Chris@87: """ Chris@87: ======================== Chris@87: Random Number Generation Chris@87: ======================== Chris@87: Chris@87: ==================== ========================================================= Chris@87: Utility functions Chris@87: ============================================================================== Chris@87: random Uniformly distributed values of a given shape. Chris@87: bytes Uniformly distributed random bytes. Chris@87: random_integers Uniformly distributed integers in a given range. Chris@87: random_sample Uniformly distributed floats in a given range. Chris@87: random Alias for random_sample Chris@87: ranf Alias for random_sample Chris@87: sample Alias for random_sample Chris@87: choice Generate a weighted random sample from a given array-like Chris@87: permutation Randomly permute a sequence / generate a random sequence. Chris@87: shuffle Randomly permute a sequence in place. Chris@87: seed Seed the random number generator. Chris@87: ==================== ========================================================= Chris@87: Chris@87: ==================== ========================================================= Chris@87: Compatibility functions Chris@87: ============================================================================== Chris@87: rand Uniformly distributed values. Chris@87: randn Normally distributed values. Chris@87: ranf Uniformly distributed floating point numbers. Chris@87: randint Uniformly distributed integers in a given range. Chris@87: ==================== ========================================================= Chris@87: Chris@87: ==================== ========================================================= Chris@87: Univariate distributions Chris@87: ============================================================================== Chris@87: beta Beta distribution over ``[0, 1]``. Chris@87: binomial Binomial distribution. Chris@87: chisquare :math:`\\chi^2` distribution. Chris@87: exponential Exponential distribution. Chris@87: f F (Fisher-Snedecor) distribution. Chris@87: gamma Gamma distribution. Chris@87: geometric Geometric distribution. Chris@87: gumbel Gumbel distribution. Chris@87: hypergeometric Hypergeometric distribution. Chris@87: laplace Laplace distribution. Chris@87: logistic Logistic distribution. Chris@87: lognormal Log-normal distribution. Chris@87: logseries Logarithmic series distribution. Chris@87: negative_binomial Negative binomial distribution. Chris@87: noncentral_chisquare Non-central chi-square distribution. Chris@87: noncentral_f Non-central F distribution. Chris@87: normal Normal / Gaussian distribution. Chris@87: pareto Pareto distribution. Chris@87: poisson Poisson distribution. Chris@87: power Power distribution. Chris@87: rayleigh Rayleigh distribution. Chris@87: triangular Triangular distribution. Chris@87: uniform Uniform distribution. Chris@87: vonmises Von Mises circular distribution. Chris@87: wald Wald (inverse Gaussian) distribution. Chris@87: weibull Weibull distribution. Chris@87: zipf Zipf's distribution over ranked data. Chris@87: ==================== ========================================================= Chris@87: Chris@87: ==================== ========================================================= Chris@87: Multivariate distributions Chris@87: ============================================================================== Chris@87: dirichlet Multivariate generalization of Beta distribution. Chris@87: multinomial Multivariate generalization of the binomial distribution. Chris@87: multivariate_normal Multivariate generalization of the normal distribution. Chris@87: ==================== ========================================================= Chris@87: Chris@87: ==================== ========================================================= Chris@87: Standard distributions Chris@87: ============================================================================== Chris@87: standard_cauchy Standard Cauchy-Lorentz distribution. Chris@87: standard_exponential Standard exponential distribution. Chris@87: standard_gamma Standard Gamma distribution. Chris@87: standard_normal Standard normal distribution. Chris@87: standard_t Standard Student's t-distribution. Chris@87: ==================== ========================================================= Chris@87: Chris@87: ==================== ========================================================= Chris@87: Internal functions Chris@87: ============================================================================== Chris@87: get_state Get tuple representing internal state of generator. Chris@87: set_state Set state of generator. Chris@87: ==================== ========================================================= Chris@87: Chris@87: """ Chris@87: from __future__ import division, absolute_import, print_function Chris@87: Chris@87: import warnings Chris@87: Chris@87: # To get sub-modules Chris@87: from .info import __doc__, __all__ Chris@87: Chris@87: Chris@87: with warnings.catch_warnings(): Chris@87: warnings.filterwarnings("ignore", message="numpy.ndarray size changed") Chris@87: from .mtrand import * Chris@87: Chris@87: # Some aliases: Chris@87: ranf = random = sample = random_sample Chris@87: __all__.extend(['ranf', 'random', 'sample']) Chris@87: Chris@87: def __RandomState_ctor(): Chris@87: """Return a RandomState instance. Chris@87: Chris@87: This function exists solely to assist (un)pickling. Chris@87: Chris@87: Note that the state of the RandomState returned here is irrelevant, as this function's Chris@87: entire purpose is to return a newly allocated RandomState whose state pickle can set. Chris@87: Consequently the RandomState returned by this function is a freshly allocated copy Chris@87: with a seed=0. Chris@87: Chris@87: See https://github.com/numpy/numpy/issues/4763 for a detailed discussion Chris@87: Chris@87: """ Chris@87: return RandomState(seed=0) Chris@87: Chris@87: from numpy.testing import Tester Chris@87: test = Tester().test Chris@87: bench = Tester().bench