Chris@16: // Boost.Geometry (aka GGL, Generic Geometry Library) Chris@16: Chris@101: // Copyright (c) 2007-2014 Barend Gehrels, Amsterdam, the Netherlands. Chris@101: // Copyright (c) 2013-2014 Adam Wulkiewicz, Lodz, Poland. Chris@101: Chris@101: // This file was modified by Oracle on 2014. Chris@101: // Modifications copyright (c) 2014, Oracle and/or its affiliates. Chris@101: Chris@101: // Contributed and/or modified by Menelaos Karavelas, on behalf of Oracle Chris@101: // Contributed and/or modified by Adam Wulkiewicz, on behalf of Oracle Chris@16: Chris@16: // Use, modification and distribution is subject to the Boost Software License, Chris@16: // Version 1.0. (See accompanying file LICENSE_1_0.txt or copy at Chris@16: // http://www.boost.org/LICENSE_1_0.txt) Chris@16: Chris@16: #ifndef BOOST_GEOMETRY_STRATEGIES_CARTESIAN_INTERSECTION_HPP Chris@16: #define BOOST_GEOMETRY_STRATEGIES_CARTESIAN_INTERSECTION_HPP Chris@16: Chris@16: #include Chris@16: Chris@16: #include Chris@16: Chris@16: #include Chris@16: #include Chris@16: Chris@16: #include Chris@16: #include Chris@101: #include Chris@101: #include Chris@101: #include Chris@16: Chris@16: #include Chris@16: #include Chris@16: Chris@16: // Temporary / will be Strategy as template parameter Chris@16: #include Chris@16: #include Chris@16: Chris@16: #include Chris@101: #include Chris@101: Chris@101: #include Chris@101: #include Chris@101: Chris@101: Chris@101: #if defined(BOOST_GEOMETRY_DEBUG_ROBUSTNESS) Chris@101: # include Chris@101: #endif Chris@16: Chris@16: Chris@16: namespace boost { namespace geometry Chris@16: { Chris@16: Chris@16: Chris@16: namespace strategy { namespace intersection Chris@16: { Chris@16: Chris@16: Chris@16: /*! Chris@16: \see http://mathworld.wolfram.com/Line-LineIntersection.html Chris@16: */ Chris@16: template Chris@16: struct relate_cartesian_segments Chris@16: { Chris@16: typedef typename Policy::return_type return_type; Chris@16: Chris@101: template Chris@101: static inline void cramers_rule(D const& dx_a, D const& dy_a, Chris@101: D const& dx_b, D const& dy_b, W const& wx, W const& wy, Chris@101: // out: Chris@101: ResultType& d, ResultType& da) Chris@16: { Chris@101: // Cramers rule Chris@101: d = geometry::detail::determinant(dx_a, dy_a, dx_b, dy_b); Chris@101: da = geometry::detail::determinant(dx_b, dy_b, wx, wy); Chris@101: // Ratio is da/d , collinear if d == 0, intersecting if 0 <= r <= 1 Chris@101: // IntersectionPoint = (x1 + r * dx_a, y1 + r * dy_a) Chris@16: } Chris@16: Chris@16: Chris@101: // Relate segments a and b Chris@101: template Chris@101: static inline return_type apply(Segment1 const& a, Segment2 const& b, Chris@101: RobustPolicy const& robust_policy) Chris@16: { Chris@101: // type them all as in Segment1 - TODO reconsider this, most precise? Chris@101: typedef typename geometry::point_type::type point_type; Chris@101: Chris@101: typedef typename geometry::robust_point_type Chris@101: < Chris@101: point_type, RobustPolicy Chris@101: >::type robust_point_type; Chris@101: Chris@101: point_type a0, a1, b0, b1; Chris@101: robust_point_type a0_rob, a1_rob, b0_rob, b1_rob; Chris@101: Chris@101: detail::assign_point_from_index<0>(a, a0); Chris@101: detail::assign_point_from_index<1>(a, a1); Chris@101: detail::assign_point_from_index<0>(b, b0); Chris@101: detail::assign_point_from_index<1>(b, b1); Chris@101: Chris@101: geometry::recalculate(a0_rob, a0, robust_policy); Chris@101: geometry::recalculate(a1_rob, a1, robust_policy); Chris@101: geometry::recalculate(b0_rob, b0, robust_policy); Chris@101: geometry::recalculate(b1_rob, b1, robust_policy); Chris@101: Chris@101: return apply(a, b, robust_policy, a0_rob, a1_rob, b0_rob, b1_rob); Chris@101: } Chris@101: Chris@101: // The main entry-routine, calculating intersections of segments a / b Chris@101: template Chris@101: static inline return_type apply(Segment1 const& a, Segment2 const& b, Chris@101: RobustPolicy const& robust_policy, Chris@101: RobustPoint const& robust_a1, RobustPoint const& robust_a2, Chris@101: RobustPoint const& robust_b1, RobustPoint const& robust_b2) Chris@101: { Chris@101: BOOST_CONCEPT_ASSERT( (concept::ConstSegment) ); Chris@101: BOOST_CONCEPT_ASSERT( (concept::ConstSegment) ); Chris@101: Chris@101: boost::ignore_unused_variable_warning(robust_policy); Chris@101: Chris@101: typedef typename select_calculation_type Chris@101: ::type coordinate_type; Chris@101: Chris@101: using geometry::detail::equals::equals_point_point; Chris@101: bool const a_is_point = equals_point_point(robust_a1, robust_a2); Chris@101: bool const b_is_point = equals_point_point(robust_b1, robust_b2); Chris@101: Chris@16: typedef side::side_by_triangle side; Chris@16: Chris@16: if(a_is_point && b_is_point) Chris@16: { Chris@101: return equals_point_point(robust_a1, robust_b2) Chris@101: ? Policy::degenerate(a, true) Chris@101: : Policy::disjoint() Chris@101: ; Chris@16: } Chris@16: Chris@101: side_info sides; Chris@101: sides.set<0>(side::apply(robust_b1, robust_b2, robust_a1), Chris@101: side::apply(robust_b1, robust_b2, robust_a2)); Chris@101: sides.set<1>(side::apply(robust_a1, robust_a2, robust_b1), Chris@101: side::apply(robust_a1, robust_a2, robust_b2)); Chris@16: Chris@16: bool collinear = sides.collinear(); Chris@16: Chris@16: if (sides.same<0>() || sides.same<1>()) Chris@16: { Chris@16: // Both points are at same side of other segment, we can leave Chris@101: return Policy::disjoint(); Chris@16: } Chris@16: Chris@16: typedef typename select_most_precise Chris@16: < Chris@16: coordinate_type, double Chris@16: >::type promoted_type; Chris@16: Chris@101: typedef typename geometry::coordinate_type Chris@101: < Chris@101: RobustPoint Chris@101: >::type robust_coordinate_type; Chris@101: Chris@101: typedef typename segment_ratio_type Chris@101: < Chris@101: typename geometry::point_type::type, // TODO: most precise point? Chris@101: RobustPolicy Chris@101: >::type ratio_type; Chris@101: Chris@101: segment_intersection_info Chris@101: < Chris@101: coordinate_type, Chris@101: promoted_type, Chris@101: ratio_type Chris@101: > sinfo; Chris@101: Chris@101: sinfo.dx_a = get<1, 0>(a) - get<0, 0>(a); // distance in x-dir Chris@101: sinfo.dx_b = get<1, 0>(b) - get<0, 0>(b); Chris@101: sinfo.dy_a = get<1, 1>(a) - get<0, 1>(a); // distance in y-dir Chris@101: sinfo.dy_b = get<1, 1>(b) - get<0, 1>(b); Chris@101: Chris@101: robust_coordinate_type const robust_dx_a = get<0>(robust_a2) - get<0>(robust_a1); Chris@101: robust_coordinate_type const robust_dx_b = get<0>(robust_b2) - get<0>(robust_b1); Chris@101: robust_coordinate_type const robust_dy_a = get<1>(robust_a2) - get<1>(robust_a1); Chris@101: robust_coordinate_type const robust_dy_b = get<1>(robust_b2) - get<1>(robust_b1); Chris@101: Chris@16: // r: ratio 0-1 where intersection divides A/B Chris@16: // (only calculated for non-collinear segments) Chris@16: if (! collinear) Chris@16: { Chris@101: robust_coordinate_type robust_da0, robust_da; Chris@101: robust_coordinate_type robust_db0, robust_db; Chris@16: Chris@101: cramers_rule(robust_dx_a, robust_dy_a, robust_dx_b, robust_dy_b, Chris@101: get<0>(robust_a1) - get<0>(robust_b1), Chris@101: get<1>(robust_a1) - get<1>(robust_b1), Chris@101: robust_da0, robust_da); Chris@101: Chris@101: cramers_rule(robust_dx_b, robust_dy_b, robust_dx_a, robust_dy_a, Chris@101: get<0>(robust_b1) - get<0>(robust_a1), Chris@101: get<1>(robust_b1) - get<1>(robust_a1), Chris@101: robust_db0, robust_db); Chris@101: Chris@101: math::detail::equals_factor_policy Chris@101: policy(robust_dx_a, robust_dy_a, robust_dx_b, robust_dy_b); Chris@101: robust_coordinate_type const zero = 0; Chris@101: if (math::detail::equals_by_policy(robust_da0, zero, policy) Chris@101: || math::detail::equals_by_policy(robust_db0, zero, policy)) Chris@16: { Chris@101: // If this is the case, no rescaling is done for FP precision. Chris@101: // We set it to collinear, but it indicates a robustness issue. Chris@16: sides.set<0>(0,0); Chris@16: sides.set<1>(0,0); Chris@16: collinear = true; Chris@16: } Chris@16: else Chris@16: { Chris@101: sinfo.robust_ra.assign(robust_da, robust_da0); Chris@101: sinfo.robust_rb.assign(robust_db, robust_db0); Chris@16: } Chris@16: } Chris@16: Chris@101: if (collinear) Chris@16: { Chris@101: std::pair const collinear_use_first Chris@101: = is_x_more_significant(geometry::math::abs(robust_dx_a), Chris@101: geometry::math::abs(robust_dy_a), Chris@101: geometry::math::abs(robust_dx_b), Chris@101: geometry::math::abs(robust_dy_b), Chris@101: a_is_point, b_is_point); Chris@101: Chris@101: if (collinear_use_first.second) Chris@16: { Chris@101: // Degenerate cases: segments of single point, lying on other segment, are not disjoint Chris@101: // This situation is collinear too Chris@101: Chris@101: if (collinear_use_first.first) Chris@101: { Chris@101: return relate_collinear<0, ratio_type>(a, b, Chris@101: robust_a1, robust_a2, robust_b1, robust_b2, Chris@101: a_is_point, b_is_point); Chris@101: } Chris@101: else Chris@101: { Chris@101: // Y direction contains larger segments (maybe dx is zero) Chris@101: return relate_collinear<1, ratio_type>(a, b, Chris@101: robust_a1, robust_a2, robust_b1, robust_b2, Chris@101: a_is_point, b_is_point); Chris@101: } Chris@16: } Chris@16: } Chris@16: Chris@101: return Policy::segments_crosses(sides, sinfo, a, b); Chris@16: } Chris@16: Chris@101: private: Chris@101: // first is true if x is more significant Chris@101: // second is true if the more significant difference is not 0 Chris@101: template Chris@101: static inline std::pair Chris@101: is_x_more_significant(RobustCoordinateType const& abs_robust_dx_a, Chris@101: RobustCoordinateType const& abs_robust_dy_a, Chris@101: RobustCoordinateType const& abs_robust_dx_b, Chris@101: RobustCoordinateType const& abs_robust_dy_b, Chris@101: bool const a_is_point, Chris@101: bool const b_is_point) Chris@101: { Chris@101: //BOOST_ASSERT_MSG(!(a_is_point && b_is_point), "both segments shouldn't be degenerated"); Chris@16: Chris@101: // for degenerated segments the second is always true because this function Chris@101: // shouldn't be called if both segments were degenerated Chris@16: Chris@101: if (a_is_point) Chris@16: { Chris@101: return std::make_pair(abs_robust_dx_b >= abs_robust_dy_b, true); Chris@16: } Chris@101: else if (b_is_point) Chris@16: { Chris@101: return std::make_pair(abs_robust_dx_a >= abs_robust_dy_a, true); Chris@101: } Chris@101: else Chris@101: { Chris@101: RobustCoordinateType const min_dx = (std::min)(abs_robust_dx_a, abs_robust_dx_b); Chris@101: RobustCoordinateType const min_dy = (std::min)(abs_robust_dy_a, abs_robust_dy_b); Chris@101: return min_dx == min_dy ? Chris@101: std::make_pair(true, min_dx > RobustCoordinateType(0)) : Chris@101: std::make_pair(min_dx > min_dy, true); Chris@16: } Chris@16: } Chris@16: Chris@101: template Chris@101: < Chris@101: std::size_t Dimension, Chris@101: typename RatioType, Chris@101: typename Segment1, Chris@101: typename Segment2, Chris@101: typename RobustPoint Chris@101: > Chris@101: static inline return_type relate_collinear(Segment1 const& a, Chris@101: Segment2 const& b, Chris@101: RobustPoint const& robust_a1, RobustPoint const& robust_a2, Chris@101: RobustPoint const& robust_b1, RobustPoint const& robust_b2, Chris@101: bool a_is_point, bool b_is_point) Chris@16: { Chris@101: if (a_is_point) Chris@16: { Chris@101: return relate_one_degenerate(a, Chris@101: get(robust_a1), Chris@101: get(robust_b1), get(robust_b2), Chris@101: true); Chris@16: } Chris@101: if (b_is_point) Chris@101: { Chris@101: return relate_one_degenerate(b, Chris@101: get(robust_b1), Chris@101: get(robust_a1), get(robust_a2), Chris@101: false); Chris@101: } Chris@101: return relate_collinear(a, b, Chris@101: get(robust_a1), Chris@101: get(robust_a2), Chris@101: get(robust_b1), Chris@101: get(robust_b2)); Chris@16: } Chris@16: Chris@101: /// Relate segments known collinear Chris@101: template Chris@101: < Chris@101: typename RatioType, Chris@101: typename Segment1, Chris@101: typename Segment2, Chris@101: typename RobustType Chris@101: > Chris@101: static inline return_type relate_collinear(Segment1 const& a Chris@101: , Segment2 const& b Chris@101: , RobustType oa_1, RobustType oa_2 Chris@101: , RobustType ob_1, RobustType ob_2 Chris@101: ) Chris@16: { Chris@101: // Calculate the ratios where a starts in b, b starts in a Chris@101: // a1--------->a2 (2..7) Chris@101: // b1----->b2 (5..8) Chris@101: // length_a: 7-2=5 Chris@101: // length_b: 8-5=3 Chris@101: // b1 is located w.r.t. a at ratio: (5-2)/5=3/5 (on a) Chris@101: // b2 is located w.r.t. a at ratio: (8-2)/5=6/5 (right of a) Chris@101: // a1 is located w.r.t. b at ratio: (2-5)/3=-3/3 (left of b) Chris@101: // a2 is located w.r.t. b at ratio: (7-5)/3=2/3 (on b) Chris@101: // A arrives (a2 on b), B departs (b1 on a) Chris@101: Chris@101: // If both are reversed: Chris@101: // a2<---------a1 (7..2) Chris@101: // b2<-----b1 (8..5) Chris@101: // length_a: 2-7=-5 Chris@101: // length_b: 5-8=-3 Chris@101: // b1 is located w.r.t. a at ratio: (8-7)/-5=-1/5 (before a starts) Chris@101: // b2 is located w.r.t. a at ratio: (5-7)/-5=2/5 (on a) Chris@101: // a1 is located w.r.t. b at ratio: (7-8)/-3=1/3 (on b) Chris@101: // a2 is located w.r.t. b at ratio: (2-8)/-3=6/3 (after b ends) Chris@101: Chris@101: // If both one is reversed: Chris@101: // a1--------->a2 (2..7) Chris@101: // b2<-----b1 (8..5) Chris@101: // length_a: 7-2=+5 Chris@101: // length_b: 5-8=-3 Chris@101: // b1 is located w.r.t. a at ratio: (8-2)/5=6/5 (after a ends) Chris@101: // b2 is located w.r.t. a at ratio: (5-2)/5=3/5 (on a) Chris@101: // a1 is located w.r.t. b at ratio: (2-8)/-3=6/3 (after b ends) Chris@101: // a2 is located w.r.t. b at ratio: (7-8)/-3=1/3 (on b) Chris@101: RobustType const length_a = oa_2 - oa_1; // no abs, see above Chris@101: RobustType const length_b = ob_2 - ob_1; Chris@101: Chris@101: RatioType ra_from(oa_1 - ob_1, length_b); Chris@101: RatioType ra_to(oa_2 - ob_1, length_b); Chris@101: RatioType rb_from(ob_1 - oa_1, length_a); Chris@101: RatioType rb_to(ob_2 - oa_1, length_a); Chris@101: Chris@101: // use absolute measure to detect endpoints intersection Chris@101: // NOTE: it'd be possible to calculate bx_wrt_a using ax_wrt_b values Chris@101: int const a1_wrt_b = position_value(oa_1, ob_1, ob_2); Chris@101: int const a2_wrt_b = position_value(oa_2, ob_1, ob_2); Chris@101: int const b1_wrt_a = position_value(ob_1, oa_1, oa_2); Chris@101: int const b2_wrt_a = position_value(ob_2, oa_1, oa_2); Chris@101: Chris@101: // fix the ratios if necessary Chris@101: // CONSIDER: fixing ratios also in other cases, if they're inconsistent Chris@101: // e.g. if ratio == 1 or 0 (so IP at the endpoint) Chris@101: // but position value indicates that the IP is in the middle of the segment Chris@101: // because one of the segments is very long Chris@101: // In such case the ratios could be moved into the middle direction Chris@101: // by some small value (e.g. EPS+1ULP) Chris@101: if (a1_wrt_b == 1) Chris@16: { Chris@101: ra_from.assign(0, 1); Chris@101: rb_from.assign(0, 1); Chris@16: } Chris@101: else if (a1_wrt_b == 3) Chris@16: { Chris@101: ra_from.assign(1, 1); Chris@101: rb_to.assign(0, 1); Chris@101: } Chris@101: Chris@101: if (a2_wrt_b == 1) Chris@101: { Chris@101: ra_to.assign(0, 1); Chris@101: rb_from.assign(1, 1); Chris@101: } Chris@101: else if (a2_wrt_b == 3) Chris@101: { Chris@101: ra_to.assign(1, 1); Chris@101: rb_to.assign(1, 1); Chris@16: } Chris@16: Chris@101: if ((a1_wrt_b < 1 && a2_wrt_b < 1) || (a1_wrt_b > 3 && a2_wrt_b > 3)) Chris@101: //if ((ra_from.left() && ra_to.left()) || (ra_from.right() && ra_to.right())) Chris@16: { Chris@16: return Policy::disjoint(); Chris@16: } Chris@101: Chris@101: bool const opposite = math::sign(length_a) != math::sign(length_b); Chris@101: Chris@101: return Policy::segments_collinear(a, b, opposite, Chris@101: a1_wrt_b, a2_wrt_b, b1_wrt_a, b2_wrt_a, Chris@101: ra_from, ra_to, rb_from, rb_to); Chris@16: } Chris@16: Chris@101: /// Relate segments where one is degenerate Chris@101: template Chris@101: < Chris@101: typename RatioType, Chris@101: typename DegenerateSegment, Chris@101: typename RobustType Chris@101: > Chris@101: static inline return_type relate_one_degenerate( Chris@101: DegenerateSegment const& degenerate_segment Chris@101: , RobustType d Chris@101: , RobustType s1, RobustType s2 Chris@101: , bool a_degenerate Chris@101: ) Chris@16: { Chris@101: // Calculate the ratios where ds starts in s Chris@101: // a1--------->a2 (2..6) Chris@101: // b1/b2 (4..4) Chris@101: // Ratio: (4-2)/(6-2) Chris@101: RatioType const ratio(d - s1, s2 - s1); Chris@16: Chris@101: if (!ratio.on_segment()) Chris@16: { Chris@101: return Policy::disjoint(); Chris@16: } Chris@16: Chris@101: return Policy::one_degenerate(degenerate_segment, ratio, a_degenerate); Chris@101: } Chris@16: Chris@101: template Chris@101: static inline int position_value(ProjCoord1 const& ca1, Chris@101: ProjCoord2 const& cb1, Chris@101: ProjCoord2 const& cb2) Chris@101: { Chris@101: // S1x 0 1 2 3 4 Chris@101: // S2 |----------> Chris@101: return math::equals(ca1, cb1) ? 1 Chris@101: : math::equals(ca1, cb2) ? 3 Chris@101: : cb1 < cb2 ? Chris@101: ( ca1 < cb1 ? 0 Chris@101: : ca1 > cb2 ? 4 Chris@101: : 2 ) Chris@101: : ( ca1 > cb1 ? 0 Chris@101: : ca1 < cb2 ? 4 Chris@101: : 2 ); Chris@16: } Chris@16: }; Chris@16: Chris@16: Chris@16: }} // namespace strategy::intersection Chris@16: Chris@16: }} // namespace boost::geometry Chris@16: Chris@16: Chris@16: #endif // BOOST_GEOMETRY_STRATEGIES_CARTESIAN_INTERSECTION_HPP