Chris@16: // Copyright (c) 2006 Xiaogang Zhang Chris@16: // Use, modification and distribution are subject to the Chris@16: // Boost Software License, Version 1.0. (See accompanying file Chris@16: // LICENSE_1_0.txt or copy at http://www.boost.org/LICENSE_1_0.txt) Chris@16: Chris@16: #ifndef BOOST_MATH_BESSEL_J0_HPP Chris@16: #define BOOST_MATH_BESSEL_J0_HPP Chris@16: Chris@16: #ifdef _MSC_VER Chris@16: #pragma once Chris@16: #endif Chris@16: Chris@16: #include Chris@16: #include Chris@16: #include Chris@16: #include Chris@16: Chris@16: // Bessel function of the first kind of order zero Chris@16: // x <= 8, minimax rational approximations on root-bracketing intervals Chris@16: // x > 8, Hankel asymptotic expansion in Hart, Computer Approximations, 1968 Chris@16: Chris@16: namespace boost { namespace math { namespace detail{ Chris@16: Chris@16: template Chris@16: T bessel_j0(T x); Chris@16: Chris@16: template Chris@16: struct bessel_j0_initializer Chris@16: { Chris@16: struct init Chris@16: { Chris@16: init() Chris@16: { Chris@16: do_init(); Chris@16: } Chris@16: static void do_init() Chris@16: { Chris@16: bessel_j0(T(1)); Chris@16: } Chris@16: void force_instantiate()const{} Chris@16: }; Chris@16: static const init initializer; Chris@16: static void force_instantiate() Chris@16: { Chris@16: initializer.force_instantiate(); Chris@16: } Chris@16: }; Chris@16: Chris@16: template Chris@16: const typename bessel_j0_initializer::init bessel_j0_initializer::initializer; Chris@16: Chris@16: template Chris@16: T bessel_j0(T x) Chris@16: { Chris@16: bessel_j0_initializer::force_instantiate(); Chris@16: Chris@16: static const T P1[] = { Chris@16: static_cast(BOOST_MATH_BIG_CONSTANT(T, 64, -4.1298668500990866786e+11)), Chris@16: static_cast(BOOST_MATH_BIG_CONSTANT(T, 64, 2.7282507878605942706e+10)), Chris@16: static_cast(BOOST_MATH_BIG_CONSTANT(T, 64, -6.2140700423540120665e+08)), Chris@16: static_cast(BOOST_MATH_BIG_CONSTANT(T, 64, 6.6302997904833794242e+06)), Chris@16: static_cast(BOOST_MATH_BIG_CONSTANT(T, 64, -3.6629814655107086448e+04)), Chris@16: static_cast(BOOST_MATH_BIG_CONSTANT(T, 64, 1.0344222815443188943e+02)), Chris@16: static_cast(BOOST_MATH_BIG_CONSTANT(T, 64, -1.2117036164593528341e-01)) Chris@16: }; Chris@16: static const T Q1[] = { Chris@16: static_cast(BOOST_MATH_BIG_CONSTANT(T, 64, 2.3883787996332290397e+12)), Chris@16: static_cast(BOOST_MATH_BIG_CONSTANT(T, 64, 2.6328198300859648632e+10)), Chris@16: static_cast(BOOST_MATH_BIG_CONSTANT(T, 64, 1.3985097372263433271e+08)), Chris@16: static_cast(BOOST_MATH_BIG_CONSTANT(T, 64, 4.5612696224219938200e+05)), Chris@16: static_cast(BOOST_MATH_BIG_CONSTANT(T, 64, 9.3614022392337710626e+02)), Chris@16: static_cast(BOOST_MATH_BIG_CONSTANT(T, 64, 1.0)), Chris@16: static_cast(BOOST_MATH_BIG_CONSTANT(T, 64, 0.0)) Chris@16: }; Chris@16: static const T P2[] = { Chris@16: static_cast(BOOST_MATH_BIG_CONSTANT(T, 64, -1.8319397969392084011e+03)), Chris@16: static_cast(BOOST_MATH_BIG_CONSTANT(T, 64, -1.2254078161378989535e+04)), Chris@16: static_cast(BOOST_MATH_BIG_CONSTANT(T, 64, -7.2879702464464618998e+03)), Chris@16: static_cast(BOOST_MATH_BIG_CONSTANT(T, 64, 1.0341910641583726701e+04)), Chris@16: static_cast(BOOST_MATH_BIG_CONSTANT(T, 64, 1.1725046279757103576e+04)), Chris@16: static_cast(BOOST_MATH_BIG_CONSTANT(T, 64, 4.4176707025325087628e+03)), Chris@16: static_cast(BOOST_MATH_BIG_CONSTANT(T, 64, 7.4321196680624245801e+02)), Chris@16: static_cast(BOOST_MATH_BIG_CONSTANT(T, 64, 4.8591703355916499363e+01)) Chris@16: }; Chris@16: static const T Q2[] = { Chris@16: static_cast(BOOST_MATH_BIG_CONSTANT(T, 64, -3.5783478026152301072e+05)), Chris@16: static_cast(BOOST_MATH_BIG_CONSTANT(T, 64, 2.4599102262586308984e+05)), Chris@16: static_cast(BOOST_MATH_BIG_CONSTANT(T, 64, -8.4055062591169562211e+04)), Chris@16: static_cast(BOOST_MATH_BIG_CONSTANT(T, 64, 1.8680990008359188352e+04)), Chris@16: static_cast(BOOST_MATH_BIG_CONSTANT(T, 64, -2.9458766545509337327e+03)), Chris@16: static_cast(BOOST_MATH_BIG_CONSTANT(T, 64, 3.3307310774649071172e+02)), Chris@16: static_cast(BOOST_MATH_BIG_CONSTANT(T, 64, -2.5258076240801555057e+01)), Chris@16: static_cast(BOOST_MATH_BIG_CONSTANT(T, 64, 1.0)) Chris@16: }; Chris@16: static const T PC[] = { Chris@16: static_cast(BOOST_MATH_BIG_CONSTANT(T, 64, 2.2779090197304684302e+04)), Chris@16: static_cast(BOOST_MATH_BIG_CONSTANT(T, 64, 4.1345386639580765797e+04)), Chris@16: static_cast(BOOST_MATH_BIG_CONSTANT(T, 64, 2.1170523380864944322e+04)), Chris@16: static_cast(BOOST_MATH_BIG_CONSTANT(T, 64, 3.4806486443249270347e+03)), Chris@16: static_cast(BOOST_MATH_BIG_CONSTANT(T, 64, 1.5376201909008354296e+02)), Chris@16: static_cast(BOOST_MATH_BIG_CONSTANT(T, 64, 8.8961548424210455236e-01)) Chris@16: }; Chris@16: static const T QC[] = { Chris@16: static_cast(BOOST_MATH_BIG_CONSTANT(T, 64, 2.2779090197304684318e+04)), Chris@16: static_cast(BOOST_MATH_BIG_CONSTANT(T, 64, 4.1370412495510416640e+04)), Chris@16: static_cast(BOOST_MATH_BIG_CONSTANT(T, 64, 2.1215350561880115730e+04)), Chris@16: static_cast(BOOST_MATH_BIG_CONSTANT(T, 64, 3.5028735138235608207e+03)), Chris@16: static_cast(BOOST_MATH_BIG_CONSTANT(T, 64, 1.5711159858080893649e+02)), Chris@16: static_cast(BOOST_MATH_BIG_CONSTANT(T, 64, 1.0)) Chris@16: }; Chris@16: static const T PS[] = { Chris@16: static_cast(BOOST_MATH_BIG_CONSTANT(T, 64, -8.9226600200800094098e+01)), Chris@16: static_cast(BOOST_MATH_BIG_CONSTANT(T, 64, -1.8591953644342993800e+02)), Chris@16: static_cast(BOOST_MATH_BIG_CONSTANT(T, 64, -1.1183429920482737611e+02)), Chris@16: static_cast(BOOST_MATH_BIG_CONSTANT(T, 64, -2.2300261666214198472e+01)), Chris@16: static_cast(BOOST_MATH_BIG_CONSTANT(T, 64, -1.2441026745835638459e+00)), Chris@16: static_cast(BOOST_MATH_BIG_CONSTANT(T, 64, -8.8033303048680751817e-03)) Chris@16: }; Chris@16: static const T QS[] = { Chris@16: static_cast(BOOST_MATH_BIG_CONSTANT(T, 64, 5.7105024128512061905e+03)), Chris@16: static_cast(BOOST_MATH_BIG_CONSTANT(T, 64, 1.1951131543434613647e+04)), Chris@16: static_cast(BOOST_MATH_BIG_CONSTANT(T, 64, 7.2642780169211018836e+03)), Chris@16: static_cast(BOOST_MATH_BIG_CONSTANT(T, 64, 1.4887231232283756582e+03)), Chris@16: static_cast(BOOST_MATH_BIG_CONSTANT(T, 64, 9.0593769594993125859e+01)), Chris@16: static_cast(BOOST_MATH_BIG_CONSTANT(T, 64, 1.0)) Chris@16: }; Chris@16: static const T x1 = static_cast(BOOST_MATH_BIG_CONSTANT(T, 64, 2.4048255576957727686e+00)), Chris@16: x2 = static_cast(BOOST_MATH_BIG_CONSTANT(T, 64, 5.5200781102863106496e+00)), Chris@16: x11 = static_cast(BOOST_MATH_BIG_CONSTANT(T, 64, 6.160e+02)), Chris@16: x12 = static_cast(BOOST_MATH_BIG_CONSTANT(T, 64, -1.42444230422723137837e-03)), Chris@16: x21 = static_cast(BOOST_MATH_BIG_CONSTANT(T, 64, 1.4130e+03)), Chris@16: x22 = static_cast(BOOST_MATH_BIG_CONSTANT(T, 64, 5.46860286310649596604e-04)); Chris@16: Chris@16: T value, factor, r, rc, rs; Chris@16: Chris@16: BOOST_MATH_STD_USING Chris@16: using namespace boost::math::tools; Chris@16: using namespace boost::math::constants; Chris@16: Chris@16: if (x < 0) Chris@16: { Chris@16: x = -x; // even function Chris@16: } Chris@16: if (x == 0) Chris@16: { Chris@16: return static_cast(1); Chris@16: } Chris@16: if (x <= 4) // x in (0, 4] Chris@16: { Chris@16: T y = x * x; Chris@16: BOOST_ASSERT(sizeof(P1) == sizeof(Q1)); Chris@16: r = evaluate_rational(P1, Q1, y); Chris@16: factor = (x + x1) * ((x - x11/256) - x12); Chris@16: value = factor * r; Chris@16: } Chris@16: else if (x <= 8.0) // x in (4, 8] Chris@16: { Chris@16: T y = 1 - (x * x)/64; Chris@16: BOOST_ASSERT(sizeof(P2) == sizeof(Q2)); Chris@16: r = evaluate_rational(P2, Q2, y); Chris@16: factor = (x + x2) * ((x - x21/256) - x22); Chris@16: value = factor * r; Chris@16: } Chris@16: else // x in (8, \infty) Chris@16: { Chris@16: T y = 8 / x; Chris@16: T y2 = y * y; Chris@16: BOOST_ASSERT(sizeof(PC) == sizeof(QC)); Chris@16: BOOST_ASSERT(sizeof(PS) == sizeof(QS)); Chris@16: rc = evaluate_rational(PC, QC, y2); Chris@16: rs = evaluate_rational(PS, QS, y2); Chris@16: factor = constants::one_div_root_pi() / sqrt(x); Chris@16: // Chris@16: // What follows is really just: Chris@16: // Chris@16: // T z = x - pi/4; Chris@16: // value = factor * (rc * cos(z) - y * rs * sin(z)); Chris@16: // Chris@16: // But using the addition formulae for sin and cos, plus Chris@16: // the special values for sin/cos of pi/4. Chris@16: // Chris@16: T sx = sin(x); Chris@16: T cx = cos(x); Chris@16: value = factor * (rc * (cx + sx) - y * rs * (sx - cx)); Chris@16: } Chris@16: Chris@16: return value; Chris@16: } Chris@16: Chris@16: }}} // namespaces Chris@16: Chris@16: #endif // BOOST_MATH_BESSEL_J0_HPP Chris@16: