Chris@101: // Copyright John Maddock 2007, 2014. Chris@16: // Use, modification and distribution are subject to the Chris@16: // Boost Software License, Version 1.0. (See accompanying file Chris@16: // LICENSE_1_0.txt or copy at http://www.boost.org/LICENSE_1_0.txt) Chris@16: Chris@16: #ifndef BOOST_MATH_ZETA_HPP Chris@16: #define BOOST_MATH_ZETA_HPP Chris@16: Chris@16: #ifdef _MSC_VER Chris@16: #pragma once Chris@16: #endif Chris@16: Chris@101: #include Chris@16: #include Chris@16: #include Chris@16: #include Chris@16: #include Chris@16: #include Chris@101: #include Chris@16: #include Chris@16: Chris@16: namespace boost{ namespace math{ namespace detail{ Chris@16: Chris@16: #if 0 Chris@16: // Chris@16: // This code is commented out because we have a better more rapidly converging series Chris@16: // now. Retained for future reference and in case the new code causes any issues down the line.... Chris@16: // Chris@16: Chris@16: template Chris@16: struct zeta_series_cache_size Chris@16: { Chris@16: // Chris@16: // Work how large to make our cache size when evaluating the series Chris@16: // evaluation: normally this is just large enough for the series Chris@16: // to have converged, but for arbitrary precision types we need a Chris@16: // really large cache to achieve reasonable precision in a reasonable Chris@16: // time. This is important when constructing rational approximations Chris@16: // to zeta for example. Chris@16: // Chris@16: typedef typename boost::math::policies::precision::type precision_type; Chris@16: typedef typename mpl::if_< Chris@16: mpl::less_equal >, Chris@16: mpl::int_<5000>, Chris@16: typename mpl::if_< Chris@16: mpl::less_equal >, Chris@16: mpl::int_<70>, Chris@16: typename mpl::if_< Chris@16: mpl::less_equal >, Chris@16: mpl::int_<100>, Chris@16: mpl::int_<5000> Chris@16: >::type Chris@16: >::type Chris@16: >::type type; Chris@16: }; Chris@16: Chris@16: template Chris@16: T zeta_series_imp(T s, T sc, const Policy&) Chris@16: { Chris@16: // Chris@16: // Series evaluation from: Chris@16: // Havil, J. Gamma: Exploring Euler's Constant. Chris@16: // Princeton, NJ: Princeton University Press, 2003. Chris@16: // Chris@16: // See also http://mathworld.wolfram.com/RiemannZetaFunction.html Chris@16: // Chris@16: BOOST_MATH_STD_USING Chris@16: T sum = 0; Chris@16: T mult = 0.5; Chris@16: T change; Chris@16: typedef typename zeta_series_cache_size::type cache_size; Chris@16: T powers[cache_size::value] = { 0, }; Chris@16: unsigned n = 0; Chris@16: do{ Chris@16: T binom = -static_cast(n); Chris@16: T nested_sum = 1; Chris@16: if(n < sizeof(powers) / sizeof(powers[0])) Chris@16: powers[n] = pow(static_cast(n + 1), -s); Chris@16: for(unsigned k = 1; k <= n; ++k) Chris@16: { Chris@16: T p; Chris@16: if(k < sizeof(powers) / sizeof(powers[0])) Chris@16: { Chris@16: p = powers[k]; Chris@16: //p = pow(k + 1, -s); Chris@16: } Chris@16: else Chris@16: p = pow(static_cast(k + 1), -s); Chris@16: nested_sum += binom * p; Chris@16: binom *= (k - static_cast(n)) / (k + 1); Chris@16: } Chris@16: change = mult * nested_sum; Chris@16: sum += change; Chris@16: mult /= 2; Chris@16: ++n; Chris@16: }while(fabs(change / sum) > tools::epsilon()); Chris@16: Chris@16: return sum * 1 / -boost::math::powm1(T(2), sc); Chris@16: } Chris@16: Chris@16: // Chris@16: // Classical p-series: Chris@16: // Chris@16: template Chris@16: struct zeta_series2 Chris@16: { Chris@16: typedef T result_type; Chris@16: zeta_series2(T _s) : s(-_s), k(1){} Chris@16: T operator()() Chris@16: { Chris@16: BOOST_MATH_STD_USING Chris@16: return pow(static_cast(k++), s); Chris@16: } Chris@16: private: Chris@16: T s; Chris@16: unsigned k; Chris@16: }; Chris@16: Chris@16: template Chris@16: inline T zeta_series2_imp(T s, const Policy& pol) Chris@16: { Chris@16: boost::uintmax_t max_iter = policies::get_max_series_iterations();; Chris@16: zeta_series2 f(s); Chris@16: T result = tools::sum_series( Chris@16: f, Chris@16: policies::get_epsilon(), Chris@16: max_iter); Chris@16: policies::check_series_iterations("boost::math::zeta_series2<%1%>(%1%)", max_iter, pol); Chris@16: return result; Chris@16: } Chris@16: #endif Chris@16: Chris@16: template Chris@16: T zeta_polynomial_series(T s, T sc, Policy const &) Chris@16: { Chris@16: // Chris@16: // This is algorithm 3 from: Chris@16: // Chris@16: // "An Efficient Algorithm for the Riemann Zeta Function", P. Borwein, Chris@16: // Canadian Mathematical Society, Conference Proceedings. Chris@16: // See: http://www.cecm.sfu.ca/personal/pborwein/PAPERS/P155.pdf Chris@16: // Chris@16: BOOST_MATH_STD_USING Chris@16: int n = itrunc(T(log(boost::math::tools::epsilon()) / -2)); Chris@16: T sum = 0; Chris@16: T two_n = ldexp(T(1), n); Chris@16: int ej_sign = 1; Chris@16: for(int j = 0; j < n; ++j) Chris@16: { Chris@16: sum += ej_sign * -two_n / pow(T(j + 1), s); Chris@16: ej_sign = -ej_sign; Chris@16: } Chris@16: T ej_sum = 1; Chris@16: T ej_term = 1; Chris@16: for(int j = n; j <= 2 * n - 1; ++j) Chris@16: { Chris@16: sum += ej_sign * (ej_sum - two_n) / pow(T(j + 1), s); Chris@16: ej_sign = -ej_sign; Chris@16: ej_term *= 2 * n - j; Chris@16: ej_term /= j - n + 1; Chris@16: ej_sum += ej_term; Chris@16: } Chris@16: return -sum / (two_n * (-powm1(T(2), sc))); Chris@16: } Chris@16: Chris@16: template Chris@16: T zeta_imp_prec(T s, T sc, const Policy& pol, const mpl::int_<0>&) Chris@16: { Chris@16: BOOST_MATH_STD_USING Chris@16: T result; Chris@101: if(s >= policies::digits()) Chris@101: return 1; Chris@16: result = zeta_polynomial_series(s, sc, pol); Chris@16: #if 0 Chris@16: // Old code archived for future reference: Chris@16: Chris@16: // Chris@16: // Only use power series if it will converge in 100 Chris@16: // iterations or less: the more iterations it consumes Chris@16: // the slower convergence becomes so we have to be very Chris@16: // careful in it's usage. Chris@16: // Chris@16: if (s > -log(tools::epsilon()) / 4.5) Chris@16: result = detail::zeta_series2_imp(s, pol); Chris@16: else Chris@16: result = detail::zeta_series_imp(s, sc, pol); Chris@16: #endif Chris@16: return result; Chris@16: } Chris@16: Chris@16: template Chris@16: inline T zeta_imp_prec(T s, T sc, const Policy&, const mpl::int_<53>&) Chris@16: { Chris@16: BOOST_MATH_STD_USING Chris@16: T result; Chris@16: if(s < 1) Chris@16: { Chris@16: // Rational Approximation Chris@16: // Maximum Deviation Found: 2.020e-18 Chris@16: // Expected Error Term: -2.020e-18 Chris@16: // Max error found at double precision: 3.994987e-17 Chris@16: static const T P[6] = { Chris@16: 0.24339294433593750202L, Chris@16: -0.49092470516353571651L, Chris@16: 0.0557616214776046784287L, Chris@16: -0.00320912498879085894856L, Chris@16: 0.000451534528645796438704L, Chris@16: -0.933241270357061460782e-5L, Chris@16: }; Chris@16: static const T Q[6] = { Chris@16: 1L, Chris@16: -0.279960334310344432495L, Chris@16: 0.0419676223309986037706L, Chris@16: -0.00413421406552171059003L, Chris@16: 0.00024978985622317935355L, Chris@16: -0.101855788418564031874e-4L, Chris@16: }; Chris@16: result = tools::evaluate_polynomial(P, sc) / tools::evaluate_polynomial(Q, sc); Chris@16: result -= 1.2433929443359375F; Chris@16: result += (sc); Chris@16: result /= (sc); Chris@16: } Chris@16: else if(s <= 2) Chris@16: { Chris@16: // Maximum Deviation Found: 9.007e-20 Chris@16: // Expected Error Term: 9.007e-20 Chris@16: static const T P[6] = { Chris@16: 0.577215664901532860516, Chris@16: 0.243210646940107164097, Chris@16: 0.0417364673988216497593, Chris@16: 0.00390252087072843288378, Chris@16: 0.000249606367151877175456, Chris@16: 0.110108440976732897969e-4, Chris@16: }; Chris@16: static const T Q[6] = { Chris@16: 1, Chris@16: 0.295201277126631761737, Chris@16: 0.043460910607305495864, Chris@16: 0.00434930582085826330659, Chris@16: 0.000255784226140488490982, Chris@16: 0.10991819782396112081e-4, Chris@16: }; Chris@16: result = tools::evaluate_polynomial(P, T(-sc)) / tools::evaluate_polynomial(Q, T(-sc)); Chris@16: result += 1 / (-sc); Chris@16: } Chris@16: else if(s <= 4) Chris@16: { Chris@16: // Maximum Deviation Found: 5.946e-22 Chris@16: // Expected Error Term: -5.946e-22 Chris@16: static const float Y = 0.6986598968505859375; Chris@16: static const T P[6] = { Chris@16: -0.0537258300023595030676, Chris@16: 0.0445163473292365591906, Chris@16: 0.0128677673534519952905, Chris@16: 0.00097541770457391752726, Chris@16: 0.769875101573654070925e-4, Chris@16: 0.328032510000383084155e-5, Chris@16: }; Chris@16: static const T Q[7] = { Chris@16: 1, Chris@16: 0.33383194553034051422, Chris@16: 0.0487798431291407621462, Chris@16: 0.00479039708573558490716, Chris@16: 0.000270776703956336357707, Chris@16: 0.106951867532057341359e-4, Chris@16: 0.236276623974978646399e-7, Chris@16: }; Chris@16: result = tools::evaluate_polynomial(P, T(s - 2)) / tools::evaluate_polynomial(Q, T(s - 2)); Chris@16: result += Y + 1 / (-sc); Chris@16: } Chris@16: else if(s <= 7) Chris@16: { Chris@16: // Maximum Deviation Found: 2.955e-17 Chris@16: // Expected Error Term: 2.955e-17 Chris@16: // Max error found at double precision: 2.009135e-16 Chris@16: Chris@16: static const T P[6] = { Chris@16: -2.49710190602259410021, Chris@16: -2.60013301809475665334, Chris@16: -0.939260435377109939261, Chris@16: -0.138448617995741530935, Chris@16: -0.00701721240549802377623, Chris@16: -0.229257310594893932383e-4, Chris@16: }; Chris@16: static const T Q[9] = { Chris@16: 1, Chris@16: 0.706039025937745133628, Chris@16: 0.15739599649558626358, Chris@16: 0.0106117950976845084417, Chris@16: -0.36910273311764618902e-4, Chris@16: 0.493409563927590008943e-5, Chris@16: -0.234055487025287216506e-6, Chris@16: 0.718833729365459760664e-8, Chris@16: -0.1129200113474947419e-9, Chris@16: }; Chris@16: result = tools::evaluate_polynomial(P, T(s - 4)) / tools::evaluate_polynomial(Q, T(s - 4)); Chris@16: result = 1 + exp(result); Chris@16: } Chris@16: else if(s < 15) Chris@16: { Chris@16: // Maximum Deviation Found: 7.117e-16 Chris@16: // Expected Error Term: 7.117e-16 Chris@16: // Max error found at double precision: 9.387771e-16 Chris@16: static const T P[7] = { Chris@16: -4.78558028495135619286, Chris@16: -1.89197364881972536382, Chris@16: -0.211407134874412820099, Chris@16: -0.000189204758260076688518, Chris@16: 0.00115140923889178742086, Chris@16: 0.639949204213164496988e-4, Chris@16: 0.139348932445324888343e-5, Chris@16: }; Chris@16: static const T Q[9] = { Chris@16: 1, Chris@16: 0.244345337378188557777, Chris@16: 0.00873370754492288653669, Chris@16: -0.00117592765334434471562, Chris@16: -0.743743682899933180415e-4, Chris@16: -0.21750464515767984778e-5, Chris@16: 0.471001264003076486547e-8, Chris@16: -0.833378440625385520576e-10, Chris@16: 0.699841545204845636531e-12, Chris@16: }; Chris@16: result = tools::evaluate_polynomial(P, T(s - 7)) / tools::evaluate_polynomial(Q, T(s - 7)); Chris@16: result = 1 + exp(result); Chris@16: } Chris@16: else if(s < 36) Chris@16: { Chris@16: // Max error in interpolated form: 1.668e-17 Chris@16: // Max error found at long double precision: 1.669714e-17 Chris@16: static const T P[8] = { Chris@16: -10.3948950573308896825, Chris@16: -2.85827219671106697179, Chris@16: -0.347728266539245787271, Chris@16: -0.0251156064655346341766, Chris@16: -0.00119459173416968685689, Chris@16: -0.382529323507967522614e-4, Chris@16: -0.785523633796723466968e-6, Chris@16: -0.821465709095465524192e-8, Chris@16: }; Chris@16: static const T Q[10] = { Chris@16: 1, Chris@16: 0.208196333572671890965, Chris@16: 0.0195687657317205033485, Chris@16: 0.00111079638102485921877, Chris@16: 0.408507746266039256231e-4, Chris@16: 0.955561123065693483991e-6, Chris@16: 0.118507153474022900583e-7, Chris@16: 0.222609483627352615142e-14, Chris@16: }; Chris@16: result = tools::evaluate_polynomial(P, T(s - 15)) / tools::evaluate_polynomial(Q, T(s - 15)); Chris@16: result = 1 + exp(result); Chris@16: } Chris@16: else if(s < 56) Chris@16: { Chris@16: result = 1 + pow(T(2), -s); Chris@16: } Chris@16: else Chris@16: { Chris@16: result = 1; Chris@16: } Chris@16: return result; Chris@16: } Chris@16: Chris@16: template Chris@16: T zeta_imp_prec(T s, T sc, const Policy&, const mpl::int_<64>&) Chris@16: { Chris@16: BOOST_MATH_STD_USING Chris@16: T result; Chris@16: if(s < 1) Chris@16: { Chris@16: // Rational Approximation Chris@16: // Maximum Deviation Found: 3.099e-20 Chris@16: // Expected Error Term: 3.099e-20 Chris@16: // Max error found at long double precision: 5.890498e-20 Chris@16: static const T P[6] = { Chris@16: BOOST_MATH_BIG_CONSTANT(T, 64, 0.243392944335937499969), Chris@16: BOOST_MATH_BIG_CONSTANT(T, 64, -0.496837806864865688082), Chris@16: BOOST_MATH_BIG_CONSTANT(T, 64, 0.0680008039723709987107), Chris@16: BOOST_MATH_BIG_CONSTANT(T, 64, -0.00511620413006619942112), Chris@16: BOOST_MATH_BIG_CONSTANT(T, 64, 0.000455369899250053003335), Chris@16: BOOST_MATH_BIG_CONSTANT(T, 64, -0.279496685273033761927e-4), Chris@16: }; Chris@16: static const T Q[7] = { Chris@101: BOOST_MATH_BIG_CONSTANT(T, 64, 1.0), Chris@16: BOOST_MATH_BIG_CONSTANT(T, 64, -0.30425480068225790522), Chris@16: BOOST_MATH_BIG_CONSTANT(T, 64, 0.050052748580371598736), Chris@16: BOOST_MATH_BIG_CONSTANT(T, 64, -0.00519355671064700627862), Chris@16: BOOST_MATH_BIG_CONSTANT(T, 64, 0.000360623385771198350257), Chris@16: BOOST_MATH_BIG_CONSTANT(T, 64, -0.159600883054550987633e-4), Chris@16: BOOST_MATH_BIG_CONSTANT(T, 64, 0.339770279812410586032e-6), Chris@16: }; Chris@16: result = tools::evaluate_polynomial(P, sc) / tools::evaluate_polynomial(Q, sc); Chris@16: result -= 1.2433929443359375F; Chris@16: result += (sc); Chris@16: result /= (sc); Chris@16: } Chris@16: else if(s <= 2) Chris@16: { Chris@16: // Maximum Deviation Found: 1.059e-21 Chris@16: // Expected Error Term: 1.059e-21 Chris@16: // Max error found at long double precision: 1.626303e-19 Chris@16: Chris@16: static const T P[6] = { Chris@16: BOOST_MATH_BIG_CONSTANT(T, 64, 0.577215664901532860605), Chris@16: BOOST_MATH_BIG_CONSTANT(T, 64, 0.222537368917162139445), Chris@16: BOOST_MATH_BIG_CONSTANT(T, 64, 0.0356286324033215682729), Chris@16: BOOST_MATH_BIG_CONSTANT(T, 64, 0.00304465292366350081446), Chris@16: BOOST_MATH_BIG_CONSTANT(T, 64, 0.000178102511649069421904), Chris@16: BOOST_MATH_BIG_CONSTANT(T, 64, 0.700867470265983665042e-5), Chris@16: }; Chris@16: static const T Q[7] = { Chris@101: BOOST_MATH_BIG_CONSTANT(T, 64, 1.0), Chris@16: BOOST_MATH_BIG_CONSTANT(T, 64, 0.259385759149531030085), Chris@16: BOOST_MATH_BIG_CONSTANT(T, 64, 0.0373974962106091316854), Chris@16: BOOST_MATH_BIG_CONSTANT(T, 64, 0.00332735159183332820617), Chris@16: BOOST_MATH_BIG_CONSTANT(T, 64, 0.000188690420706998606469), Chris@16: BOOST_MATH_BIG_CONSTANT(T, 64, 0.635994377921861930071e-5), Chris@16: BOOST_MATH_BIG_CONSTANT(T, 64, 0.226583954978371199405e-7), Chris@16: }; Chris@16: result = tools::evaluate_polynomial(P, T(-sc)) / tools::evaluate_polynomial(Q, T(-sc)); Chris@16: result += 1 / (-sc); Chris@16: } Chris@16: else if(s <= 4) Chris@16: { Chris@16: // Maximum Deviation Found: 5.946e-22 Chris@16: // Expected Error Term: -5.946e-22 Chris@16: static const float Y = 0.6986598968505859375; Chris@16: static const T P[7] = { Chris@16: BOOST_MATH_BIG_CONSTANT(T, 64, -0.053725830002359501027), Chris@16: BOOST_MATH_BIG_CONSTANT(T, 64, 0.0470551187571475844778), Chris@16: BOOST_MATH_BIG_CONSTANT(T, 64, 0.0101339410415759517471), Chris@16: BOOST_MATH_BIG_CONSTANT(T, 64, 0.00100240326666092854528), Chris@16: BOOST_MATH_BIG_CONSTANT(T, 64, 0.685027119098122814867e-4), Chris@16: BOOST_MATH_BIG_CONSTANT(T, 64, 0.390972820219765942117e-5), Chris@16: BOOST_MATH_BIG_CONSTANT(T, 64, 0.540319769113543934483e-7), Chris@16: }; Chris@16: static const T Q[8] = { Chris@16: BOOST_MATH_BIG_CONSTANT(T, 64, 1.0), Chris@16: BOOST_MATH_BIG_CONSTANT(T, 64, 0.286577739726542730421), Chris@16: BOOST_MATH_BIG_CONSTANT(T, 64, 0.0447355811517733225843), Chris@16: BOOST_MATH_BIG_CONSTANT(T, 64, 0.00430125107610252363302), Chris@16: BOOST_MATH_BIG_CONSTANT(T, 64, 0.000284956969089786662045), Chris@16: BOOST_MATH_BIG_CONSTANT(T, 64, 0.116188101609848411329e-4), Chris@16: BOOST_MATH_BIG_CONSTANT(T, 64, 0.278090318191657278204e-6), Chris@16: BOOST_MATH_BIG_CONSTANT(T, 64, -0.19683620233222028478e-8), Chris@16: }; Chris@16: result = tools::evaluate_polynomial(P, T(s - 2)) / tools::evaluate_polynomial(Q, T(s - 2)); Chris@16: result += Y + 1 / (-sc); Chris@16: } Chris@16: else if(s <= 7) Chris@16: { Chris@16: // Max error found at long double precision: 8.132216e-19 Chris@16: static const T P[8] = { Chris@16: BOOST_MATH_BIG_CONSTANT(T, 64, -2.49710190602259407065), Chris@16: BOOST_MATH_BIG_CONSTANT(T, 64, -3.36664913245960625334), Chris@16: BOOST_MATH_BIG_CONSTANT(T, 64, -1.77180020623777595452), Chris@16: BOOST_MATH_BIG_CONSTANT(T, 64, -0.464717885249654313933), Chris@16: BOOST_MATH_BIG_CONSTANT(T, 64, -0.0643694921293579472583), Chris@16: BOOST_MATH_BIG_CONSTANT(T, 64, -0.00464265386202805715487), Chris@16: BOOST_MATH_BIG_CONSTANT(T, 64, -0.000165556579779704340166), Chris@16: BOOST_MATH_BIG_CONSTANT(T, 64, -0.252884970740994069582e-5), Chris@16: }; Chris@16: static const T Q[9] = { Chris@16: BOOST_MATH_BIG_CONSTANT(T, 64, 1.0), Chris@16: BOOST_MATH_BIG_CONSTANT(T, 64, 1.01300131390690459085), Chris@16: BOOST_MATH_BIG_CONSTANT(T, 64, 0.387898115758643503827), Chris@16: BOOST_MATH_BIG_CONSTANT(T, 64, 0.0695071490045701135188), Chris@16: BOOST_MATH_BIG_CONSTANT(T, 64, 0.00586908595251442839291), Chris@16: BOOST_MATH_BIG_CONSTANT(T, 64, 0.000217752974064612188616), Chris@16: BOOST_MATH_BIG_CONSTANT(T, 64, 0.397626583349419011731e-5), Chris@16: BOOST_MATH_BIG_CONSTANT(T, 64, -0.927884739284359700764e-8), Chris@16: BOOST_MATH_BIG_CONSTANT(T, 64, 0.119810501805618894381e-9), Chris@16: }; Chris@16: result = tools::evaluate_polynomial(P, T(s - 4)) / tools::evaluate_polynomial(Q, T(s - 4)); Chris@16: result = 1 + exp(result); Chris@16: } Chris@16: else if(s < 15) Chris@16: { Chris@16: // Max error in interpolated form: 1.133e-18 Chris@16: // Max error found at long double precision: 2.183198e-18 Chris@16: static const T P[9] = { Chris@16: BOOST_MATH_BIG_CONSTANT(T, 64, -4.78558028495135548083), Chris@16: BOOST_MATH_BIG_CONSTANT(T, 64, -3.23873322238609358947), Chris@16: BOOST_MATH_BIG_CONSTANT(T, 64, -0.892338582881021799922), Chris@16: BOOST_MATH_BIG_CONSTANT(T, 64, -0.131326296217965913809), Chris@16: BOOST_MATH_BIG_CONSTANT(T, 64, -0.0115651591773783712996), Chris@16: BOOST_MATH_BIG_CONSTANT(T, 64, -0.000657728968362695775205), Chris@16: BOOST_MATH_BIG_CONSTANT(T, 64, -0.252051328129449973047e-4), Chris@16: BOOST_MATH_BIG_CONSTANT(T, 64, -0.626503445372641798925e-6), Chris@16: BOOST_MATH_BIG_CONSTANT(T, 64, -0.815696314790853893484e-8), Chris@16: }; Chris@16: static const T Q[9] = { Chris@16: BOOST_MATH_BIG_CONSTANT(T, 64, 1.0), Chris@16: BOOST_MATH_BIG_CONSTANT(T, 64, 0.525765665400123515036), Chris@16: BOOST_MATH_BIG_CONSTANT(T, 64, 0.10852641753657122787), Chris@16: BOOST_MATH_BIG_CONSTANT(T, 64, 0.0115669945375362045249), Chris@16: BOOST_MATH_BIG_CONSTANT(T, 64, 0.000732896513858274091966), Chris@16: BOOST_MATH_BIG_CONSTANT(T, 64, 0.30683952282420248448e-4), Chris@16: BOOST_MATH_BIG_CONSTANT(T, 64, 0.819649214609633126119e-6), Chris@16: BOOST_MATH_BIG_CONSTANT(T, 64, 0.117957556472335968146e-7), Chris@16: BOOST_MATH_BIG_CONSTANT(T, 64, -0.193432300973017671137e-12), Chris@16: }; Chris@16: result = tools::evaluate_polynomial(P, T(s - 7)) / tools::evaluate_polynomial(Q, T(s - 7)); Chris@16: result = 1 + exp(result); Chris@16: } Chris@16: else if(s < 42) Chris@16: { Chris@16: // Max error in interpolated form: 1.668e-17 Chris@16: // Max error found at long double precision: 1.669714e-17 Chris@16: static const T P[9] = { Chris@16: BOOST_MATH_BIG_CONSTANT(T, 64, -10.3948950573308861781), Chris@16: BOOST_MATH_BIG_CONSTANT(T, 64, -2.82646012777913950108), Chris@16: BOOST_MATH_BIG_CONSTANT(T, 64, -0.342144362739570333665), Chris@16: BOOST_MATH_BIG_CONSTANT(T, 64, -0.0249285145498722647472), Chris@16: BOOST_MATH_BIG_CONSTANT(T, 64, -0.00122493108848097114118), Chris@16: BOOST_MATH_BIG_CONSTANT(T, 64, -0.423055371192592850196e-4), Chris@16: BOOST_MATH_BIG_CONSTANT(T, 64, -0.1025215577185967488e-5), Chris@16: BOOST_MATH_BIG_CONSTANT(T, 64, -0.165096762663509467061e-7), Chris@16: BOOST_MATH_BIG_CONSTANT(T, 64, -0.145392555873022044329e-9), Chris@16: }; Chris@16: static const T Q[10] = { Chris@16: BOOST_MATH_BIG_CONSTANT(T, 64, 1.0), Chris@16: BOOST_MATH_BIG_CONSTANT(T, 64, 0.205135978585281988052), Chris@16: BOOST_MATH_BIG_CONSTANT(T, 64, 0.0192359357875879453602), Chris@16: BOOST_MATH_BIG_CONSTANT(T, 64, 0.00111496452029715514119), Chris@16: BOOST_MATH_BIG_CONSTANT(T, 64, 0.434928449016693986857e-4), Chris@16: BOOST_MATH_BIG_CONSTANT(T, 64, 0.116911068726610725891e-5), Chris@16: BOOST_MATH_BIG_CONSTANT(T, 64, 0.206704342290235237475e-7), Chris@16: BOOST_MATH_BIG_CONSTANT(T, 64, 0.209772836100827647474e-9), Chris@16: BOOST_MATH_BIG_CONSTANT(T, 64, -0.939798249922234703384e-16), Chris@16: BOOST_MATH_BIG_CONSTANT(T, 64, 0.264584017421245080294e-18), Chris@16: }; Chris@16: result = tools::evaluate_polynomial(P, T(s - 15)) / tools::evaluate_polynomial(Q, T(s - 15)); Chris@16: result = 1 + exp(result); Chris@16: } Chris@16: else if(s < 63) Chris@16: { Chris@16: result = 1 + pow(T(2), -s); Chris@16: } Chris@16: else Chris@16: { Chris@16: result = 1; Chris@16: } Chris@16: return result; Chris@16: } Chris@16: Chris@16: template Chris@16: T zeta_imp_prec(T s, T sc, const Policy&, const mpl::int_<113>&) Chris@16: { Chris@16: BOOST_MATH_STD_USING Chris@16: T result; Chris@16: if(s < 1) Chris@16: { Chris@16: // Rational Approximation Chris@16: // Maximum Deviation Found: 9.493e-37 Chris@16: // Expected Error Term: 9.492e-37 Chris@16: // Max error found at long double precision: 7.281332e-31 Chris@16: Chris@16: static const T P[10] = { Chris@101: BOOST_MATH_BIG_CONSTANT(T, 113, -1.0), Chris@16: BOOST_MATH_BIG_CONSTANT(T, 113, -0.0353008629988648122808504280990313668), Chris@16: BOOST_MATH_BIG_CONSTANT(T, 113, 0.0107795651204927743049369868548706909), Chris@16: BOOST_MATH_BIG_CONSTANT(T, 113, 0.000523961870530500751114866884685172975), Chris@16: BOOST_MATH_BIG_CONSTANT(T, 113, -0.661805838304910731947595897966487515e-4), Chris@16: BOOST_MATH_BIG_CONSTANT(T, 113, -0.658932670403818558510656304189164638e-5), Chris@16: BOOST_MATH_BIG_CONSTANT(T, 113, -0.103437265642266106533814021041010453e-6), Chris@16: BOOST_MATH_BIG_CONSTANT(T, 113, 0.116818787212666457105375746642927737e-7), Chris@16: BOOST_MATH_BIG_CONSTANT(T, 113, 0.660690993901506912123512551294239036e-9), Chris@16: BOOST_MATH_BIG_CONSTANT(T, 113, 0.113103113698388531428914333768142527e-10), Chris@16: }; Chris@16: static const T Q[11] = { Chris@101: BOOST_MATH_BIG_CONSTANT(T, 113, 1.0), Chris@16: BOOST_MATH_BIG_CONSTANT(T, 113, -0.387483472099602327112637481818565459), Chris@16: BOOST_MATH_BIG_CONSTANT(T, 113, 0.0802265315091063135271497708694776875), Chris@16: BOOST_MATH_BIG_CONSTANT(T, 113, -0.0110727276164171919280036408995078164), Chris@16: BOOST_MATH_BIG_CONSTANT(T, 113, 0.00112552716946286252000434849173787243), Chris@16: BOOST_MATH_BIG_CONSTANT(T, 113, -0.874554160748626916455655180296834352e-4), Chris@16: BOOST_MATH_BIG_CONSTANT(T, 113, 0.530097847491828379568636739662278322e-5), Chris@16: BOOST_MATH_BIG_CONSTANT(T, 113, -0.248461553590496154705565904497247452e-6), Chris@16: BOOST_MATH_BIG_CONSTANT(T, 113, 0.881834921354014787309644951507523899e-8), Chris@16: BOOST_MATH_BIG_CONSTANT(T, 113, -0.217062446168217797598596496310953025e-9), Chris@16: BOOST_MATH_BIG_CONSTANT(T, 113, 0.315823200002384492377987848307151168e-11), Chris@16: }; Chris@16: result = tools::evaluate_polynomial(P, sc) / tools::evaluate_polynomial(Q, sc); Chris@16: result += (sc); Chris@16: result /= (sc); Chris@16: } Chris@16: else if(s <= 2) Chris@16: { Chris@16: // Maximum Deviation Found: 1.616e-37 Chris@16: // Expected Error Term: -1.615e-37 Chris@16: Chris@16: static const T P[10] = { Chris@16: BOOST_MATH_BIG_CONSTANT(T, 113, 0.577215664901532860606512090082402431), Chris@16: BOOST_MATH_BIG_CONSTANT(T, 113, 0.255597968739771510415479842335906308), Chris@16: BOOST_MATH_BIG_CONSTANT(T, 113, 0.0494056503552807274142218876983542205), Chris@16: BOOST_MATH_BIG_CONSTANT(T, 113, 0.00551372778611700965268920983472292325), Chris@16: BOOST_MATH_BIG_CONSTANT(T, 113, 0.00043667616723970574871427830895192731), Chris@16: BOOST_MATH_BIG_CONSTANT(T, 113, 0.268562259154821957743669387915239528e-4), Chris@16: BOOST_MATH_BIG_CONSTANT(T, 113, 0.109249633923016310141743084480436612e-5), Chris@16: BOOST_MATH_BIG_CONSTANT(T, 113, 0.273895554345300227466534378753023924e-7), Chris@16: BOOST_MATH_BIG_CONSTANT(T, 113, 0.583103205551702720149237384027795038e-9), Chris@16: BOOST_MATH_BIG_CONSTANT(T, 113, -0.835774625259919268768735944711219256e-11), Chris@16: }; Chris@16: static const T Q[11] = { Chris@101: BOOST_MATH_BIG_CONSTANT(T, 113, 1.0), Chris@16: BOOST_MATH_BIG_CONSTANT(T, 113, 0.316661751179735502065583176348292881), Chris@16: BOOST_MATH_BIG_CONSTANT(T, 113, 0.0540401806533507064453851182728635272), Chris@16: BOOST_MATH_BIG_CONSTANT(T, 113, 0.00598621274107420237785899476374043797), Chris@16: BOOST_MATH_BIG_CONSTANT(T, 113, 0.000474907812321704156213038740142079615), Chris@16: BOOST_MATH_BIG_CONSTANT(T, 113, 0.272125421722314389581695715835862418e-4), Chris@16: BOOST_MATH_BIG_CONSTANT(T, 113, 0.112649552156479800925522445229212933e-5), Chris@16: BOOST_MATH_BIG_CONSTANT(T, 113, 0.301838975502992622733000078063330461e-7), Chris@16: BOOST_MATH_BIG_CONSTANT(T, 113, 0.422960728687211282539769943184270106e-9), Chris@16: BOOST_MATH_BIG_CONSTANT(T, 113, -0.377105263588822468076813329270698909e-11), Chris@16: BOOST_MATH_BIG_CONSTANT(T, 113, -0.581926559304525152432462127383600681e-13), Chris@16: }; Chris@16: result = tools::evaluate_polynomial(P, T(-sc)) / tools::evaluate_polynomial(Q, T(-sc)); Chris@16: result += 1 / (-sc); Chris@16: } Chris@16: else if(s <= 4) Chris@16: { Chris@16: // Maximum Deviation Found: 1.891e-36 Chris@16: // Expected Error Term: -1.891e-36 Chris@16: // Max error found: 2.171527e-35 Chris@16: Chris@16: static const float Y = 0.6986598968505859375; Chris@16: static const T P[11] = { Chris@16: BOOST_MATH_BIG_CONSTANT(T, 113, -0.0537258300023595010275848333539748089), Chris@16: BOOST_MATH_BIG_CONSTANT(T, 113, 0.0429086930802630159457448174466342553), Chris@16: BOOST_MATH_BIG_CONSTANT(T, 113, 0.0136148228754303412510213395034056857), Chris@16: BOOST_MATH_BIG_CONSTANT(T, 113, 0.00190231601036042925183751238033763915), Chris@16: BOOST_MATH_BIG_CONSTANT(T, 113, 0.000186880390916311438818302549192456581), Chris@16: BOOST_MATH_BIG_CONSTANT(T, 113, 0.145347370745893262394287982691323657e-4), Chris@16: BOOST_MATH_BIG_CONSTANT(T, 113, 0.805843276446813106414036600485884885e-6), Chris@16: BOOST_MATH_BIG_CONSTANT(T, 113, 0.340818159286739137503297172091882574e-7), Chris@16: BOOST_MATH_BIG_CONSTANT(T, 113, 0.115762357488748996526167305116837246e-8), Chris@16: BOOST_MATH_BIG_CONSTANT(T, 113, 0.231904754577648077579913403645767214e-10), Chris@16: BOOST_MATH_BIG_CONSTANT(T, 113, 0.340169592866058506675897646629036044e-12), Chris@16: }; Chris@16: static const T Q[12] = { Chris@101: BOOST_MATH_BIG_CONSTANT(T, 113, 1.0), Chris@16: BOOST_MATH_BIG_CONSTANT(T, 113, 0.363755247765087100018556983050520554), Chris@16: BOOST_MATH_BIG_CONSTANT(T, 113, 0.0696581979014242539385695131258321598), Chris@16: BOOST_MATH_BIG_CONSTANT(T, 113, 0.00882208914484611029571547753782014817), Chris@16: BOOST_MATH_BIG_CONSTANT(T, 113, 0.000815405623261946661762236085660996718), Chris@16: BOOST_MATH_BIG_CONSTANT(T, 113, 0.571366167062457197282642344940445452e-4), Chris@16: BOOST_MATH_BIG_CONSTANT(T, 113, 0.309278269271853502353954062051797838e-5), Chris@16: BOOST_MATH_BIG_CONSTANT(T, 113, 0.12822982083479010834070516053794262e-6), Chris@16: BOOST_MATH_BIG_CONSTANT(T, 113, 0.397876357325018976733953479182110033e-8), Chris@16: BOOST_MATH_BIG_CONSTANT(T, 113, 0.8484432107648683277598472295289279e-10), Chris@16: BOOST_MATH_BIG_CONSTANT(T, 113, 0.105677416606909614301995218444080615e-11), Chris@16: BOOST_MATH_BIG_CONSTANT(T, 113, 0.547223964564003701979951154093005354e-15), Chris@16: }; Chris@16: result = tools::evaluate_polynomial(P, T(s - 2)) / tools::evaluate_polynomial(Q, T(s - 2)); Chris@16: result += Y + 1 / (-sc); Chris@16: } Chris@16: else if(s <= 6) Chris@16: { Chris@16: // Max error in interpolated form: 1.510e-37 Chris@16: // Max error found at long double precision: 2.769266e-34 Chris@16: Chris@16: static const T Y = 3.28348541259765625F; Chris@16: Chris@16: static const T P[13] = { Chris@16: BOOST_MATH_BIG_CONSTANT(T, 113, 0.786383506575062179339611614117697622), Chris@16: BOOST_MATH_BIG_CONSTANT(T, 113, 0.495766593395271370974685959652073976), Chris@16: BOOST_MATH_BIG_CONSTANT(T, 113, -0.409116737851754766422360889037532228), Chris@16: BOOST_MATH_BIG_CONSTANT(T, 113, -0.57340744006238263817895456842655987), Chris@16: BOOST_MATH_BIG_CONSTANT(T, 113, -0.280479899797421910694892949057963111), Chris@16: BOOST_MATH_BIG_CONSTANT(T, 113, -0.0753148409447590257157585696212649869), Chris@16: BOOST_MATH_BIG_CONSTANT(T, 113, -0.0122934003684672788499099362823748632), Chris@16: BOOST_MATH_BIG_CONSTANT(T, 113, -0.00126148398446193639247961370266962927), Chris@16: BOOST_MATH_BIG_CONSTANT(T, 113, -0.828465038179772939844657040917364896e-4), Chris@16: BOOST_MATH_BIG_CONSTANT(T, 113, -0.361008916706050977143208468690645684e-5), Chris@16: BOOST_MATH_BIG_CONSTANT(T, 113, -0.109879825497910544424797771195928112e-6), Chris@16: BOOST_MATH_BIG_CONSTANT(T, 113, -0.214539416789686920918063075528797059e-8), Chris@16: BOOST_MATH_BIG_CONSTANT(T, 113, -0.15090220092460596872172844424267351e-10), Chris@16: }; Chris@16: static const T Q[14] = { Chris@101: BOOST_MATH_BIG_CONSTANT(T, 113, 1.0), Chris@16: BOOST_MATH_BIG_CONSTANT(T, 113, 1.69490865837142338462982225731926485), Chris@16: BOOST_MATH_BIG_CONSTANT(T, 113, 1.22697696630994080733321401255942464), Chris@16: BOOST_MATH_BIG_CONSTANT(T, 113, 0.495409420862526540074366618006341533), Chris@16: BOOST_MATH_BIG_CONSTANT(T, 113, 0.122368084916843823462872905024259633), Chris@16: BOOST_MATH_BIG_CONSTANT(T, 113, 0.0191412993625268971656513890888208623), Chris@16: BOOST_MATH_BIG_CONSTANT(T, 113, 0.00191401538628980617753082598351559642), Chris@16: BOOST_MATH_BIG_CONSTANT(T, 113, 0.000123318142456272424148930280876444459), Chris@16: BOOST_MATH_BIG_CONSTANT(T, 113, 0.531945488232526067889835342277595709e-5), Chris@16: BOOST_MATH_BIG_CONSTANT(T, 113, 0.161843184071894368337068779669116236e-6), Chris@16: BOOST_MATH_BIG_CONSTANT(T, 113, 0.305796079600152506743828859577462778e-8), Chris@16: BOOST_MATH_BIG_CONSTANT(T, 113, 0.233582592298450202680170811044408894e-10), Chris@16: BOOST_MATH_BIG_CONSTANT(T, 113, -0.275363878344548055574209713637734269e-13), Chris@16: BOOST_MATH_BIG_CONSTANT(T, 113, 0.221564186807357535475441900517843892e-15), Chris@16: }; Chris@16: result = tools::evaluate_polynomial(P, T(s - 4)) / tools::evaluate_polynomial(Q, T(s - 4)); Chris@16: result -= Y; Chris@16: result = 1 + exp(result); Chris@16: } Chris@16: else if(s < 10) Chris@16: { Chris@16: // Max error in interpolated form: 1.999e-34 Chris@16: // Max error found at long double precision: 2.156186e-33 Chris@16: Chris@16: static const T P[13] = { Chris@16: BOOST_MATH_BIG_CONSTANT(T, 113, -4.0545627381873738086704293881227365), Chris@16: BOOST_MATH_BIG_CONSTANT(T, 113, -4.70088348734699134347906176097717782), Chris@16: BOOST_MATH_BIG_CONSTANT(T, 113, -2.36921550900925512951976617607678789), Chris@16: BOOST_MATH_BIG_CONSTANT(T, 113, -0.684322583796369508367726293719322866), Chris@16: BOOST_MATH_BIG_CONSTANT(T, 113, -0.126026534540165129870721937592996324), Chris@16: BOOST_MATH_BIG_CONSTANT(T, 113, -0.015636903921778316147260572008619549), Chris@16: BOOST_MATH_BIG_CONSTANT(T, 113, -0.00135442294754728549644376325814460807), Chris@16: BOOST_MATH_BIG_CONSTANT(T, 113, -0.842793965853572134365031384646117061e-4), Chris@16: BOOST_MATH_BIG_CONSTANT(T, 113, -0.385602133791111663372015460784978351e-5), Chris@16: BOOST_MATH_BIG_CONSTANT(T, 113, -0.130458500394692067189883214401478539e-6), Chris@16: BOOST_MATH_BIG_CONSTANT(T, 113, -0.315861074947230418778143153383660035e-8), Chris@16: BOOST_MATH_BIG_CONSTANT(T, 113, -0.500334720512030826996373077844707164e-10), Chris@16: BOOST_MATH_BIG_CONSTANT(T, 113, -0.420204769185233365849253969097184005e-12), Chris@16: }; Chris@16: static const T Q[14] = { Chris@101: BOOST_MATH_BIG_CONSTANT(T, 113, 1.0), Chris@16: BOOST_MATH_BIG_CONSTANT(T, 113, 0.97663511666410096104783358493318814), Chris@16: BOOST_MATH_BIG_CONSTANT(T, 113, 0.40878780231201806504987368939673249), Chris@16: BOOST_MATH_BIG_CONSTANT(T, 113, 0.0963890666609396058945084107597727252), Chris@16: BOOST_MATH_BIG_CONSTANT(T, 113, 0.0142207619090854604824116070866614505), Chris@16: BOOST_MATH_BIG_CONSTANT(T, 113, 0.00139010220902667918476773423995750877), Chris@16: BOOST_MATH_BIG_CONSTANT(T, 113, 0.940669540194694997889636696089994734e-4), Chris@16: BOOST_MATH_BIG_CONSTANT(T, 113, 0.458220848507517004399292480807026602e-5), Chris@16: BOOST_MATH_BIG_CONSTANT(T, 113, 0.16345521617741789012782420625435495e-6), Chris@16: BOOST_MATH_BIG_CONSTANT(T, 113, 0.414007452533083304371566316901024114e-8), Chris@16: BOOST_MATH_BIG_CONSTANT(T, 113, 0.68701473543366328016953742622661377e-10), Chris@16: BOOST_MATH_BIG_CONSTANT(T, 113, 0.603461891080716585087883971886075863e-12), Chris@16: BOOST_MATH_BIG_CONSTANT(T, 113, 0.294670713571839023181857795866134957e-16), Chris@16: BOOST_MATH_BIG_CONSTANT(T, 113, -0.147003914536437243143096875069813451e-18), Chris@16: }; Chris@16: result = tools::evaluate_polynomial(P, T(s - 6)) / tools::evaluate_polynomial(Q, T(s - 6)); Chris@16: result = 1 + exp(result); Chris@16: } Chris@16: else if(s < 17) Chris@16: { Chris@16: // Max error in interpolated form: 1.641e-32 Chris@16: // Max error found at long double precision: 1.696121e-32 Chris@16: static const T P[13] = { Chris@16: BOOST_MATH_BIG_CONSTANT(T, 113, -6.91319491921722925920883787894829678), Chris@16: BOOST_MATH_BIG_CONSTANT(T, 113, -3.65491257639481960248690596951049048), Chris@16: BOOST_MATH_BIG_CONSTANT(T, 113, -0.813557553449954526442644544105257881), Chris@16: BOOST_MATH_BIG_CONSTANT(T, 113, -0.0994317301685870959473658713841138083), Chris@16: BOOST_MATH_BIG_CONSTANT(T, 113, -0.00726896610245676520248617014211734906), Chris@16: BOOST_MATH_BIG_CONSTANT(T, 113, -0.000317253318715075854811266230916762929), Chris@16: BOOST_MATH_BIG_CONSTANT(T, 113, -0.66851422826636750855184211580127133e-5), Chris@16: BOOST_MATH_BIG_CONSTANT(T, 113, 0.879464154730985406003332577806849971e-7), Chris@16: BOOST_MATH_BIG_CONSTANT(T, 113, 0.113838903158254250631678791998294628e-7), Chris@16: BOOST_MATH_BIG_CONSTANT(T, 113, 0.379184410304927316385211327537817583e-9), Chris@16: BOOST_MATH_BIG_CONSTANT(T, 113, 0.612992858643904887150527613446403867e-11), Chris@16: BOOST_MATH_BIG_CONSTANT(T, 113, 0.347873737198164757035457841688594788e-13), Chris@16: BOOST_MATH_BIG_CONSTANT(T, 113, -0.289187187441625868404494665572279364e-15), Chris@16: }; Chris@16: static const T Q[14] = { Chris@101: BOOST_MATH_BIG_CONSTANT(T, 113, 1.0), Chris@16: BOOST_MATH_BIG_CONSTANT(T, 113, 0.427310044448071818775721584949868806), Chris@16: BOOST_MATH_BIG_CONSTANT(T, 113, 0.074602514873055756201435421385243062), Chris@16: BOOST_MATH_BIG_CONSTANT(T, 113, 0.00688651562174480772901425121653945942), Chris@16: BOOST_MATH_BIG_CONSTANT(T, 113, 0.000360174847635115036351323894321880445), Chris@16: BOOST_MATH_BIG_CONSTANT(T, 113, 0.973556847713307543918865405758248777e-5), Chris@16: BOOST_MATH_BIG_CONSTANT(T, 113, -0.853455848314516117964634714780874197e-8), Chris@16: BOOST_MATH_BIG_CONSTANT(T, 113, -0.118203513654855112421673192194622826e-7), Chris@16: BOOST_MATH_BIG_CONSTANT(T, 113, -0.462521662511754117095006543363328159e-9), Chris@16: BOOST_MATH_BIG_CONSTANT(T, 113, -0.834212591919475633107355719369463143e-11), Chris@16: BOOST_MATH_BIG_CONSTANT(T, 113, -0.5354594751002702935740220218582929e-13), Chris@16: BOOST_MATH_BIG_CONSTANT(T, 113, 0.406451690742991192964889603000756203e-15), Chris@16: BOOST_MATH_BIG_CONSTANT(T, 113, 0.887948682401000153828241615760146728e-19), Chris@16: BOOST_MATH_BIG_CONSTANT(T, 113, -0.34980761098820347103967203948619072e-21), Chris@16: }; Chris@16: result = tools::evaluate_polynomial(P, T(s - 10)) / tools::evaluate_polynomial(Q, T(s - 10)); Chris@16: result = 1 + exp(result); Chris@16: } Chris@16: else if(s < 30) Chris@16: { Chris@16: // Max error in interpolated form: 1.563e-31 Chris@16: // Max error found at long double precision: 1.562725e-31 Chris@16: Chris@16: static const T P[13] = { Chris@16: BOOST_MATH_BIG_CONSTANT(T, 113, -11.7824798233959252791987402769438322), Chris@16: BOOST_MATH_BIG_CONSTANT(T, 113, -4.36131215284987731928174218354118102), Chris@16: BOOST_MATH_BIG_CONSTANT(T, 113, -0.732260980060982349410898496846972204), Chris@16: BOOST_MATH_BIG_CONSTANT(T, 113, -0.0744985185694913074484248803015717388), Chris@16: BOOST_MATH_BIG_CONSTANT(T, 113, -0.00517228281320594683022294996292250527), Chris@16: BOOST_MATH_BIG_CONSTANT(T, 113, -0.000260897206152101522569969046299309939), Chris@16: BOOST_MATH_BIG_CONSTANT(T, 113, -0.989553462123121764865178453128769948e-5), Chris@16: BOOST_MATH_BIG_CONSTANT(T, 113, -0.286916799741891410827712096608826167e-6), Chris@16: BOOST_MATH_BIG_CONSTANT(T, 113, -0.637262477796046963617949532211619729e-8), Chris@16: BOOST_MATH_BIG_CONSTANT(T, 113, -0.106796831465628373325491288787760494e-9), Chris@16: BOOST_MATH_BIG_CONSTANT(T, 113, -0.129343095511091870860498356205376823e-11), Chris@16: BOOST_MATH_BIG_CONSTANT(T, 113, -0.102397936697965977221267881716672084e-13), Chris@16: BOOST_MATH_BIG_CONSTANT(T, 113, -0.402663128248642002351627980255756363e-16), Chris@16: }; Chris@16: static const T Q[14] = { Chris@101: BOOST_MATH_BIG_CONSTANT(T, 113, 1.0), Chris@16: BOOST_MATH_BIG_CONSTANT(T, 113, 0.311288325355705609096155335186466508), Chris@16: BOOST_MATH_BIG_CONSTANT(T, 113, 0.0438318468940415543546769437752132748), Chris@16: BOOST_MATH_BIG_CONSTANT(T, 113, 0.00374396349183199548610264222242269536), Chris@16: BOOST_MATH_BIG_CONSTANT(T, 113, 0.000218707451200585197339671707189281302), Chris@16: BOOST_MATH_BIG_CONSTANT(T, 113, 0.927578767487930747532953583797351219e-5), Chris@16: BOOST_MATH_BIG_CONSTANT(T, 113, 0.294145760625753561951137473484889639e-6), Chris@16: BOOST_MATH_BIG_CONSTANT(T, 113, 0.704618586690874460082739479535985395e-8), Chris@16: BOOST_MATH_BIG_CONSTANT(T, 113, 0.126333332872897336219649130062221257e-9), Chris@16: BOOST_MATH_BIG_CONSTANT(T, 113, 0.16317315713773503718315435769352765e-11), Chris@16: BOOST_MATH_BIG_CONSTANT(T, 113, 0.137846712823719515148344938160275695e-13), Chris@16: BOOST_MATH_BIG_CONSTANT(T, 113, 0.580975420554224366450994232723910583e-16), Chris@16: BOOST_MATH_BIG_CONSTANT(T, 113, -0.291354445847552426900293580511392459e-22), Chris@16: BOOST_MATH_BIG_CONSTANT(T, 113, 0.73614324724785855925025452085443636e-25), Chris@16: }; Chris@16: result = tools::evaluate_polynomial(P, T(s - 17)) / tools::evaluate_polynomial(Q, T(s - 17)); Chris@16: result = 1 + exp(result); Chris@16: } Chris@16: else if(s < 74) Chris@16: { Chris@16: // Max error in interpolated form: 2.311e-27 Chris@16: // Max error found at long double precision: 2.297544e-27 Chris@16: static const T P[14] = { Chris@16: BOOST_MATH_BIG_CONSTANT(T, 113, -20.7944102007844314586649688802236072), Chris@16: BOOST_MATH_BIG_CONSTANT(T, 113, -4.95759941987499442499908748130192187), Chris@16: BOOST_MATH_BIG_CONSTANT(T, 113, -0.563290752832461751889194629200298688), Chris@16: BOOST_MATH_BIG_CONSTANT(T, 113, -0.0406197001137935911912457120706122877), Chris@16: BOOST_MATH_BIG_CONSTANT(T, 113, -0.0020846534789473022216888863613422293), Chris@16: BOOST_MATH_BIG_CONSTANT(T, 113, -0.808095978462109173749395599401375667e-4), Chris@16: BOOST_MATH_BIG_CONSTANT(T, 113, -0.244706022206249301640890603610060959e-5), Chris@16: BOOST_MATH_BIG_CONSTANT(T, 113, -0.589477682919645930544382616501666572e-7), Chris@16: BOOST_MATH_BIG_CONSTANT(T, 113, -0.113699573675553496343617442433027672e-8), Chris@16: BOOST_MATH_BIG_CONSTANT(T, 113, -0.174767860183598149649901223128011828e-10), Chris@16: BOOST_MATH_BIG_CONSTANT(T, 113, -0.210051620306761367764549971980026474e-12), Chris@16: BOOST_MATH_BIG_CONSTANT(T, 113, -0.189187969537370950337212675466400599e-14), Chris@16: BOOST_MATH_BIG_CONSTANT(T, 113, -0.116313253429564048145641663778121898e-16), Chris@16: BOOST_MATH_BIG_CONSTANT(T, 113, -0.376708747782400769427057630528578187e-19), Chris@16: }; Chris@16: static const T Q[16] = { Chris@101: BOOST_MATH_BIG_CONSTANT(T, 113, 1.0), Chris@16: BOOST_MATH_BIG_CONSTANT(T, 113, 0.205076752981410805177554569784219717), Chris@16: BOOST_MATH_BIG_CONSTANT(T, 113, 0.0202526722696670378999575738524540269), Chris@16: BOOST_MATH_BIG_CONSTANT(T, 113, 0.001278305290005994980069466658219057), Chris@16: BOOST_MATH_BIG_CONSTANT(T, 113, 0.576404779858501791742255670403304787e-4), Chris@16: BOOST_MATH_BIG_CONSTANT(T, 113, 0.196477049872253010859712483984252067e-5), Chris@16: BOOST_MATH_BIG_CONSTANT(T, 113, 0.521863830500876189501054079974475762e-7), Chris@16: BOOST_MATH_BIG_CONSTANT(T, 113, 0.109524209196868135198775445228552059e-8), Chris@16: BOOST_MATH_BIG_CONSTANT(T, 113, 0.181698713448644481083966260949267825e-10), Chris@16: BOOST_MATH_BIG_CONSTANT(T, 113, 0.234793316975091282090312036524695562e-12), Chris@16: BOOST_MATH_BIG_CONSTANT(T, 113, 0.227490441461460571047545264251399048e-14), Chris@16: BOOST_MATH_BIG_CONSTANT(T, 113, 0.151500292036937400913870642638520668e-16), Chris@16: BOOST_MATH_BIG_CONSTANT(T, 113, 0.543475775154780935815530649335936121e-19), Chris@16: BOOST_MATH_BIG_CONSTANT(T, 113, 0.241647013434111434636554455083309352e-28), Chris@16: BOOST_MATH_BIG_CONSTANT(T, 113, -0.557103423021951053707162364713587374e-31), Chris@16: BOOST_MATH_BIG_CONSTANT(T, 113, 0.618708773442584843384712258199645166e-34), Chris@16: }; Chris@16: result = tools::evaluate_polynomial(P, T(s - 30)) / tools::evaluate_polynomial(Q, T(s - 30)); Chris@16: result = 1 + exp(result); Chris@16: } Chris@16: else if(s < 117) Chris@16: { Chris@16: result = 1 + pow(T(2), -s); Chris@16: } Chris@16: else Chris@16: { Chris@16: result = 1; Chris@16: } Chris@16: return result; Chris@16: } Chris@16: Chris@101: template Chris@101: T zeta_imp_odd_integer(int s, const T&, const Policy&, const mpl::true_&) Chris@101: { Chris@101: static const T results[] = { Chris@101: BOOST_MATH_BIG_CONSTANT(T, 113, 1.2020569031595942853997381615114500), BOOST_MATH_BIG_CONSTANT(T, 113, 1.0369277551433699263313654864570342), BOOST_MATH_BIG_CONSTANT(T, 113, 1.0083492773819228268397975498497968), BOOST_MATH_BIG_CONSTANT(T, 113, 1.0020083928260822144178527692324121), BOOST_MATH_BIG_CONSTANT(T, 113, 1.0004941886041194645587022825264699), BOOST_MATH_BIG_CONSTANT(T, 113, 1.0001227133475784891467518365263574), BOOST_MATH_BIG_CONSTANT(T, 113, 1.0000305882363070204935517285106451), BOOST_MATH_BIG_CONSTANT(T, 113, 1.0000076371976378997622736002935630), BOOST_MATH_BIG_CONSTANT(T, 113, 1.0000019082127165539389256569577951), BOOST_MATH_BIG_CONSTANT(T, 113, 1.0000004769329867878064631167196044), BOOST_MATH_BIG_CONSTANT(T, 113, 1.0000001192199259653110730677887189), BOOST_MATH_BIG_CONSTANT(T, 113, 1.0000000298035035146522801860637051), BOOST_MATH_BIG_CONSTANT(T, 113, 1.0000000074507117898354294919810042), BOOST_MATH_BIG_CONSTANT(T, 113, 1.0000000018626597235130490064039099), BOOST_MATH_BIG_CONSTANT(T, 113, 1.0000000004656629065033784072989233), BOOST_MATH_BIG_CONSTANT(T, 113, 1.0000000001164155017270051977592974), BOOST_MATH_BIG_CONSTANT(T, 113, 1.0000000000291038504449709968692943), BOOST_MATH_BIG_CONSTANT(T, 113, 1.0000000000072759598350574810145209), BOOST_MATH_BIG_CONSTANT(T, 113, 1.0000000000018189896503070659475848), BOOST_MATH_BIG_CONSTANT(T, 113, 1.0000000000004547473783042154026799), BOOST_MATH_BIG_CONSTANT(T, 113, 1.0000000000001136868407680227849349), BOOST_MATH_BIG_CONSTANT(T, 113, 1.0000000000000284217097688930185546), BOOST_MATH_BIG_CONSTANT(T, 113, 1.0000000000000071054273952108527129), BOOST_MATH_BIG_CONSTANT(T, 113, 1.0000000000000017763568435791203275), BOOST_MATH_BIG_CONSTANT(T, 113, 1.0000000000000004440892103143813364), BOOST_MATH_BIG_CONSTANT(T, 113, 1.0000000000000001110223025141066134), BOOST_MATH_BIG_CONSTANT(T, 113, 1.0000000000000000277555756213612417), BOOST_MATH_BIG_CONSTANT(T, 113, 1.0000000000000000069388939045441537), BOOST_MATH_BIG_CONSTANT(T, 113, 1.0000000000000000017347234760475766), BOOST_MATH_BIG_CONSTANT(T, 113, 1.0000000000000000004336808690020650), BOOST_MATH_BIG_CONSTANT(T, 113, 1.0000000000000000001084202172494241), BOOST_MATH_BIG_CONSTANT(T, 113, 1.0000000000000000000271050543122347), BOOST_MATH_BIG_CONSTANT(T, 113, 1.0000000000000000000067762635780452), BOOST_MATH_BIG_CONSTANT(T, 113, 1.0000000000000000000016940658945098), BOOST_MATH_BIG_CONSTANT(T, 113, 1.0000000000000000000004235164736273), BOOST_MATH_BIG_CONSTANT(T, 113, 1.0000000000000000000001058791184068), BOOST_MATH_BIG_CONSTANT(T, 113, 1.0000000000000000000000264697796017), BOOST_MATH_BIG_CONSTANT(T, 113, 1.0000000000000000000000066174449004), BOOST_MATH_BIG_CONSTANT(T, 113, 1.0000000000000000000000016543612251), BOOST_MATH_BIG_CONSTANT(T, 113, 1.0000000000000000000000004135903063), BOOST_MATH_BIG_CONSTANT(T, 113, 1.0000000000000000000000001033975766), BOOST_MATH_BIG_CONSTANT(T, 113, 1.0000000000000000000000000258493941), BOOST_MATH_BIG_CONSTANT(T, 113, 1.0000000000000000000000000064623485), BOOST_MATH_BIG_CONSTANT(T, 113, 1.0000000000000000000000000016155871), BOOST_MATH_BIG_CONSTANT(T, 113, 1.0000000000000000000000000004038968), BOOST_MATH_BIG_CONSTANT(T, 113, 1.0000000000000000000000000001009742), BOOST_MATH_BIG_CONSTANT(T, 113, 1.0000000000000000000000000000252435), BOOST_MATH_BIG_CONSTANT(T, 113, 1.0000000000000000000000000000063109), BOOST_MATH_BIG_CONSTANT(T, 113, 1.0000000000000000000000000000015777), BOOST_MATH_BIG_CONSTANT(T, 113, 1.0000000000000000000000000000003944), BOOST_MATH_BIG_CONSTANT(T, 113, 1.0000000000000000000000000000000986), BOOST_MATH_BIG_CONSTANT(T, 113, 1.0000000000000000000000000000000247), BOOST_MATH_BIG_CONSTANT(T, 113, 1.0000000000000000000000000000000062), BOOST_MATH_BIG_CONSTANT(T, 113, 1.0000000000000000000000000000000015), BOOST_MATH_BIG_CONSTANT(T, 113, 1.0000000000000000000000000000000004), BOOST_MATH_BIG_CONSTANT(T, 113, 1.0000000000000000000000000000000001), Chris@101: }; Chris@101: return s > 113 ? 1 : results[(s - 3) / 2]; Chris@101: } Chris@101: Chris@101: template Chris@101: T zeta_imp_odd_integer(int s, const T& sc, const Policy& pol, const mpl::false_&) Chris@101: { Chris@101: static bool is_init = false; Chris@101: static T results[50] = {}; Chris@101: if(!is_init) Chris@101: { Chris@101: is_init = true; Chris@101: for(int k = 0; k < sizeof(results) / sizeof(results[0]); ++k) Chris@101: { Chris@101: T arg = k * 2 + 3; Chris@101: T c_arg = 1 - arg; Chris@101: results[k] = zeta_polynomial_series(arg, c_arg, pol); Chris@101: } Chris@101: } Chris@101: int index = (s - 3) / 2; Chris@101: return index >= sizeof(results) / sizeof(results[0]) ? zeta_polynomial_series(T(s), sc, pol): results[index]; Chris@101: } Chris@101: Chris@16: template Chris@16: T zeta_imp(T s, T sc, const Policy& pol, const Tag& tag) Chris@16: { Chris@16: BOOST_MATH_STD_USING Chris@101: static const char* function = "boost::math::zeta<%1%>"; Chris@16: if(sc == 0) Chris@16: return policies::raise_pole_error( Chris@101: function, Chris@16: "Evaluation of zeta function at pole %1%", Chris@16: s, pol); Chris@16: T result; Chris@101: // Chris@101: // Trivial case: Chris@101: // Chris@101: if(s > policies::digits()) Chris@101: return 1; Chris@101: // Chris@101: // Start by seeing if we have a simple closed form: Chris@101: // Chris@101: if(floor(s) == s) Chris@101: { Chris@101: try Chris@101: { Chris@101: int v = itrunc(s); Chris@101: if(v == s) Chris@101: { Chris@101: if(v < 0) Chris@101: { Chris@101: if(((-v) & 1) == 0) Chris@101: return 0; Chris@101: int n = (-v + 1) / 2; Chris@101: if(n <= boost::math::max_bernoulli_b2n::value) Chris@101: return T((-v & 1) ? -1 : 1) * boost::math::unchecked_bernoulli_b2n(n) / (1 - v); Chris@101: } Chris@101: else if((v & 1) == 0) Chris@101: { Chris@101: if(((v / 2) <= boost::math::max_bernoulli_b2n::value) && (v <= boost::math::max_factorial::value)) Chris@101: return T(((v / 2 - 1) & 1) ? -1 : 1) * ldexp(T(1), v - 1) * pow(constants::pi(), v) * Chris@101: boost::math::unchecked_bernoulli_b2n(v / 2) / boost::math::unchecked_factorial(v); Chris@101: return T(((v / 2 - 1) & 1) ? -1 : 1) * ldexp(T(1), v - 1) * pow(constants::pi(), v) * Chris@101: boost::math::bernoulli_b2n(v / 2) / boost::math::factorial(v); Chris@101: } Chris@101: else Chris@101: return zeta_imp_odd_integer(v, sc, pol, mpl::bool_<(Tag::value <= 113) && Tag::value>()); Chris@101: } Chris@101: } Chris@101: catch(const boost::math::rounding_error&){} // Just fall through, s is too large to round Chris@101: catch(const std::overflow_error&){} Chris@101: } Chris@101: Chris@16: if(fabs(s) < tools::root_epsilon()) Chris@16: { Chris@16: result = -0.5f - constants::log_root_two_pi() * s; Chris@16: } Chris@16: else if(s < 0) Chris@16: { Chris@16: std::swap(s, sc); Chris@16: if(floor(sc/2) == sc/2) Chris@16: result = 0; Chris@16: else Chris@16: { Chris@101: if(s > max_factorial::value) Chris@101: { Chris@101: T mult = boost::math::sin_pi(0.5f * sc, pol) * 2 * zeta_imp(s, sc, pol, tag); Chris@101: result = boost::math::lgamma(s, pol); Chris@101: result -= s * log(2 * constants::pi()); Chris@101: if(result > tools::log_max_value()) Chris@101: return sign(mult) * policies::raise_overflow_error(function, 0, pol); Chris@101: result = exp(result); Chris@101: if(tools::max_value() / fabs(mult) < result) Chris@101: return boost::math::sign(mult) * policies::raise_overflow_error(function, 0, pol); Chris@101: result *= mult; Chris@101: } Chris@101: else Chris@101: { Chris@101: result = boost::math::sin_pi(0.5f * sc, pol) Chris@101: * 2 * pow(2 * constants::pi(), -s) Chris@101: * boost::math::tgamma(s, pol) Chris@101: * zeta_imp(s, sc, pol, tag); Chris@101: } Chris@16: } Chris@16: } Chris@16: else Chris@16: { Chris@16: result = zeta_imp_prec(s, sc, pol, tag); Chris@16: } Chris@16: return result; Chris@16: } Chris@16: Chris@16: template Chris@16: struct zeta_initializer Chris@16: { Chris@16: struct init Chris@16: { Chris@16: init() Chris@16: { Chris@16: do_init(tag()); Chris@16: } Chris@101: static void do_init(const mpl::int_<0>&){ boost::math::zeta(static_cast(5), Policy()); } Chris@101: static void do_init(const mpl::int_<53>&){ boost::math::zeta(static_cast(5), Policy()); } Chris@16: static void do_init(const mpl::int_<64>&) Chris@16: { Chris@16: boost::math::zeta(static_cast(0.5), Policy()); Chris@16: boost::math::zeta(static_cast(1.5), Policy()); Chris@16: boost::math::zeta(static_cast(3.5), Policy()); Chris@16: boost::math::zeta(static_cast(6.5), Policy()); Chris@16: boost::math::zeta(static_cast(14.5), Policy()); Chris@16: boost::math::zeta(static_cast(40.5), Policy()); Chris@101: Chris@101: boost::math::zeta(static_cast(5), Policy()); Chris@16: } Chris@16: static void do_init(const mpl::int_<113>&) Chris@16: { Chris@16: boost::math::zeta(static_cast(0.5), Policy()); Chris@16: boost::math::zeta(static_cast(1.5), Policy()); Chris@16: boost::math::zeta(static_cast(3.5), Policy()); Chris@16: boost::math::zeta(static_cast(5.5), Policy()); Chris@16: boost::math::zeta(static_cast(9.5), Policy()); Chris@16: boost::math::zeta(static_cast(16.5), Policy()); Chris@101: boost::math::zeta(static_cast(25.5), Policy()); Chris@101: boost::math::zeta(static_cast(70.5), Policy()); Chris@101: Chris@101: boost::math::zeta(static_cast(5), Policy()); Chris@16: } Chris@16: void force_instantiate()const{} Chris@16: }; Chris@16: static const init initializer; Chris@16: static void force_instantiate() Chris@16: { Chris@16: initializer.force_instantiate(); Chris@16: } Chris@16: }; Chris@16: Chris@16: template Chris@16: const typename zeta_initializer::init zeta_initializer::initializer; Chris@16: Chris@16: } // detail Chris@16: Chris@16: template Chris@16: inline typename tools::promote_args::type zeta(T s, const Policy&) Chris@16: { Chris@16: typedef typename tools::promote_args::type result_type; Chris@16: typedef typename policies::evaluation::type value_type; Chris@16: typedef typename policies::precision::type precision_type; Chris@16: typedef typename policies::normalise< Chris@16: Policy, Chris@16: policies::promote_float, Chris@16: policies::promote_double, Chris@16: policies::discrete_quantile<>, Chris@16: policies::assert_undefined<> >::type forwarding_policy; Chris@16: typedef typename mpl::if_< Chris@16: mpl::less_equal >, Chris@16: mpl::int_<0>, Chris@16: typename mpl::if_< Chris@16: mpl::less_equal >, Chris@16: mpl::int_<53>, // double Chris@16: typename mpl::if_< Chris@16: mpl::less_equal >, Chris@16: mpl::int_<64>, // 80-bit long double Chris@16: typename mpl::if_< Chris@16: mpl::less_equal >, Chris@16: mpl::int_<113>, // 128-bit long double Chris@16: mpl::int_<0> // too many bits, use generic version. Chris@16: >::type Chris@16: >::type Chris@16: >::type Chris@16: >::type tag_type; Chris@16: //typedef mpl::int_<0> tag_type; Chris@16: Chris@16: detail::zeta_initializer::force_instantiate(); Chris@16: Chris@16: return policies::checked_narrowing_cast(detail::zeta_imp( Chris@16: static_cast(s), Chris@16: static_cast(1 - static_cast(s)), Chris@16: forwarding_policy(), Chris@16: tag_type()), "boost::math::zeta<%1%>(%1%)"); Chris@16: } Chris@16: Chris@16: template Chris@16: inline typename tools::promote_args::type zeta(T s) Chris@16: { Chris@16: return zeta(s, policies::policy<>()); Chris@16: } Chris@16: Chris@16: }} // namespaces Chris@16: Chris@16: #endif // BOOST_MATH_ZETA_HPP Chris@16: Chris@16: Chris@16: