Chris@16: // Copyright (c) 2006 Xiaogang Zhang Chris@16: // Use, modification and distribution are subject to the Chris@16: // Boost Software License, Version 1.0. (See accompanying file Chris@16: // LICENSE_1_0.txt or copy at http://www.boost.org/LICENSE_1_0.txt) Chris@16: Chris@16: #ifndef BOOST_MATH_BESSEL_J1_HPP Chris@16: #define BOOST_MATH_BESSEL_J1_HPP Chris@16: Chris@16: #ifdef _MSC_VER Chris@16: #pragma once Chris@16: #endif Chris@16: Chris@16: #include Chris@16: #include Chris@16: #include Chris@16: #include Chris@16: Chris@16: // Bessel function of the first kind of order one Chris@16: // x <= 8, minimax rational approximations on root-bracketing intervals Chris@16: // x > 8, Hankel asymptotic expansion in Hart, Computer Approximations, 1968 Chris@16: Chris@16: namespace boost { namespace math{ namespace detail{ Chris@16: Chris@16: template Chris@16: T bessel_j1(T x); Chris@16: Chris@16: template Chris@16: struct bessel_j1_initializer Chris@16: { Chris@16: struct init Chris@16: { Chris@16: init() Chris@16: { Chris@16: do_init(); Chris@16: } Chris@16: static void do_init() Chris@16: { Chris@16: bessel_j1(T(1)); Chris@16: } Chris@16: void force_instantiate()const{} Chris@16: }; Chris@16: static const init initializer; Chris@16: static void force_instantiate() Chris@16: { Chris@16: initializer.force_instantiate(); Chris@16: } Chris@16: }; Chris@16: Chris@16: template Chris@16: const typename bessel_j1_initializer::init bessel_j1_initializer::initializer; Chris@16: Chris@16: template Chris@16: T bessel_j1(T x) Chris@16: { Chris@16: bessel_j1_initializer::force_instantiate(); Chris@16: Chris@16: static const T P1[] = { Chris@16: static_cast(BOOST_MATH_BIG_CONSTANT(T, 64, -1.4258509801366645672e+11)), Chris@16: static_cast(BOOST_MATH_BIG_CONSTANT(T, 64, 6.6781041261492395835e+09)), Chris@16: static_cast(BOOST_MATH_BIG_CONSTANT(T, 64, -1.1548696764841276794e+08)), Chris@16: static_cast(BOOST_MATH_BIG_CONSTANT(T, 64, 9.8062904098958257677e+05)), Chris@16: static_cast(BOOST_MATH_BIG_CONSTANT(T, 64, -4.4615792982775076130e+03)), Chris@16: static_cast(BOOST_MATH_BIG_CONSTANT(T, 64, 1.0650724020080236441e+01)), Chris@16: static_cast(BOOST_MATH_BIG_CONSTANT(T, 64, -1.0767857011487300348e-02)) Chris@16: }; Chris@16: static const T Q1[] = { Chris@16: static_cast(BOOST_MATH_BIG_CONSTANT(T, 64, 4.1868604460820175290e+12)), Chris@16: static_cast(BOOST_MATH_BIG_CONSTANT(T, 64, 4.2091902282580133541e+10)), Chris@16: static_cast(BOOST_MATH_BIG_CONSTANT(T, 64, 2.0228375140097033958e+08)), Chris@16: static_cast(BOOST_MATH_BIG_CONSTANT(T, 64, 5.9117614494174794095e+05)), Chris@16: static_cast(BOOST_MATH_BIG_CONSTANT(T, 64, 1.0742272239517380498e+03)), Chris@16: static_cast(BOOST_MATH_BIG_CONSTANT(T, 64, 1.0)), Chris@16: static_cast(BOOST_MATH_BIG_CONSTANT(T, 64, 0.0)) Chris@16: }; Chris@16: static const T P2[] = { Chris@16: static_cast(BOOST_MATH_BIG_CONSTANT(T, 64, -1.7527881995806511112e+16)), Chris@16: static_cast(BOOST_MATH_BIG_CONSTANT(T, 64, 1.6608531731299018674e+15)), Chris@16: static_cast(BOOST_MATH_BIG_CONSTANT(T, 64, -3.6658018905416665164e+13)), Chris@16: static_cast(BOOST_MATH_BIG_CONSTANT(T, 64, 3.5580665670910619166e+11)), Chris@16: static_cast(BOOST_MATH_BIG_CONSTANT(T, 64, -1.8113931269860667829e+09)), Chris@16: static_cast(BOOST_MATH_BIG_CONSTANT(T, 64, 5.0793266148011179143e+06)), Chris@16: static_cast(BOOST_MATH_BIG_CONSTANT(T, 64, -7.5023342220781607561e+03)), Chris@16: static_cast(BOOST_MATH_BIG_CONSTANT(T, 64, 4.6179191852758252278e+00)) Chris@16: }; Chris@16: static const T Q2[] = { Chris@16: static_cast(BOOST_MATH_BIG_CONSTANT(T, 64, 1.7253905888447681194e+18)), Chris@16: static_cast(BOOST_MATH_BIG_CONSTANT(T, 64, 1.7128800897135812012e+16)), Chris@16: static_cast(BOOST_MATH_BIG_CONSTANT(T, 64, 8.4899346165481429307e+13)), Chris@16: static_cast(BOOST_MATH_BIG_CONSTANT(T, 64, 2.7622777286244082666e+11)), Chris@16: static_cast(BOOST_MATH_BIG_CONSTANT(T, 64, 6.4872502899596389593e+08)), Chris@16: static_cast(BOOST_MATH_BIG_CONSTANT(T, 64, 1.1267125065029138050e+06)), Chris@16: static_cast(BOOST_MATH_BIG_CONSTANT(T, 64, 1.3886978985861357615e+03)), Chris@16: static_cast(BOOST_MATH_BIG_CONSTANT(T, 64, 1.0)) Chris@16: }; Chris@16: static const T PC[] = { Chris@16: static_cast(BOOST_MATH_BIG_CONSTANT(T, 64, -4.4357578167941278571e+06)), Chris@16: static_cast(BOOST_MATH_BIG_CONSTANT(T, 64, -9.9422465050776411957e+06)), Chris@16: static_cast(BOOST_MATH_BIG_CONSTANT(T, 64, -6.6033732483649391093e+06)), Chris@16: static_cast(BOOST_MATH_BIG_CONSTANT(T, 64, -1.5235293511811373833e+06)), Chris@16: static_cast(BOOST_MATH_BIG_CONSTANT(T, 64, -1.0982405543459346727e+05)), Chris@16: static_cast(BOOST_MATH_BIG_CONSTANT(T, 64, -1.6116166443246101165e+03)), Chris@16: static_cast(BOOST_MATH_BIG_CONSTANT(T, 64, 0.0)) Chris@16: }; Chris@16: static const T QC[] = { Chris@16: static_cast(BOOST_MATH_BIG_CONSTANT(T, 64, -4.4357578167941278568e+06)), Chris@16: static_cast(BOOST_MATH_BIG_CONSTANT(T, 64, -9.9341243899345856590e+06)), Chris@16: static_cast(BOOST_MATH_BIG_CONSTANT(T, 64, -6.5853394797230870728e+06)), Chris@16: static_cast(BOOST_MATH_BIG_CONSTANT(T, 64, -1.5118095066341608816e+06)), Chris@16: static_cast(BOOST_MATH_BIG_CONSTANT(T, 64, -1.0726385991103820119e+05)), Chris@16: static_cast(BOOST_MATH_BIG_CONSTANT(T, 64, -1.4550094401904961825e+03)), Chris@16: static_cast(BOOST_MATH_BIG_CONSTANT(T, 64, 1.0)) Chris@16: }; Chris@16: static const T PS[] = { Chris@16: static_cast(BOOST_MATH_BIG_CONSTANT(T, 64, 3.3220913409857223519e+04)), Chris@16: static_cast(BOOST_MATH_BIG_CONSTANT(T, 64, 8.5145160675335701966e+04)), Chris@16: static_cast(BOOST_MATH_BIG_CONSTANT(T, 64, 6.6178836581270835179e+04)), Chris@16: static_cast(BOOST_MATH_BIG_CONSTANT(T, 64, 1.8494262873223866797e+04)), Chris@16: static_cast(BOOST_MATH_BIG_CONSTANT(T, 64, 1.7063754290207680021e+03)), Chris@16: static_cast(BOOST_MATH_BIG_CONSTANT(T, 64, 3.5265133846636032186e+01)), Chris@16: static_cast(BOOST_MATH_BIG_CONSTANT(T, 64, 0.0)) Chris@16: }; Chris@16: static const T QS[] = { Chris@16: static_cast(BOOST_MATH_BIG_CONSTANT(T, 64, 7.0871281941028743574e+05)), Chris@16: static_cast(BOOST_MATH_BIG_CONSTANT(T, 64, 1.8194580422439972989e+06)), Chris@16: static_cast(BOOST_MATH_BIG_CONSTANT(T, 64, 1.4194606696037208929e+06)), Chris@16: static_cast(BOOST_MATH_BIG_CONSTANT(T, 64, 4.0029443582266975117e+05)), Chris@16: static_cast(BOOST_MATH_BIG_CONSTANT(T, 64, 3.7890229745772202641e+04)), Chris@16: static_cast(BOOST_MATH_BIG_CONSTANT(T, 64, 8.6383677696049909675e+02)), Chris@16: static_cast(BOOST_MATH_BIG_CONSTANT(T, 64, 1.0)) Chris@16: }; Chris@16: static const T x1 = static_cast(BOOST_MATH_BIG_CONSTANT(T, 64, 3.8317059702075123156e+00)), Chris@16: x2 = static_cast(BOOST_MATH_BIG_CONSTANT(T, 64, 7.0155866698156187535e+00)), Chris@16: x11 = static_cast(BOOST_MATH_BIG_CONSTANT(T, 64, 9.810e+02)), Chris@16: x12 = static_cast(BOOST_MATH_BIG_CONSTANT(T, 64, -3.2527979248768438556e-04)), Chris@16: x21 = static_cast(BOOST_MATH_BIG_CONSTANT(T, 64, 1.7960e+03)), Chris@16: x22 = static_cast(BOOST_MATH_BIG_CONSTANT(T, 64, -3.8330184381246462950e-05)); Chris@16: Chris@16: T value, factor, r, rc, rs, w; Chris@16: Chris@16: BOOST_MATH_STD_USING Chris@16: using namespace boost::math::tools; Chris@16: using namespace boost::math::constants; Chris@16: Chris@16: w = abs(x); Chris@16: if (x == 0) Chris@16: { Chris@16: return static_cast(0); Chris@16: } Chris@16: if (w <= 4) // w in (0, 4] Chris@16: { Chris@16: T y = x * x; Chris@16: BOOST_ASSERT(sizeof(P1) == sizeof(Q1)); Chris@16: r = evaluate_rational(P1, Q1, y); Chris@16: factor = w * (w + x1) * ((w - x11/256) - x12); Chris@16: value = factor * r; Chris@16: } Chris@16: else if (w <= 8) // w in (4, 8] Chris@16: { Chris@16: T y = x * x; Chris@16: BOOST_ASSERT(sizeof(P2) == sizeof(Q2)); Chris@16: r = evaluate_rational(P2, Q2, y); Chris@16: factor = w * (w + x2) * ((w - x21/256) - x22); Chris@16: value = factor * r; Chris@16: } Chris@16: else // w in (8, \infty) Chris@16: { Chris@16: T y = 8 / w; Chris@16: T y2 = y * y; Chris@16: BOOST_ASSERT(sizeof(PC) == sizeof(QC)); Chris@16: BOOST_ASSERT(sizeof(PS) == sizeof(QS)); Chris@16: rc = evaluate_rational(PC, QC, y2); Chris@16: rs = evaluate_rational(PS, QS, y2); Chris@16: factor = 1 / (sqrt(w) * constants::root_pi()); Chris@16: // Chris@16: // What follows is really just: Chris@16: // Chris@16: // T z = w - 0.75f * pi(); Chris@16: // value = factor * (rc * cos(z) - y * rs * sin(z)); Chris@16: // Chris@16: // but using the sin/cos addition rules plus constants Chris@16: // for the values of sin/cos of 3PI/4 which then cancel Chris@16: // out with corresponding terms in "factor". Chris@16: // Chris@16: T sx = sin(x); Chris@16: T cx = cos(x); Chris@16: value = factor * (rc * (sx - cx) + y * rs * (sx + cx)); Chris@16: } Chris@16: Chris@16: if (x < 0) Chris@16: { Chris@16: value *= -1; // odd function Chris@16: } Chris@16: return value; Chris@16: } Chris@16: Chris@16: }}} // namespaces Chris@16: Chris@16: #endif // BOOST_MATH_BESSEL_J1_HPP Chris@16: