Chris@16: /* Chris@16: * Chris@16: * Copyright (c) 2004 Chris@16: * John Maddock Chris@16: * Chris@16: * Use, modification and distribution are subject to the Chris@16: * Boost Software License, Version 1.0. (See accompanying file Chris@16: * LICENSE_1_0.txt or copy at http://www.boost.org/LICENSE_1_0.txt) Chris@16: * Chris@16: */ Chris@16: Chris@16: /* Chris@16: * LOCATION: see http://www.boost.org for most recent version. Chris@16: * FILE basic_regex_creator.cpp Chris@16: * VERSION see Chris@16: * DESCRIPTION: Declares template class basic_regex_creator which fills in Chris@16: * the data members of a regex_data object. Chris@16: */ Chris@16: Chris@16: #ifndef BOOST_REGEX_V4_BASIC_REGEX_CREATOR_HPP Chris@16: #define BOOST_REGEX_V4_BASIC_REGEX_CREATOR_HPP Chris@16: Chris@16: #ifdef BOOST_MSVC Chris@16: #pragma warning(push) Chris@16: #pragma warning(disable: 4103) Chris@16: #endif Chris@16: #ifdef BOOST_HAS_ABI_HEADERS Chris@16: # include BOOST_ABI_PREFIX Chris@16: #endif Chris@16: #ifdef BOOST_MSVC Chris@16: #pragma warning(pop) Chris@16: #endif Chris@16: Chris@16: #ifdef BOOST_MSVC Chris@16: # pragma warning(push) Chris@16: # pragma warning(disable: 4800) Chris@16: #endif Chris@16: Chris@16: namespace boost{ Chris@16: Chris@16: namespace re_detail{ Chris@16: Chris@16: template Chris@16: struct digraph : public std::pair Chris@16: { Chris@16: digraph() : std::pair(0, 0){} Chris@16: digraph(charT c1) : std::pair(c1, 0){} Chris@16: digraph(charT c1, charT c2) : std::pair(c1, c2) Chris@16: {} Chris@16: digraph(const digraph& d) : std::pair(d.first, d.second){} Chris@16: template Chris@16: digraph(const Seq& s) : std::pair() Chris@16: { Chris@16: BOOST_ASSERT(s.size() <= 2); Chris@16: BOOST_ASSERT(s.size()); Chris@16: this->first = s[0]; Chris@16: this->second = (s.size() > 1) ? s[1] : 0; Chris@16: } Chris@16: }; Chris@16: Chris@16: template Chris@16: class basic_char_set Chris@16: { Chris@16: public: Chris@16: typedef digraph digraph_type; Chris@16: typedef typename traits::string_type string_type; Chris@16: typedef typename traits::char_class_type m_type; Chris@16: Chris@16: basic_char_set() Chris@16: { Chris@16: m_negate = false; Chris@16: m_has_digraphs = false; Chris@16: m_classes = 0; Chris@16: m_negated_classes = 0; Chris@16: m_empty = true; Chris@16: } Chris@16: Chris@16: void add_single(const digraph_type& s) Chris@16: { Chris@16: m_singles.insert(m_singles.end(), s); Chris@16: if(s.second) Chris@16: m_has_digraphs = true; Chris@16: m_empty = false; Chris@16: } Chris@16: void add_range(const digraph_type& first, const digraph_type& end) Chris@16: { Chris@16: m_ranges.insert(m_ranges.end(), first); Chris@16: m_ranges.insert(m_ranges.end(), end); Chris@16: if(first.second) Chris@16: { Chris@16: m_has_digraphs = true; Chris@16: add_single(first); Chris@16: } Chris@16: if(end.second) Chris@16: { Chris@16: m_has_digraphs = true; Chris@16: add_single(end); Chris@16: } Chris@16: m_empty = false; Chris@16: } Chris@16: void add_class(m_type m) Chris@16: { Chris@16: m_classes |= m; Chris@16: m_empty = false; Chris@16: } Chris@16: void add_negated_class(m_type m) Chris@16: { Chris@16: m_negated_classes |= m; Chris@16: m_empty = false; Chris@16: } Chris@16: void add_equivalent(const digraph_type& s) Chris@16: { Chris@16: m_equivalents.insert(m_equivalents.end(), s); Chris@16: if(s.second) Chris@16: { Chris@16: m_has_digraphs = true; Chris@16: add_single(s); Chris@16: } Chris@16: m_empty = false; Chris@16: } Chris@16: void negate() Chris@16: { Chris@16: m_negate = true; Chris@16: //m_empty = false; Chris@16: } Chris@16: Chris@16: // Chris@16: // accessor functions: Chris@16: // Chris@16: bool has_digraphs()const Chris@16: { Chris@16: return m_has_digraphs; Chris@16: } Chris@16: bool is_negated()const Chris@16: { Chris@16: return m_negate; Chris@16: } Chris@16: typedef typename std::vector::const_iterator list_iterator; Chris@16: list_iterator singles_begin()const Chris@16: { Chris@16: return m_singles.begin(); Chris@16: } Chris@16: list_iterator singles_end()const Chris@16: { Chris@16: return m_singles.end(); Chris@16: } Chris@16: list_iterator ranges_begin()const Chris@16: { Chris@16: return m_ranges.begin(); Chris@16: } Chris@16: list_iterator ranges_end()const Chris@16: { Chris@16: return m_ranges.end(); Chris@16: } Chris@16: list_iterator equivalents_begin()const Chris@16: { Chris@16: return m_equivalents.begin(); Chris@16: } Chris@16: list_iterator equivalents_end()const Chris@16: { Chris@16: return m_equivalents.end(); Chris@16: } Chris@16: m_type classes()const Chris@16: { Chris@16: return m_classes; Chris@16: } Chris@16: m_type negated_classes()const Chris@16: { Chris@16: return m_negated_classes; Chris@16: } Chris@16: bool empty()const Chris@16: { Chris@16: return m_empty; Chris@16: } Chris@16: private: Chris@16: std::vector m_singles; // a list of single characters to match Chris@16: std::vector m_ranges; // a list of end points of our ranges Chris@16: bool m_negate; // true if the set is to be negated Chris@16: bool m_has_digraphs; // true if we have digraphs present Chris@16: m_type m_classes; // character classes to match Chris@16: m_type m_negated_classes; // negated character classes to match Chris@16: bool m_empty; // whether we've added anything yet Chris@16: std::vector m_equivalents; // a list of equivalence classes Chris@16: }; Chris@16: Chris@16: template Chris@16: class basic_regex_creator Chris@16: { Chris@16: public: Chris@16: basic_regex_creator(regex_data* data); Chris@16: std::ptrdiff_t getoffset(void* addr) Chris@16: { Chris@16: return getoffset(addr, m_pdata->m_data.data()); Chris@16: } Chris@16: std::ptrdiff_t getoffset(const void* addr, const void* base) Chris@16: { Chris@16: return static_cast(addr) - static_cast(base); Chris@16: } Chris@16: re_syntax_base* getaddress(std::ptrdiff_t off) Chris@16: { Chris@16: return getaddress(off, m_pdata->m_data.data()); Chris@16: } Chris@16: re_syntax_base* getaddress(std::ptrdiff_t off, void* base) Chris@16: { Chris@16: return static_cast(static_cast(static_cast(base) + off)); Chris@16: } Chris@16: void init(unsigned l_flags) Chris@16: { Chris@16: m_pdata->m_flags = l_flags; Chris@16: m_icase = l_flags & regex_constants::icase; Chris@16: } Chris@16: regbase::flag_type flags() Chris@16: { Chris@16: return m_pdata->m_flags; Chris@16: } Chris@16: void flags(regbase::flag_type f) Chris@16: { Chris@16: m_pdata->m_flags = f; Chris@16: if(m_icase != static_cast(f & regbase::icase)) Chris@16: { Chris@16: m_icase = static_cast(f & regbase::icase); Chris@16: } Chris@16: } Chris@16: re_syntax_base* append_state(syntax_element_type t, std::size_t s = sizeof(re_syntax_base)); Chris@16: re_syntax_base* insert_state(std::ptrdiff_t pos, syntax_element_type t, std::size_t s = sizeof(re_syntax_base)); Chris@16: re_literal* append_literal(charT c); Chris@16: re_syntax_base* append_set(const basic_char_set& char_set); Chris@16: re_syntax_base* append_set(const basic_char_set& char_set, mpl::false_*); Chris@16: re_syntax_base* append_set(const basic_char_set& char_set, mpl::true_*); Chris@16: void finalize(const charT* p1, const charT* p2); Chris@16: protected: Chris@16: regex_data* m_pdata; // pointer to the basic_regex_data struct we are filling in Chris@16: const ::boost::regex_traits_wrapper& Chris@16: m_traits; // convenience reference to traits class Chris@16: re_syntax_base* m_last_state; // the last state we added Chris@16: bool m_icase; // true for case insensitive matches Chris@16: unsigned m_repeater_id; // the state_id of the next repeater Chris@16: bool m_has_backrefs; // true if there are actually any backrefs Chris@16: unsigned m_backrefs; // bitmask of permitted backrefs Chris@16: boost::uintmax_t m_bad_repeats; // bitmask of repeats we can't deduce a startmap for; Chris@16: bool m_has_recursions; // set when we have recursive expresisons to fixup Chris@16: std::vector m_recursion_checks; // notes which recursions we've followed while analysing this expression Chris@16: typename traits::char_class_type m_word_mask; // mask used to determine if a character is a word character Chris@16: typename traits::char_class_type m_mask_space; // mask used to determine if a character is a word character Chris@16: typename traits::char_class_type m_lower_mask; // mask used to determine if a character is a lowercase character Chris@16: typename traits::char_class_type m_upper_mask; // mask used to determine if a character is an uppercase character Chris@16: typename traits::char_class_type m_alpha_mask; // mask used to determine if a character is an alphabetic character Chris@16: private: Chris@16: basic_regex_creator& operator=(const basic_regex_creator&); Chris@16: basic_regex_creator(const basic_regex_creator&); Chris@16: Chris@16: void fixup_pointers(re_syntax_base* state); Chris@16: void fixup_recursions(re_syntax_base* state); Chris@16: void create_startmaps(re_syntax_base* state); Chris@16: int calculate_backstep(re_syntax_base* state); Chris@16: void create_startmap(re_syntax_base* state, unsigned char* l_map, unsigned int* pnull, unsigned char mask); Chris@16: unsigned get_restart_type(re_syntax_base* state); Chris@16: void set_all_masks(unsigned char* bits, unsigned char); Chris@16: bool is_bad_repeat(re_syntax_base* pt); Chris@16: void set_bad_repeat(re_syntax_base* pt); Chris@16: syntax_element_type get_repeat_type(re_syntax_base* state); Chris@16: void probe_leading_repeat(re_syntax_base* state); Chris@16: }; Chris@16: Chris@16: template Chris@16: basic_regex_creator::basic_regex_creator(regex_data* data) Chris@16: : m_pdata(data), m_traits(*(data->m_ptraits)), m_last_state(0), m_repeater_id(0), m_has_backrefs(false), m_backrefs(0), m_has_recursions(false) Chris@16: { Chris@16: m_pdata->m_data.clear(); Chris@16: m_pdata->m_status = ::boost::regex_constants::error_ok; Chris@16: static const charT w = 'w'; Chris@16: static const charT s = 's'; Chris@16: static const charT l[5] = { 'l', 'o', 'w', 'e', 'r', }; Chris@16: static const charT u[5] = { 'u', 'p', 'p', 'e', 'r', }; Chris@16: static const charT a[5] = { 'a', 'l', 'p', 'h', 'a', }; Chris@16: m_word_mask = m_traits.lookup_classname(&w, &w +1); Chris@16: m_mask_space = m_traits.lookup_classname(&s, &s +1); Chris@16: m_lower_mask = m_traits.lookup_classname(l, l + 5); Chris@16: m_upper_mask = m_traits.lookup_classname(u, u + 5); Chris@16: m_alpha_mask = m_traits.lookup_classname(a, a + 5); Chris@16: m_pdata->m_word_mask = m_word_mask; Chris@16: BOOST_ASSERT(m_word_mask != 0); Chris@16: BOOST_ASSERT(m_mask_space != 0); Chris@16: BOOST_ASSERT(m_lower_mask != 0); Chris@16: BOOST_ASSERT(m_upper_mask != 0); Chris@16: BOOST_ASSERT(m_alpha_mask != 0); Chris@16: } Chris@16: Chris@16: template Chris@16: re_syntax_base* basic_regex_creator::append_state(syntax_element_type t, std::size_t s) Chris@16: { Chris@16: // if the state is a backref then make a note of it: Chris@16: if(t == syntax_element_backref) Chris@16: this->m_has_backrefs = true; Chris@16: // append a new state, start by aligning our last one: Chris@16: m_pdata->m_data.align(); Chris@16: // set the offset to the next state in our last one: Chris@16: if(m_last_state) Chris@16: m_last_state->next.i = m_pdata->m_data.size() - getoffset(m_last_state); Chris@16: // now actually extent our data: Chris@16: m_last_state = static_cast(m_pdata->m_data.extend(s)); Chris@16: // fill in boilerplate options in the new state: Chris@16: m_last_state->next.i = 0; Chris@16: m_last_state->type = t; Chris@16: return m_last_state; Chris@16: } Chris@16: Chris@16: template Chris@16: re_syntax_base* basic_regex_creator::insert_state(std::ptrdiff_t pos, syntax_element_type t, std::size_t s) Chris@16: { Chris@16: // append a new state, start by aligning our last one: Chris@16: m_pdata->m_data.align(); Chris@16: // set the offset to the next state in our last one: Chris@16: if(m_last_state) Chris@16: m_last_state->next.i = m_pdata->m_data.size() - getoffset(m_last_state); Chris@16: // remember the last state position: Chris@16: std::ptrdiff_t off = getoffset(m_last_state) + s; Chris@16: // now actually insert our data: Chris@16: re_syntax_base* new_state = static_cast(m_pdata->m_data.insert(pos, s)); Chris@16: // fill in boilerplate options in the new state: Chris@16: new_state->next.i = s; Chris@16: new_state->type = t; Chris@16: m_last_state = getaddress(off); Chris@16: return new_state; Chris@16: } Chris@16: Chris@16: template Chris@16: re_literal* basic_regex_creator::append_literal(charT c) Chris@16: { Chris@16: re_literal* result; Chris@16: // start by seeing if we have an existing re_literal we can extend: Chris@16: if((0 == m_last_state) || (m_last_state->type != syntax_element_literal)) Chris@16: { Chris@16: // no existing re_literal, create a new one: Chris@16: result = static_cast(append_state(syntax_element_literal, sizeof(re_literal) + sizeof(charT))); Chris@16: result->length = 1; Chris@16: *static_cast(static_cast(result+1)) = m_traits.translate(c, m_icase); Chris@16: } Chris@16: else Chris@16: { Chris@16: // we have an existing re_literal, extend it: Chris@16: std::ptrdiff_t off = getoffset(m_last_state); Chris@16: m_pdata->m_data.extend(sizeof(charT)); Chris@16: m_last_state = result = static_cast(getaddress(off)); Chris@16: charT* characters = static_cast(static_cast(result+1)); Chris@16: characters[result->length] = m_traits.translate(c, m_icase); Chris@101: result->length += 1; Chris@16: } Chris@16: return result; Chris@16: } Chris@16: Chris@16: template Chris@16: inline re_syntax_base* basic_regex_creator::append_set( Chris@16: const basic_char_set& char_set) Chris@16: { Chris@16: typedef mpl::bool_< (sizeof(charT) == 1) > truth_type; Chris@16: return char_set.has_digraphs() Chris@16: ? append_set(char_set, static_cast(0)) Chris@16: : append_set(char_set, static_cast(0)); Chris@16: } Chris@16: Chris@16: template Chris@16: re_syntax_base* basic_regex_creator::append_set( Chris@16: const basic_char_set& char_set, mpl::false_*) Chris@16: { Chris@16: typedef typename traits::string_type string_type; Chris@16: typedef typename basic_char_set::list_iterator item_iterator; Chris@16: typedef typename traits::char_class_type m_type; Chris@16: Chris@16: re_set_long* result = static_cast*>(append_state(syntax_element_long_set, sizeof(re_set_long))); Chris@16: // Chris@16: // fill in the basics: Chris@16: // Chris@16: result->csingles = static_cast(::boost::re_detail::distance(char_set.singles_begin(), char_set.singles_end())); Chris@16: result->cranges = static_cast(::boost::re_detail::distance(char_set.ranges_begin(), char_set.ranges_end())) / 2; Chris@16: result->cequivalents = static_cast(::boost::re_detail::distance(char_set.equivalents_begin(), char_set.equivalents_end())); Chris@16: result->cclasses = char_set.classes(); Chris@16: result->cnclasses = char_set.negated_classes(); Chris@16: if(flags() & regbase::icase) Chris@16: { Chris@16: // adjust classes as needed: Chris@16: if(((result->cclasses & m_lower_mask) == m_lower_mask) || ((result->cclasses & m_upper_mask) == m_upper_mask)) Chris@16: result->cclasses |= m_alpha_mask; Chris@16: if(((result->cnclasses & m_lower_mask) == m_lower_mask) || ((result->cnclasses & m_upper_mask) == m_upper_mask)) Chris@16: result->cnclasses |= m_alpha_mask; Chris@16: } Chris@16: Chris@16: result->isnot = char_set.is_negated(); Chris@16: result->singleton = !char_set.has_digraphs(); Chris@16: // Chris@16: // remember where the state is for later: Chris@16: // Chris@16: std::ptrdiff_t offset = getoffset(result); Chris@16: // Chris@16: // now extend with all the singles: Chris@16: // Chris@16: item_iterator first, last; Chris@16: first = char_set.singles_begin(); Chris@16: last = char_set.singles_end(); Chris@16: while(first != last) Chris@16: { Chris@16: charT* p = static_cast(this->m_pdata->m_data.extend(sizeof(charT) * (first->second ? 3 : 2))); Chris@16: p[0] = m_traits.translate(first->first, m_icase); Chris@16: if(first->second) Chris@16: { Chris@16: p[1] = m_traits.translate(first->second, m_icase); Chris@16: p[2] = 0; Chris@16: } Chris@16: else Chris@16: p[1] = 0; Chris@16: ++first; Chris@16: } Chris@16: // Chris@16: // now extend with all the ranges: Chris@16: // Chris@16: first = char_set.ranges_begin(); Chris@16: last = char_set.ranges_end(); Chris@16: while(first != last) Chris@16: { Chris@16: // first grab the endpoints of the range: Chris@16: digraph c1 = *first; Chris@16: c1.first = this->m_traits.translate(c1.first, this->m_icase); Chris@16: c1.second = this->m_traits.translate(c1.second, this->m_icase); Chris@16: ++first; Chris@16: digraph c2 = *first; Chris@16: c2.first = this->m_traits.translate(c2.first, this->m_icase); Chris@16: c2.second = this->m_traits.translate(c2.second, this->m_icase); Chris@16: ++first; Chris@16: string_type s1, s2; Chris@16: // different actions now depending upon whether collation is turned on: Chris@16: if(flags() & regex_constants::collate) Chris@16: { Chris@16: // we need to transform our range into sort keys: Chris@16: charT a1[3] = { c1.first, c1.second, charT(0), }; Chris@16: charT a2[3] = { c2.first, c2.second, charT(0), }; Chris@16: s1 = this->m_traits.transform(a1, (a1[1] ? a1+2 : a1+1)); Chris@16: s2 = this->m_traits.transform(a2, (a2[1] ? a2+2 : a2+1)); Chris@16: if(s1.size() == 0) Chris@16: s1 = string_type(1, charT(0)); Chris@16: if(s2.size() == 0) Chris@16: s2 = string_type(1, charT(0)); Chris@16: } Chris@16: else Chris@16: { Chris@16: if(c1.second) Chris@16: { Chris@16: s1.insert(s1.end(), c1.first); Chris@16: s1.insert(s1.end(), c1.second); Chris@16: } Chris@16: else Chris@16: s1 = string_type(1, c1.first); Chris@16: if(c2.second) Chris@16: { Chris@16: s2.insert(s2.end(), c2.first); Chris@16: s2.insert(s2.end(), c2.second); Chris@16: } Chris@16: else Chris@16: s2.insert(s2.end(), c2.first); Chris@16: } Chris@16: if(s1 > s2) Chris@16: { Chris@16: // Oops error: Chris@16: return 0; Chris@16: } Chris@16: charT* p = static_cast(this->m_pdata->m_data.extend(sizeof(charT) * (s1.size() + s2.size() + 2) ) ); Chris@16: re_detail::copy(s1.begin(), s1.end(), p); Chris@16: p[s1.size()] = charT(0); Chris@16: p += s1.size() + 1; Chris@16: re_detail::copy(s2.begin(), s2.end(), p); Chris@16: p[s2.size()] = charT(0); Chris@16: } Chris@16: // Chris@16: // now process the equivalence classes: Chris@16: // Chris@16: first = char_set.equivalents_begin(); Chris@16: last = char_set.equivalents_end(); Chris@16: while(first != last) Chris@16: { Chris@16: string_type s; Chris@16: if(first->second) Chris@16: { Chris@16: charT cs[3] = { first->first, first->second, charT(0), }; Chris@16: s = m_traits.transform_primary(cs, cs+2); Chris@16: } Chris@16: else Chris@16: s = m_traits.transform_primary(&first->first, &first->first+1); Chris@16: if(s.empty()) Chris@16: return 0; // invalid or unsupported equivalence class Chris@16: charT* p = static_cast(this->m_pdata->m_data.extend(sizeof(charT) * (s.size()+1) ) ); Chris@16: re_detail::copy(s.begin(), s.end(), p); Chris@16: p[s.size()] = charT(0); Chris@16: ++first; Chris@16: } Chris@16: // Chris@16: // finally reset the address of our last state: Chris@16: // Chris@16: m_last_state = result = static_cast*>(getaddress(offset)); Chris@16: return result; Chris@16: } Chris@16: Chris@16: template Chris@16: inline bool char_less(T t1, T t2) Chris@16: { Chris@16: return t1 < t2; Chris@16: } Chris@16: inline bool char_less(char t1, char t2) Chris@16: { Chris@16: return static_cast(t1) < static_cast(t2); Chris@16: } Chris@16: inline bool char_less(signed char t1, signed char t2) Chris@16: { Chris@16: return static_cast(t1) < static_cast(t2); Chris@16: } Chris@16: Chris@16: template Chris@16: re_syntax_base* basic_regex_creator::append_set( Chris@16: const basic_char_set& char_set, mpl::true_*) Chris@16: { Chris@16: typedef typename traits::string_type string_type; Chris@16: typedef typename basic_char_set::list_iterator item_iterator; Chris@16: Chris@16: re_set* result = static_cast(append_state(syntax_element_set, sizeof(re_set))); Chris@16: bool negate = char_set.is_negated(); Chris@16: std::memset(result->_map, 0, sizeof(result->_map)); Chris@16: // Chris@16: // handle singles first: Chris@16: // Chris@16: item_iterator first, last; Chris@16: first = char_set.singles_begin(); Chris@16: last = char_set.singles_end(); Chris@16: while(first != last) Chris@16: { Chris@16: for(unsigned int i = 0; i < (1 << CHAR_BIT); ++i) Chris@16: { Chris@16: if(this->m_traits.translate(static_cast(i), this->m_icase) Chris@16: == this->m_traits.translate(first->first, this->m_icase)) Chris@16: result->_map[i] = true; Chris@16: } Chris@16: ++first; Chris@16: } Chris@16: // Chris@16: // OK now handle ranges: Chris@16: // Chris@16: first = char_set.ranges_begin(); Chris@16: last = char_set.ranges_end(); Chris@16: while(first != last) Chris@16: { Chris@16: // first grab the endpoints of the range: Chris@16: charT c1 = this->m_traits.translate(first->first, this->m_icase); Chris@16: ++first; Chris@16: charT c2 = this->m_traits.translate(first->first, this->m_icase); Chris@16: ++first; Chris@16: // different actions now depending upon whether collation is turned on: Chris@16: if(flags() & regex_constants::collate) Chris@16: { Chris@16: // we need to transform our range into sort keys: Chris@16: charT c3[2] = { c1, charT(0), }; Chris@16: string_type s1 = this->m_traits.transform(c3, c3+1); Chris@16: c3[0] = c2; Chris@16: string_type s2 = this->m_traits.transform(c3, c3+1); Chris@16: if(s1 > s2) Chris@16: { Chris@16: // Oops error: Chris@16: return 0; Chris@16: } Chris@16: BOOST_ASSERT(c3[1] == charT(0)); Chris@16: for(unsigned i = 0; i < (1u << CHAR_BIT); ++i) Chris@16: { Chris@16: c3[0] = static_cast(i); Chris@16: string_type s3 = this->m_traits.transform(c3, c3 +1); Chris@16: if((s1 <= s3) && (s3 <= s2)) Chris@16: result->_map[i] = true; Chris@16: } Chris@16: } Chris@16: else Chris@16: { Chris@16: if(char_less(c2, c1)) Chris@16: { Chris@16: // Oops error: Chris@16: return 0; Chris@16: } Chris@16: // everything in range matches: Chris@16: std::memset(result->_map + static_cast(c1), true, 1 + static_cast(c2) - static_cast(c1)); Chris@16: } Chris@16: } Chris@16: // Chris@16: // and now the classes: Chris@16: // Chris@16: typedef typename traits::char_class_type m_type; Chris@16: m_type m = char_set.classes(); Chris@16: if(flags() & regbase::icase) Chris@16: { Chris@16: // adjust m as needed: Chris@16: if(((m & m_lower_mask) == m_lower_mask) || ((m & m_upper_mask) == m_upper_mask)) Chris@16: m |= m_alpha_mask; Chris@16: } Chris@16: if(m != 0) Chris@16: { Chris@16: for(unsigned i = 0; i < (1u << CHAR_BIT); ++i) Chris@16: { Chris@16: if(this->m_traits.isctype(static_cast(i), m)) Chris@16: result->_map[i] = true; Chris@16: } Chris@16: } Chris@16: // Chris@16: // and now the negated classes: Chris@16: // Chris@16: m = char_set.negated_classes(); Chris@16: if(flags() & regbase::icase) Chris@16: { Chris@16: // adjust m as needed: Chris@16: if(((m & m_lower_mask) == m_lower_mask) || ((m & m_upper_mask) == m_upper_mask)) Chris@16: m |= m_alpha_mask; Chris@16: } Chris@16: if(m != 0) Chris@16: { Chris@16: for(unsigned i = 0; i < (1u << CHAR_BIT); ++i) Chris@16: { Chris@16: if(0 == this->m_traits.isctype(static_cast(i), m)) Chris@16: result->_map[i] = true; Chris@16: } Chris@16: } Chris@16: // Chris@16: // now process the equivalence classes: Chris@16: // Chris@16: first = char_set.equivalents_begin(); Chris@16: last = char_set.equivalents_end(); Chris@16: while(first != last) Chris@16: { Chris@16: string_type s; Chris@16: BOOST_ASSERT(static_cast(0) == first->second); Chris@16: s = m_traits.transform_primary(&first->first, &first->first+1); Chris@16: if(s.empty()) Chris@16: return 0; // invalid or unsupported equivalence class Chris@16: for(unsigned i = 0; i < (1u << CHAR_BIT); ++i) Chris@16: { Chris@16: charT c[2] = { (static_cast(i)), charT(0), }; Chris@16: string_type s2 = this->m_traits.transform_primary(c, c+1); Chris@16: if(s == s2) Chris@16: result->_map[i] = true; Chris@16: } Chris@16: ++first; Chris@16: } Chris@16: if(negate) Chris@16: { Chris@16: for(unsigned i = 0; i < (1u << CHAR_BIT); ++i) Chris@16: { Chris@16: result->_map[i] = !(result->_map[i]); Chris@16: } Chris@16: } Chris@16: return result; Chris@16: } Chris@16: Chris@16: template Chris@16: void basic_regex_creator::finalize(const charT* p1, const charT* p2) Chris@16: { Chris@16: if(this->m_pdata->m_status) Chris@16: return; Chris@16: // we've added all the states we need, now finish things off. Chris@16: // start by adding a terminating state: Chris@16: append_state(syntax_element_match); Chris@16: // extend storage to store original expression: Chris@16: std::ptrdiff_t len = p2 - p1; Chris@16: m_pdata->m_expression_len = len; Chris@16: charT* ps = static_cast(m_pdata->m_data.extend(sizeof(charT) * (1 + (p2 - p1)))); Chris@16: m_pdata->m_expression = ps; Chris@16: re_detail::copy(p1, p2, ps); Chris@16: ps[p2 - p1] = 0; Chris@16: // fill in our other data... Chris@16: // successful parsing implies a zero status: Chris@16: m_pdata->m_status = 0; Chris@16: // get the first state of the machine: Chris@16: m_pdata->m_first_state = static_cast(m_pdata->m_data.data()); Chris@16: // fixup pointers in the machine: Chris@16: fixup_pointers(m_pdata->m_first_state); Chris@16: if(m_has_recursions) Chris@16: { Chris@16: m_pdata->m_has_recursions = true; Chris@16: fixup_recursions(m_pdata->m_first_state); Chris@16: if(this->m_pdata->m_status) Chris@16: return; Chris@16: } Chris@16: else Chris@16: m_pdata->m_has_recursions = false; Chris@16: // create nested startmaps: Chris@16: create_startmaps(m_pdata->m_first_state); Chris@16: // create main startmap: Chris@16: std::memset(m_pdata->m_startmap, 0, sizeof(m_pdata->m_startmap)); Chris@16: m_pdata->m_can_be_null = 0; Chris@16: Chris@16: m_bad_repeats = 0; Chris@16: if(m_has_recursions) Chris@16: m_recursion_checks.assign(1 + m_pdata->m_mark_count, false); Chris@16: create_startmap(m_pdata->m_first_state, m_pdata->m_startmap, &(m_pdata->m_can_be_null), mask_all); Chris@16: // get the restart type: Chris@16: m_pdata->m_restart_type = get_restart_type(m_pdata->m_first_state); Chris@16: // optimise a leading repeat if there is one: Chris@16: probe_leading_repeat(m_pdata->m_first_state); Chris@16: } Chris@16: Chris@16: template Chris@16: void basic_regex_creator::fixup_pointers(re_syntax_base* state) Chris@16: { Chris@16: while(state) Chris@16: { Chris@16: switch(state->type) Chris@16: { Chris@16: case syntax_element_recurse: Chris@16: m_has_recursions = true; Chris@16: if(state->next.i) Chris@16: state->next.p = getaddress(state->next.i, state); Chris@16: else Chris@16: state->next.p = 0; Chris@16: break; Chris@16: case syntax_element_rep: Chris@16: case syntax_element_dot_rep: Chris@16: case syntax_element_char_rep: Chris@16: case syntax_element_short_set_rep: Chris@16: case syntax_element_long_set_rep: Chris@16: // set the state_id of this repeat: Chris@16: static_cast(state)->state_id = m_repeater_id++; Chris@16: BOOST_FALLTHROUGH; Chris@16: case syntax_element_alt: Chris@16: std::memset(static_cast(state)->_map, 0, sizeof(static_cast(state)->_map)); Chris@16: static_cast(state)->can_be_null = 0; Chris@16: BOOST_FALLTHROUGH; Chris@16: case syntax_element_jump: Chris@16: static_cast(state)->alt.p = getaddress(static_cast(state)->alt.i, state); Chris@16: BOOST_FALLTHROUGH; Chris@16: default: Chris@16: if(state->next.i) Chris@16: state->next.p = getaddress(state->next.i, state); Chris@16: else Chris@16: state->next.p = 0; Chris@16: } Chris@16: state = state->next.p; Chris@16: } Chris@16: } Chris@16: Chris@16: template Chris@16: void basic_regex_creator::fixup_recursions(re_syntax_base* state) Chris@16: { Chris@16: re_syntax_base* base = state; Chris@16: while(state) Chris@16: { Chris@16: switch(state->type) Chris@16: { Chris@16: case syntax_element_assert_backref: Chris@16: { Chris@16: // just check that the index is valid: Chris@16: int idx = static_cast(state)->index; Chris@16: if(idx < 0) Chris@16: { Chris@16: idx = -idx-1; Chris@16: if(idx >= 10000) Chris@16: { Chris@16: idx = m_pdata->get_id(idx); Chris@16: if(idx <= 0) Chris@16: { Chris@16: // check of sub-expression that doesn't exist: Chris@16: if(0 == this->m_pdata->m_status) // update the error code if not already set Chris@16: this->m_pdata->m_status = boost::regex_constants::error_bad_pattern; Chris@16: // Chris@16: // clear the expression, we should be empty: Chris@16: // Chris@16: this->m_pdata->m_expression = 0; Chris@16: this->m_pdata->m_expression_len = 0; Chris@16: // Chris@16: // and throw if required: Chris@16: // Chris@16: if(0 == (this->flags() & regex_constants::no_except)) Chris@16: { Chris@16: std::string message = "Encountered a forward reference to a marked sub-expression that does not exist."; Chris@16: boost::regex_error e(message, boost::regex_constants::error_bad_pattern, 0); Chris@16: e.raise(); Chris@16: } Chris@16: } Chris@16: } Chris@16: } Chris@16: } Chris@16: break; Chris@16: case syntax_element_recurse: Chris@16: { Chris@16: bool ok = false; Chris@16: re_syntax_base* p = base; Chris@16: std::ptrdiff_t idx = static_cast(state)->alt.i; Chris@16: if(idx > 10000) Chris@16: { Chris@16: // Chris@16: // There may be more than one capture group with this hash, just do what Perl Chris@16: // does and recurse to the leftmost: Chris@16: // Chris@16: idx = m_pdata->get_id(static_cast(idx)); Chris@16: } Chris@16: while(p) Chris@16: { Chris@16: if((p->type == syntax_element_startmark) && (static_cast(p)->index == idx)) Chris@16: { Chris@16: // Chris@16: // We've found the target of the recursion, set the jump target: Chris@16: // Chris@16: static_cast(state)->alt.p = p; Chris@16: ok = true; Chris@16: // Chris@16: // Now scan the target for nested repeats: Chris@16: // Chris@16: p = p->next.p; Chris@16: int next_rep_id = 0; Chris@16: while(p) Chris@16: { Chris@16: switch(p->type) Chris@16: { Chris@16: case syntax_element_rep: Chris@16: case syntax_element_dot_rep: Chris@16: case syntax_element_char_rep: Chris@16: case syntax_element_short_set_rep: Chris@16: case syntax_element_long_set_rep: Chris@16: next_rep_id = static_cast(p)->state_id; Chris@16: break; Chris@16: case syntax_element_endmark: Chris@16: if(static_cast(p)->index == idx) Chris@16: next_rep_id = -1; Chris@16: break; Chris@16: default: Chris@16: break; Chris@16: } Chris@16: if(next_rep_id) Chris@16: break; Chris@16: p = p->next.p; Chris@16: } Chris@16: if(next_rep_id > 0) Chris@16: { Chris@16: static_cast(state)->state_id = next_rep_id - 1; Chris@16: } Chris@16: Chris@16: break; Chris@16: } Chris@16: p = p->next.p; Chris@16: } Chris@16: if(!ok) Chris@16: { Chris@16: // recursion to sub-expression that doesn't exist: Chris@16: if(0 == this->m_pdata->m_status) // update the error code if not already set Chris@16: this->m_pdata->m_status = boost::regex_constants::error_bad_pattern; Chris@16: // Chris@16: // clear the expression, we should be empty: Chris@16: // Chris@16: this->m_pdata->m_expression = 0; Chris@16: this->m_pdata->m_expression_len = 0; Chris@16: // Chris@16: // and throw if required: Chris@16: // Chris@16: if(0 == (this->flags() & regex_constants::no_except)) Chris@16: { Chris@16: std::string message = "Encountered a forward reference to a recursive sub-expression that does not exist."; Chris@16: boost::regex_error e(message, boost::regex_constants::error_bad_pattern, 0); Chris@16: e.raise(); Chris@16: } Chris@16: } Chris@16: } Chris@16: break; Chris@16: default: Chris@16: break; Chris@16: } Chris@16: state = state->next.p; Chris@16: } Chris@16: } Chris@16: Chris@16: template Chris@16: void basic_regex_creator::create_startmaps(re_syntax_base* state) Chris@16: { Chris@16: // non-recursive implementation: Chris@16: // create the last map in the machine first, so that earlier maps Chris@16: // can make use of the result... Chris@16: // Chris@16: // This was originally a recursive implementation, but that caused stack Chris@16: // overflows with complex expressions on small stacks (think COM+). Chris@16: Chris@16: // start by saving the case setting: Chris@16: bool l_icase = m_icase; Chris@16: std::vector > v; Chris@16: Chris@16: while(state) Chris@16: { Chris@16: switch(state->type) Chris@16: { Chris@16: case syntax_element_toggle_case: Chris@16: // we need to track case changes here: Chris@16: m_icase = static_cast(state)->icase; Chris@16: state = state->next.p; Chris@16: continue; Chris@16: case syntax_element_alt: Chris@16: case syntax_element_rep: Chris@16: case syntax_element_dot_rep: Chris@16: case syntax_element_char_rep: Chris@16: case syntax_element_short_set_rep: Chris@16: case syntax_element_long_set_rep: Chris@16: // just push the state onto our stack for now: Chris@16: v.push_back(std::pair(m_icase, state)); Chris@16: state = state->next.p; Chris@16: break; Chris@16: case syntax_element_backstep: Chris@16: // we need to calculate how big the backstep is: Chris@16: static_cast(state)->index Chris@16: = this->calculate_backstep(state->next.p); Chris@16: if(static_cast(state)->index < 0) Chris@16: { Chris@16: // Oops error: Chris@16: if(0 == this->m_pdata->m_status) // update the error code if not already set Chris@16: this->m_pdata->m_status = boost::regex_constants::error_bad_pattern; Chris@16: // Chris@16: // clear the expression, we should be empty: Chris@16: // Chris@16: this->m_pdata->m_expression = 0; Chris@16: this->m_pdata->m_expression_len = 0; Chris@16: // Chris@16: // and throw if required: Chris@16: // Chris@16: if(0 == (this->flags() & regex_constants::no_except)) Chris@16: { Chris@16: std::string message = "Invalid lookbehind assertion encountered in the regular expression."; Chris@16: boost::regex_error e(message, boost::regex_constants::error_bad_pattern, 0); Chris@16: e.raise(); Chris@16: } Chris@16: } Chris@16: BOOST_FALLTHROUGH; Chris@16: default: Chris@16: state = state->next.p; Chris@16: } Chris@16: } Chris@16: Chris@16: // now work through our list, building all the maps as we go: Chris@16: while(v.size()) Chris@16: { Chris@16: // Initialize m_recursion_checks if we need it: Chris@16: if(m_has_recursions) Chris@16: m_recursion_checks.assign(1 + m_pdata->m_mark_count, false); Chris@16: Chris@16: const std::pair& p = v.back(); Chris@16: m_icase = p.first; Chris@16: state = p.second; Chris@16: v.pop_back(); Chris@16: Chris@16: // Build maps: Chris@16: m_bad_repeats = 0; Chris@16: create_startmap(state->next.p, static_cast(state)->_map, &static_cast(state)->can_be_null, mask_take); Chris@16: m_bad_repeats = 0; Chris@16: Chris@16: if(m_has_recursions) Chris@16: m_recursion_checks.assign(1 + m_pdata->m_mark_count, false); Chris@16: create_startmap(static_cast(state)->alt.p, static_cast(state)->_map, &static_cast(state)->can_be_null, mask_skip); Chris@16: // adjust the type of the state to allow for faster matching: Chris@16: state->type = this->get_repeat_type(state); Chris@16: } Chris@16: // restore case sensitivity: Chris@16: m_icase = l_icase; Chris@16: } Chris@16: Chris@16: template Chris@16: int basic_regex_creator::calculate_backstep(re_syntax_base* state) Chris@16: { Chris@16: typedef typename traits::char_class_type m_type; Chris@16: int result = 0; Chris@16: while(state) Chris@16: { Chris@16: switch(state->type) Chris@16: { Chris@16: case syntax_element_startmark: Chris@16: if((static_cast(state)->index == -1) Chris@16: || (static_cast(state)->index == -2)) Chris@16: { Chris@16: state = static_cast(state->next.p)->alt.p->next.p; Chris@16: continue; Chris@16: } Chris@16: else if(static_cast(state)->index == -3) Chris@16: { Chris@16: state = state->next.p->next.p; Chris@16: continue; Chris@16: } Chris@16: break; Chris@16: case syntax_element_endmark: Chris@16: if((static_cast(state)->index == -1) Chris@16: || (static_cast(state)->index == -2)) Chris@16: return result; Chris@16: break; Chris@16: case syntax_element_literal: Chris@16: result += static_cast(state)->length; Chris@16: break; Chris@16: case syntax_element_wild: Chris@16: case syntax_element_set: Chris@16: result += 1; Chris@16: break; Chris@16: case syntax_element_dot_rep: Chris@16: case syntax_element_char_rep: Chris@16: case syntax_element_short_set_rep: Chris@16: case syntax_element_backref: Chris@16: case syntax_element_rep: Chris@16: case syntax_element_combining: Chris@16: case syntax_element_long_set_rep: Chris@16: case syntax_element_backstep: Chris@16: { Chris@16: re_repeat* rep = static_cast(state); Chris@16: // adjust the type of the state to allow for faster matching: Chris@16: state->type = this->get_repeat_type(state); Chris@16: if((state->type == syntax_element_dot_rep) Chris@16: || (state->type == syntax_element_char_rep) Chris@16: || (state->type == syntax_element_short_set_rep)) Chris@16: { Chris@16: if(rep->max != rep->min) Chris@16: return -1; Chris@16: result += static_cast(rep->min); Chris@16: state = rep->alt.p; Chris@16: continue; Chris@16: } Chris@16: else if(state->type == syntax_element_long_set_rep) Chris@16: { Chris@16: BOOST_ASSERT(rep->next.p->type == syntax_element_long_set); Chris@16: if(static_cast*>(rep->next.p)->singleton == 0) Chris@16: return -1; Chris@16: if(rep->max != rep->min) Chris@16: return -1; Chris@16: result += static_cast(rep->min); Chris@16: state = rep->alt.p; Chris@16: continue; Chris@16: } Chris@16: } Chris@16: return -1; Chris@16: case syntax_element_long_set: Chris@16: if(static_cast*>(state)->singleton == 0) Chris@16: return -1; Chris@16: result += 1; Chris@16: break; Chris@16: case syntax_element_jump: Chris@16: state = static_cast(state)->alt.p; Chris@16: continue; Chris@16: case syntax_element_alt: Chris@16: { Chris@16: int r1 = calculate_backstep(state->next.p); Chris@16: int r2 = calculate_backstep(static_cast(state)->alt.p); Chris@16: if((r1 < 0) || (r1 != r2)) Chris@16: return -1; Chris@16: return result + r1; Chris@16: } Chris@16: default: Chris@16: break; Chris@16: } Chris@16: state = state->next.p; Chris@16: } Chris@16: return -1; Chris@16: } Chris@16: Chris@16: template Chris@16: void basic_regex_creator::create_startmap(re_syntax_base* state, unsigned char* l_map, unsigned int* pnull, unsigned char mask) Chris@16: { Chris@16: int not_last_jump = 1; Chris@16: re_syntax_base* recursion_start = 0; Chris@16: int recursion_sub = 0; Chris@16: re_syntax_base* recursion_restart = 0; Chris@16: Chris@16: // track case sensitivity: Chris@16: bool l_icase = m_icase; Chris@16: Chris@16: while(state) Chris@16: { Chris@16: switch(state->type) Chris@16: { Chris@16: case syntax_element_toggle_case: Chris@16: l_icase = static_cast(state)->icase; Chris@16: state = state->next.p; Chris@16: break; Chris@16: case syntax_element_literal: Chris@16: { Chris@16: // don't set anything in *pnull, set each element in l_map Chris@16: // that could match the first character in the literal: Chris@16: if(l_map) Chris@16: { Chris@16: l_map[0] |= mask_init; Chris@16: charT first_char = *static_cast(static_cast(static_cast(state) + 1)); Chris@16: for(unsigned int i = 0; i < (1u << CHAR_BIT); ++i) Chris@16: { Chris@16: if(m_traits.translate(static_cast(i), l_icase) == first_char) Chris@16: l_map[i] |= mask; Chris@16: } Chris@16: } Chris@16: return; Chris@16: } Chris@16: case syntax_element_end_line: Chris@16: { Chris@16: // next character must be a line separator (if there is one): Chris@16: if(l_map) Chris@16: { Chris@16: l_map[0] |= mask_init; Chris@16: l_map[static_cast('\n')] |= mask; Chris@16: l_map[static_cast('\r')] |= mask; Chris@16: l_map[static_cast('\f')] |= mask; Chris@16: l_map[0x85] |= mask; Chris@16: } Chris@16: // now figure out if we can match a NULL string at this point: Chris@16: if(pnull) Chris@16: create_startmap(state->next.p, 0, pnull, mask); Chris@16: return; Chris@16: } Chris@16: case syntax_element_recurse: Chris@16: { Chris@16: if(state->type == syntax_element_startmark) Chris@16: recursion_sub = static_cast(state)->index; Chris@16: else Chris@16: recursion_sub = 0; Chris@16: if(m_recursion_checks[recursion_sub]) Chris@16: { Chris@16: // Infinite recursion!! Chris@16: if(0 == this->m_pdata->m_status) // update the error code if not already set Chris@16: this->m_pdata->m_status = boost::regex_constants::error_bad_pattern; Chris@16: // Chris@16: // clear the expression, we should be empty: Chris@16: // Chris@16: this->m_pdata->m_expression = 0; Chris@16: this->m_pdata->m_expression_len = 0; Chris@16: // Chris@16: // and throw if required: Chris@16: // Chris@16: if(0 == (this->flags() & regex_constants::no_except)) Chris@16: { Chris@16: std::string message = "Encountered an infinite recursion."; Chris@16: boost::regex_error e(message, boost::regex_constants::error_bad_pattern, 0); Chris@16: e.raise(); Chris@16: } Chris@16: } Chris@16: else if(recursion_start == 0) Chris@16: { Chris@16: recursion_start = state; Chris@16: recursion_restart = state->next.p; Chris@16: state = static_cast(state)->alt.p; Chris@16: m_recursion_checks[recursion_sub] = true; Chris@16: break; Chris@16: } Chris@16: m_recursion_checks[recursion_sub] = true; Chris@16: // can't handle nested recursion here... Chris@16: BOOST_FALLTHROUGH; Chris@16: } Chris@16: case syntax_element_backref: Chris@16: // can be null, and any character can match: Chris@16: if(pnull) Chris@16: *pnull |= mask; Chris@16: BOOST_FALLTHROUGH; Chris@16: case syntax_element_wild: Chris@16: { Chris@16: // can't be null, any character can match: Chris@16: set_all_masks(l_map, mask); Chris@16: return; Chris@16: } Chris@16: case syntax_element_match: Chris@16: { Chris@16: // must be null, any character can match: Chris@16: set_all_masks(l_map, mask); Chris@16: if(pnull) Chris@16: *pnull |= mask; Chris@16: return; Chris@16: } Chris@16: case syntax_element_word_start: Chris@16: { Chris@16: // recurse, then AND with all the word characters: Chris@16: create_startmap(state->next.p, l_map, pnull, mask); Chris@16: if(l_map) Chris@16: { Chris@16: l_map[0] |= mask_init; Chris@16: for(unsigned int i = 0; i < (1u << CHAR_BIT); ++i) Chris@16: { Chris@16: if(!m_traits.isctype(static_cast(i), m_word_mask)) Chris@16: l_map[i] &= static_cast(~mask); Chris@16: } Chris@16: } Chris@16: return; Chris@16: } Chris@16: case syntax_element_word_end: Chris@16: { Chris@16: // recurse, then AND with all the word characters: Chris@16: create_startmap(state->next.p, l_map, pnull, mask); Chris@16: if(l_map) Chris@16: { Chris@16: l_map[0] |= mask_init; Chris@16: for(unsigned int i = 0; i < (1u << CHAR_BIT); ++i) Chris@16: { Chris@16: if(m_traits.isctype(static_cast(i), m_word_mask)) Chris@16: l_map[i] &= static_cast(~mask); Chris@16: } Chris@16: } Chris@16: return; Chris@16: } Chris@16: case syntax_element_buffer_end: Chris@16: { Chris@16: // we *must be null* : Chris@16: if(pnull) Chris@16: *pnull |= mask; Chris@16: return; Chris@16: } Chris@16: case syntax_element_long_set: Chris@16: if(l_map) Chris@16: { Chris@16: typedef typename traits::char_class_type m_type; Chris@16: if(static_cast*>(state)->singleton) Chris@16: { Chris@16: l_map[0] |= mask_init; Chris@16: for(unsigned int i = 0; i < (1u << CHAR_BIT); ++i) Chris@16: { Chris@16: charT c = static_cast(i); Chris@16: if(&c != re_is_set_member(&c, &c + 1, static_cast*>(state), *m_pdata, l_icase)) Chris@16: l_map[i] |= mask; Chris@16: } Chris@16: } Chris@16: else Chris@16: set_all_masks(l_map, mask); Chris@16: } Chris@16: return; Chris@16: case syntax_element_set: Chris@16: if(l_map) Chris@16: { Chris@16: l_map[0] |= mask_init; Chris@16: for(unsigned int i = 0; i < (1u << CHAR_BIT); ++i) Chris@16: { Chris@16: if(static_cast(state)->_map[ Chris@16: static_cast(m_traits.translate(static_cast(i), l_icase))]) Chris@16: l_map[i] |= mask; Chris@16: } Chris@16: } Chris@16: return; Chris@16: case syntax_element_jump: Chris@16: // take the jump: Chris@16: state = static_cast(state)->alt.p; Chris@16: not_last_jump = -1; Chris@16: break; Chris@16: case syntax_element_alt: Chris@16: case syntax_element_rep: Chris@16: case syntax_element_dot_rep: Chris@16: case syntax_element_char_rep: Chris@16: case syntax_element_short_set_rep: Chris@16: case syntax_element_long_set_rep: Chris@16: { Chris@16: re_alt* rep = static_cast(state); Chris@16: if(rep->_map[0] & mask_init) Chris@16: { Chris@16: if(l_map) Chris@16: { Chris@16: // copy previous results: Chris@16: l_map[0] |= mask_init; Chris@16: for(unsigned int i = 0; i <= UCHAR_MAX; ++i) Chris@16: { Chris@16: if(rep->_map[i] & mask_any) Chris@16: l_map[i] |= mask; Chris@16: } Chris@16: } Chris@16: if(pnull) Chris@16: { Chris@16: if(rep->can_be_null & mask_any) Chris@16: *pnull |= mask; Chris@16: } Chris@16: } Chris@16: else Chris@16: { Chris@16: // we haven't created a startmap for this alternative yet Chris@16: // so take the union of the two options: Chris@16: if(is_bad_repeat(state)) Chris@16: { Chris@16: set_all_masks(l_map, mask); Chris@16: if(pnull) Chris@16: *pnull |= mask; Chris@16: return; Chris@16: } Chris@16: set_bad_repeat(state); Chris@16: create_startmap(state->next.p, l_map, pnull, mask); Chris@16: if((state->type == syntax_element_alt) Chris@16: || (static_cast(state)->min == 0) Chris@16: || (not_last_jump == 0)) Chris@16: create_startmap(rep->alt.p, l_map, pnull, mask); Chris@16: } Chris@16: } Chris@16: return; Chris@16: case syntax_element_soft_buffer_end: Chris@16: // match newline or null: Chris@16: if(l_map) Chris@16: { Chris@16: l_map[0] |= mask_init; Chris@16: l_map[static_cast('\n')] |= mask; Chris@16: l_map[static_cast('\r')] |= mask; Chris@16: } Chris@16: if(pnull) Chris@16: *pnull |= mask; Chris@16: return; Chris@16: case syntax_element_endmark: Chris@16: // need to handle independent subs as a special case: Chris@16: if(static_cast(state)->index < 0) Chris@16: { Chris@16: // can be null, any character can match: Chris@16: set_all_masks(l_map, mask); Chris@16: if(pnull) Chris@16: *pnull |= mask; Chris@16: return; Chris@16: } Chris@16: else if(recursion_start && (recursion_sub != 0) && (recursion_sub == static_cast(state)->index)) Chris@16: { Chris@16: // recursion termination: Chris@16: recursion_start = 0; Chris@16: state = recursion_restart; Chris@16: break; Chris@16: } Chris@16: Chris@16: // Chris@16: // Normally we just go to the next state... but if this sub-expression is Chris@16: // the target of a recursion, then we might be ending a recursion, in which Chris@16: // case we should check whatever follows that recursion, as well as whatever Chris@16: // follows this state: Chris@16: // Chris@16: if(m_pdata->m_has_recursions && static_cast(state)->index) Chris@16: { Chris@16: bool ok = false; Chris@16: re_syntax_base* p = m_pdata->m_first_state; Chris@16: while(p) Chris@16: { Chris@16: if(p->type == syntax_element_recurse) Chris@16: { Chris@16: re_brace* p2 = static_cast(static_cast(p)->alt.p); Chris@16: if((p2->type == syntax_element_startmark) && (p2->index == static_cast(state)->index)) Chris@16: { Chris@16: ok = true; Chris@16: break; Chris@16: } Chris@16: } Chris@16: p = p->next.p; Chris@16: } Chris@16: if(ok) Chris@16: { Chris@16: create_startmap(p->next.p, l_map, pnull, mask); Chris@16: } Chris@16: } Chris@16: state = state->next.p; Chris@16: break; Chris@16: Chris@16: case syntax_element_startmark: Chris@16: // need to handle independent subs as a special case: Chris@16: if(static_cast(state)->index == -3) Chris@16: { Chris@16: state = state->next.p->next.p; Chris@16: break; Chris@16: } Chris@16: BOOST_FALLTHROUGH; Chris@16: default: Chris@16: state = state->next.p; Chris@16: } Chris@16: ++not_last_jump; Chris@16: } Chris@16: } Chris@16: Chris@16: template Chris@16: unsigned basic_regex_creator::get_restart_type(re_syntax_base* state) Chris@16: { Chris@16: // Chris@16: // find out how the machine starts, so we can optimise the search: Chris@16: // Chris@16: while(state) Chris@16: { Chris@16: switch(state->type) Chris@16: { Chris@16: case syntax_element_startmark: Chris@16: case syntax_element_endmark: Chris@16: state = state->next.p; Chris@16: continue; Chris@16: case syntax_element_start_line: Chris@16: return regbase::restart_line; Chris@16: case syntax_element_word_start: Chris@16: return regbase::restart_word; Chris@16: case syntax_element_buffer_start: Chris@16: return regbase::restart_buf; Chris@16: case syntax_element_restart_continue: Chris@16: return regbase::restart_continue; Chris@16: default: Chris@16: state = 0; Chris@16: continue; Chris@16: } Chris@16: } Chris@16: return regbase::restart_any; Chris@16: } Chris@16: Chris@16: template Chris@16: void basic_regex_creator::set_all_masks(unsigned char* bits, unsigned char mask) Chris@16: { Chris@16: // Chris@16: // set mask in all of bits elements, Chris@16: // if bits[0] has mask_init not set then we can Chris@16: // optimise this to a call to memset: Chris@16: // Chris@16: if(bits) Chris@16: { Chris@16: if(bits[0] == 0) Chris@16: (std::memset)(bits, mask, 1u << CHAR_BIT); Chris@16: else Chris@16: { Chris@16: for(unsigned i = 0; i < (1u << CHAR_BIT); ++i) Chris@16: bits[i] |= mask; Chris@16: } Chris@16: bits[0] |= mask_init; Chris@16: } Chris@16: } Chris@16: Chris@16: template Chris@16: bool basic_regex_creator::is_bad_repeat(re_syntax_base* pt) Chris@16: { Chris@16: switch(pt->type) Chris@16: { Chris@16: case syntax_element_rep: Chris@16: case syntax_element_dot_rep: Chris@16: case syntax_element_char_rep: Chris@16: case syntax_element_short_set_rep: Chris@16: case syntax_element_long_set_rep: Chris@16: { Chris@16: unsigned state_id = static_cast(pt)->state_id; Chris@16: if(state_id > sizeof(m_bad_repeats) * CHAR_BIT) Chris@16: return true; // run out of bits, assume we can't traverse this one. Chris@16: static const boost::uintmax_t one = 1uL; Chris@16: return m_bad_repeats & (one << state_id); Chris@16: } Chris@16: default: Chris@16: return false; Chris@16: } Chris@16: } Chris@16: Chris@16: template Chris@16: void basic_regex_creator::set_bad_repeat(re_syntax_base* pt) Chris@16: { Chris@16: switch(pt->type) Chris@16: { Chris@16: case syntax_element_rep: Chris@16: case syntax_element_dot_rep: Chris@16: case syntax_element_char_rep: Chris@16: case syntax_element_short_set_rep: Chris@16: case syntax_element_long_set_rep: Chris@16: { Chris@16: unsigned state_id = static_cast(pt)->state_id; Chris@16: static const boost::uintmax_t one = 1uL; Chris@16: if(state_id <= sizeof(m_bad_repeats) * CHAR_BIT) Chris@16: m_bad_repeats |= (one << state_id); Chris@16: } Chris@16: break; Chris@16: default: Chris@16: break; Chris@16: } Chris@16: } Chris@16: Chris@16: template Chris@16: syntax_element_type basic_regex_creator::get_repeat_type(re_syntax_base* state) Chris@16: { Chris@16: typedef typename traits::char_class_type m_type; Chris@16: if(state->type == syntax_element_rep) Chris@16: { Chris@16: // check to see if we are repeating a single state: Chris@16: if(state->next.p->next.p->next.p == static_cast(state)->alt.p) Chris@16: { Chris@16: switch(state->next.p->type) Chris@16: { Chris@16: case re_detail::syntax_element_wild: Chris@16: return re_detail::syntax_element_dot_rep; Chris@16: case re_detail::syntax_element_literal: Chris@16: return re_detail::syntax_element_char_rep; Chris@16: case re_detail::syntax_element_set: Chris@16: return re_detail::syntax_element_short_set_rep; Chris@16: case re_detail::syntax_element_long_set: Chris@16: if(static_cast*>(state->next.p)->singleton) Chris@16: return re_detail::syntax_element_long_set_rep; Chris@16: break; Chris@16: default: Chris@16: break; Chris@16: } Chris@16: } Chris@16: } Chris@16: return state->type; Chris@16: } Chris@16: Chris@16: template Chris@16: void basic_regex_creator::probe_leading_repeat(re_syntax_base* state) Chris@16: { Chris@16: // enumerate our states, and see if we have a leading repeat Chris@16: // for which failed search restarts can be optimised; Chris@16: do Chris@16: { Chris@16: switch(state->type) Chris@16: { Chris@16: case syntax_element_startmark: Chris@16: if(static_cast(state)->index >= 0) Chris@16: { Chris@16: state = state->next.p; Chris@16: continue; Chris@16: } Chris@16: if((static_cast(state)->index == -1) Chris@16: || (static_cast(state)->index == -2)) Chris@16: { Chris@16: // skip past the zero width assertion: Chris@16: state = static_cast(state->next.p)->alt.p->next.p; Chris@16: continue; Chris@16: } Chris@16: if(static_cast(state)->index == -3) Chris@16: { Chris@16: // Have to skip the leading jump state: Chris@16: state = state->next.p->next.p; Chris@16: continue; Chris@16: } Chris@16: return; Chris@16: case syntax_element_endmark: Chris@16: case syntax_element_start_line: Chris@16: case syntax_element_end_line: Chris@16: case syntax_element_word_boundary: Chris@16: case syntax_element_within_word: Chris@16: case syntax_element_word_start: Chris@16: case syntax_element_word_end: Chris@16: case syntax_element_buffer_start: Chris@16: case syntax_element_buffer_end: Chris@16: case syntax_element_restart_continue: Chris@16: state = state->next.p; Chris@16: break; Chris@16: case syntax_element_dot_rep: Chris@16: case syntax_element_char_rep: Chris@16: case syntax_element_short_set_rep: Chris@16: case syntax_element_long_set_rep: Chris@16: if(this->m_has_backrefs == 0) Chris@16: static_cast(state)->leading = true; Chris@16: BOOST_FALLTHROUGH; Chris@16: default: Chris@16: return; Chris@16: } Chris@16: }while(state); Chris@16: } Chris@16: Chris@16: Chris@16: } // namespace re_detail Chris@16: Chris@16: } // namespace boost Chris@16: Chris@16: #ifdef BOOST_MSVC Chris@16: # pragma warning(pop) Chris@16: #endif Chris@16: Chris@16: #ifdef BOOST_MSVC Chris@16: #pragma warning(push) Chris@16: #pragma warning(disable: 4103) Chris@16: #endif Chris@16: #ifdef BOOST_HAS_ABI_HEADERS Chris@16: # include BOOST_ABI_SUFFIX Chris@16: #endif Chris@16: #ifdef BOOST_MSVC Chris@16: #pragma warning(pop) Chris@16: #endif Chris@16: Chris@16: #endif Chris@16: