL_FORALL_VERTICES_T(u, g, Graph) Chris@16: BGL_FORALL_ADJ_T(u, v, g, Graph) Chris@16: put(in_degree_map, v, get(in_degree_map, v) + 1); Chris@16: } Chris@16: Chris@16: } // namespace detail Chris@16: Chris@16: Chris@16: template Chris@16: class degree_vertex_invariant Chris@16: { Chris@16: typedef typename graph_traits::vertex_descriptor vertex_t; Chris@16: typedef typename graph_traits::degree_size_type size_type; Chris@16: public: Chris@16: typedef vertex_t argument_type; Chris@16: typedef size_type result_type; Chris@16: Chris@16: degree_vertex_invariant(const InDegreeMap& in_degree_map, const Graph& g) Chris@16: : m_in_degree_map(in_degree_map), Chris@16: m_max_vertex_in_degree(0), Chris@16: m_max_vertex_out_degree(0), Chris@16: m_g(g) { Chris@16: BGL_FORALL_VERTICES_T(v, g, Graph) { Chris@16: m_max_vertex_in_degree = Chris@16: (std::max)(m_max_vertex_in_degree, get(m_in_degree_map, v)); Chris@16: m_max_vertex_out_degree = Chris@16: (std::max)(m_max_vertex_out_degree, out_degree(v, g)); Chris@16: } Chris@16: } Chris@16: Chris@16: size_type operator()(vertex_t v) const { Chris@16: return (m_max_vertex_in_degree + 1) * out_degree(v, m_g) Chris@16: + get(m_in_degree_map, v); Chris@16: } Chris@16: // The largest possible vertex invariant number Chris@16: size_type max BOOST_PREVENT_MACRO_SUBSTITUTION () const { Chris@16: return (m_max_vertex_in_degree + 1) * (m_max_vertex_out_degree + 1); Chris@16: } Chris@16: private: Chris@16: InDegreeMap m_in_degree_map; Chris@16: size_type m_max_vertex_in_degree; Chris@16: size_type m_max_vertex_out_degree; Chris@16: const Graph& m_g; Chris@16: }; Chris@16: Chris@16: // Count actual number of vertices, even in filtered graphs. Chris@16: template Chris@16: size_t count_vertices(const Graph& g) Chris@16: { Chris@16: size_t n = 0; Chris@16: BGL_FORALL_VERTICES_T(v, g, Graph) {(void)v; ++n;} Chris@16: return n; Chris@16: } Chris@16: Chris@16: template Chris@16: bool isomorphism(const Graph1& G1, const Graph2& G2, IsoMapping f, Chris@16: Invariant1 invariant1, Invariant2 invariant2, Chris@16: std::size_t max_invariant, Chris@16: IndexMap1 index_map1, IndexMap2 index_map2) Chris@16: Chris@16: { Chris@16: // Graph requirements Chris@16: BOOST_CONCEPT_ASSERT(( VertexListGraphConcept )); Chris@16: BOOST_CONCEPT_ASSERT(( EdgeListGraphConcept )); Chris@16: BOOST_CONCEPT_ASSERT(( VertexListGraphConcept )); Chris@16: //BOOST_CONCEPT_ASSERT(( BidirectionalGraphConcept )); Chris@16: Chris@16: typedef typename graph_traits::vertex_descriptor vertex1_t; Chris@16: typedef typename graph_traits::vertex_descriptor vertex2_t; Chris@16: typedef typename graph_traits::vertices_size_type size_type; Chris@16: Chris@16: // Vertex invariant requirement Chris@16: BOOST_CONCEPT_ASSERT(( AdaptableUnaryFunctionConcept )); Chris@16: BOOST_CONCEPT_ASSERT(( AdaptableUnaryFunctionConcept )); Chris@16: Chris@16: // Property map requirements Chris@16: BOOST_CONCEPT_ASSERT(( ReadWritePropertyMapConcept )); Chris@16: typedef typename property_traits::value_type IsoMappingValue; Chris@16: BOOST_STATIC_ASSERT((is_convertible::value)); Chris@16: Chris@16: BOOST_CONCEPT_ASSERT(( ReadablePropertyMapConcept )); Chris@16: typedef typename property_traits::value_type IndexMap1Value; Chris@16: BOOST_STATIC_ASSERT((is_convertible::value)); Chris@16: Chris@16: BOOST_CONCEPT_ASSERT(( ReadablePropertyMapConcept )); Chris@16: typedef typename property_traits::value_type IndexMap2Value; Chris@16: BOOST_STATIC_ASSERT((is_convertible::value)); Chris@16: Chris@16: if (count_vertices(G1) != count_vertices(G2)) Chris@16: return false; Chris@16: if (count_vertices(G1) == 0 && count_vertices(G2) == 0) Chris@16: return true; Chris@16: Chris@16: detail::isomorphism_algo Chris@16: algo(G1, G2, f, invariant1, invariant2, max_invariant, Chris@16: index_map1, index_map2); Chris@16: return algo.test_isomorphism(); Chris@16: } Chris@16: Chris@16: Chris@16: namespace detail { Chris@16: Chris@16: template Chris@16: bool isomorphism_impl(const Graph1& G1, const Graph2& G2, Chris@16: IsoMapping f, IndexMap1 index_map1, IndexMap2 index_map2, Chris@16: const bgl_named_params& params) Chris@16: { Chris@16: std::vector in_degree1_vec(num_vertices(G1)); Chris@16: typedef safe_iterator_property_map::iterator, Chris@16: IndexMap1 Chris@16: #ifdef BOOST_NO_STD_ITERATOR_TRAITS Chris@16: , std::size_t, std::size_t& Chris@16: #endif /* BOOST_NO_STD_ITERATOR_TRAITS */ Chris@16: > InDeg1; Chris@16: InDeg1 in_degree1(in_degree1_vec.begin(), in_degree1_vec.size(), index_map1); Chris@16: compute_in_degree(G1, in_degree1); Chris@16: Chris@16: std::vector in_degree2_vec(num_vertices(G2)); Chris@16: typedef safe_iterator_property_map::iterator, Chris@16: IndexMap2 Chris@16: #ifdef BOOST_NO_STD_ITERATOR_TRAITS Chris@16: , std::size_t, std::size_t& Chris@16: #endif /* BOOST_NO_STD_ITERATOR_TRAITS */ Chris@16: > InDeg2; Chris@16: InDeg2 in_degree2(in_degree2_vec.begin(), in_degree2_vec.size(), index_map2); Chris@16: compute_in_degree(G2, in_degree2); Chris@16: Chris@16: degree_vertex_invariant invariant1(in_degree1, G1); Chris@16: degree_vertex_invariant invariant2(in_degree2, G2); Chris@16: Chris@16: return isomorphism(G1, G2, f, Chris@16: choose_param(get_param(params, vertex_invariant1_t()), invariant1), Chris@16: choose_param(get_param(params, vertex_invariant2_t()), invariant2), Chris@16: choose_param(get_param(params, vertex_max_invariant_t()), (invariant2.max)()), Chris@16: index_map1, index_map2 Chris@16: ); Chris@16: } Chris@16: Chris@16: template Chris@16: struct make_degree_invariant { Chris@16: const G& g; Chris@16: const Index& index; Chris@16: make_degree_invariant(const G& g, const Index& index): g(g), index(index) {} Chris@16: typedef typename boost::graph_traits::degree_size_type degree_size_type; Chris@16: typedef shared_array_property_map prop_map_type; Chris@16: typedef degree_vertex_invariant result_type; Chris@16: result_type operator()() const { Chris@16: prop_map_type pm = make_shared_array_property_map(num_vertices(g), degree_size_type(), index); Chris@16: compute_in_degree(g, pm); Chris@16: return result_type(pm, g); Chris@16: } Chris@16: }; Chris@16: Chris@16: } // namespace detail Chris@16: Chris@16: namespace graph { Chris@16: namespace detail { Chris@16: template Chris@16: struct isomorphism_impl { Chris@16: typedef bool result_type; Chris@16: template Chris@16: bool operator()(const Graph1& g1, const Graph2& g2, const ArgPack& arg_pack) const { Chris@16: using namespace boost::graph::keywords; Chris@16: typedef typename boost::detail::override_const_property_result::type index1_map_type; Chris@16: typedef typename boost::detail::override_const_property_result::type index2_map_type; Chris@16: index1_map_type index1_map = boost::detail::override_const_property(arg_pack, _vertex_index1_map, g1, boost::vertex_index); Chris@16: index2_map_type index2_map = boost::detail::override_const_property(arg_pack, _vertex_index2_map, g2, boost::vertex_index); Chris@16: typedef typename graph_traits::vertex_descriptor vertex2_t; Chris@16: typename std::vector::size_type n = (typename std::vector::size_type)num_vertices(g1); Chris@16: std::vector f(n); Chris@16: typename boost::parameter::lazy_binding< Chris@16: ArgPack, Chris@16: tag::vertex_invariant1, Chris@16: boost::detail::make_degree_invariant >::type Chris@16: invariant1 = Chris@16: arg_pack[_vertex_invariant1 || boost::detail::make_degree_invariant(g1, index1_map)]; Chris@16: typename boost::parameter::lazy_binding< Chris@16: ArgPack, Chris@16: tag::vertex_invariant2, Chris@16: boost::detail::make_degree_invariant >::type Chris@16: invariant2 = Chris@16: arg_pack[_vertex_invariant2 || boost::detail::make_degree_invariant(g2, index2_map)]; Chris@16: return boost::isomorphism Chris@16: (g1, g2, Chris@16: choose_param(arg_pack[_isomorphism_map | boost::param_not_found()], Chris@16: make_shared_array_property_map(num_vertices(g1), vertex2_t(), index1_map)), Chris@16: invariant1, Chris@16: invariant2, Chris@16: arg_pack[_vertex_max_invariant | (invariant2.max)()], Chris@16: index1_map, Chris@16: index2_map); Chris@16: } Chris@16: }; Chris@16: } Chris@16: BOOST_GRAPH_MAKE_FORWARDING_FUNCTION(isomorphism, 2, 6) Chris@16: } Chris@16: Chris@16: // Named parameter interface Chris@16: BOOST_GRAPH_MAKE_OLD_STYLE_PARAMETER_FUNCTION(isomorphism, 2) Chris@16: Chris@16: // Verify that the given mapping iso_map from the vertices of g1 to the Chris@16: // vertices of g2 describes an isomorphism. Chris@16: // Note: this could be made much faster by specializing based on the graph Chris@16: // concepts modeled, but since we're verifying an O(n^(lg n)) algorithm, Chris@16: // O(n^4) won't hurt us. Chris@16: template Chris@16: inline bool verify_isomorphism(const Graph1& g1, const Graph2& g2, IsoMap iso_map) Chris@16: { Chris@16: #if 0 Chris@16: // problematic for filtered_graph! Chris@16: if (num_vertices(g1) != num_vertices(g2) || num_edges(g1) != num_edges(g2)) Chris@16: return false; Chris@16: #endif Chris@16: Chris@16: BGL_FORALL_EDGES_T(e1, g1, Graph1) { Chris@16: bool found_edge = false; Chris@16: BGL_FORALL_EDGES_T(e2, g2, Graph2) { Chris@16: if (source(e2, g2) == get(iso_map, source(e1, g1)) && Chris@16: target(e2, g2) == get(iso_map, target(e1, g1))) { Chris@16: found_edge = true; Chris@16: } Chris@16: } Chris@16: Chris@16: if (!found_edge) Chris@16: return false; Chris@16: } Chris@16: Chris@16: return true; Chris@16: } Chris@16: Chris@16: } // namespace boost Chris@16: Chris@16: #ifdef BOOST_ISO_INCLUDED_ITER_MACROS Chris@16: #undef BOOST_ISO_INCLUDED_ITER_MACROS Chris@16: #include Chris@16: #endif Chris@16: Chris@16: #endif // BOOST_GRAPH_ISOMORPHISM_HPP