Chris@16: // Chris@16: // detail/impl/kqueue_reactor.ipp Chris@16: // ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ Chris@16: // Chris@101: // Copyright (c) 2003-2015 Christopher M. Kohlhoff (chris at kohlhoff dot com) Chris@16: // Copyright (c) 2005 Stefan Arentz (stefan at soze dot com) Chris@16: // Chris@16: // Distributed under the Boost Software License, Version 1.0. (See accompanying Chris@16: // file LICENSE_1_0.txt or copy at http://www.boost.org/LICENSE_1_0.txt) Chris@16: // Chris@16: Chris@16: #ifndef BOOST_ASIO_DETAIL_IMPL_KQUEUE_REACTOR_IPP Chris@16: #define BOOST_ASIO_DETAIL_IMPL_KQUEUE_REACTOR_IPP Chris@16: Chris@16: #if defined(_MSC_VER) && (_MSC_VER >= 1200) Chris@16: # pragma once Chris@16: #endif // defined(_MSC_VER) && (_MSC_VER >= 1200) Chris@16: Chris@16: #include Chris@16: Chris@16: #if defined(BOOST_ASIO_HAS_KQUEUE) Chris@16: Chris@16: #include Chris@16: #include Chris@16: #include Chris@16: Chris@16: #include Chris@16: Chris@16: #if defined(__NetBSD__) Chris@16: # define BOOST_ASIO_KQUEUE_EV_SET(ev, ident, filt, flags, fflags, data, udata) \ Chris@16: EV_SET(ev, ident, filt, flags, fflags, data, \ Chris@16: reinterpret_cast(static_cast(udata))) Chris@16: #else Chris@16: # define BOOST_ASIO_KQUEUE_EV_SET(ev, ident, filt, flags, fflags, data, udata) \ Chris@16: EV_SET(ev, ident, filt, flags, fflags, data, udata) Chris@16: #endif Chris@16: Chris@16: namespace boost { Chris@16: namespace asio { Chris@16: namespace detail { Chris@16: Chris@16: kqueue_reactor::kqueue_reactor(boost::asio::io_service& io_service) Chris@16: : boost::asio::detail::service_base(io_service), Chris@16: io_service_(use_service(io_service)), Chris@16: mutex_(), Chris@16: kqueue_fd_(do_kqueue_create()), Chris@16: interrupter_(), Chris@16: shutdown_(false) Chris@16: { Chris@101: struct kevent events[1]; Chris@101: BOOST_ASIO_KQUEUE_EV_SET(&events[0], interrupter_.read_descriptor(), Chris@101: EVFILT_READ, EV_ADD, 0, 0, &interrupter_); Chris@101: if (::kevent(kqueue_fd_, events, 1, 0, 0, 0) == -1) Chris@101: { Chris@101: boost::system::error_code error(errno, Chris@101: boost::asio::error::get_system_category()); Chris@101: boost::asio::detail::throw_error(error); Chris@101: } Chris@16: } Chris@16: Chris@16: kqueue_reactor::~kqueue_reactor() Chris@16: { Chris@16: close(kqueue_fd_); Chris@16: } Chris@16: Chris@16: void kqueue_reactor::shutdown_service() Chris@16: { Chris@16: mutex::scoped_lock lock(mutex_); Chris@16: shutdown_ = true; Chris@16: lock.unlock(); Chris@16: Chris@16: op_queue ops; Chris@16: Chris@16: while (descriptor_state* state = registered_descriptors_.first()) Chris@16: { Chris@16: for (int i = 0; i < max_ops; ++i) Chris@16: ops.push(state->op_queue_[i]); Chris@16: state->shutdown_ = true; Chris@16: registered_descriptors_.free(state); Chris@16: } Chris@16: Chris@16: timer_queues_.get_all_timers(ops); Chris@16: Chris@16: io_service_.abandon_operations(ops); Chris@16: } Chris@16: Chris@16: void kqueue_reactor::fork_service(boost::asio::io_service::fork_event fork_ev) Chris@16: { Chris@16: if (fork_ev == boost::asio::io_service::fork_child) Chris@16: { Chris@16: // The kqueue descriptor is automatically closed in the child. Chris@16: kqueue_fd_ = -1; Chris@16: kqueue_fd_ = do_kqueue_create(); Chris@16: Chris@16: interrupter_.recreate(); Chris@16: Chris@101: struct kevent events[2]; Chris@101: BOOST_ASIO_KQUEUE_EV_SET(&events[0], interrupter_.read_descriptor(), Chris@101: EVFILT_READ, EV_ADD, 0, 0, &interrupter_); Chris@101: if (::kevent(kqueue_fd_, events, 1, 0, 0, 0) == -1) Chris@101: { Chris@101: boost::system::error_code ec(errno, Chris@101: boost::asio::error::get_system_category()); Chris@101: boost::asio::detail::throw_error(ec, "kqueue interrupter registration"); Chris@101: } Chris@101: Chris@16: // Re-register all descriptors with kqueue. Chris@16: mutex::scoped_lock descriptors_lock(registered_descriptors_mutex_); Chris@16: for (descriptor_state* state = registered_descriptors_.first(); Chris@16: state != 0; state = state->next_) Chris@16: { Chris@101: if (state->num_kevents_ > 0) Chris@101: { Chris@101: BOOST_ASIO_KQUEUE_EV_SET(&events[0], state->descriptor_, Chris@16: EVFILT_READ, EV_ADD | EV_CLEAR, 0, 0, state); Chris@101: BOOST_ASIO_KQUEUE_EV_SET(&events[1], state->descriptor_, Chris@16: EVFILT_WRITE, EV_ADD | EV_CLEAR, 0, 0, state); Chris@101: if (::kevent(kqueue_fd_, events, state->num_kevents_, 0, 0, 0) == -1) Chris@101: { Chris@101: boost::system::error_code ec(errno, Chris@101: boost::asio::error::get_system_category()); Chris@101: boost::asio::detail::throw_error(ec, "kqueue re-registration"); Chris@101: } Chris@16: } Chris@16: } Chris@16: } Chris@16: } Chris@16: Chris@16: void kqueue_reactor::init_task() Chris@16: { Chris@16: io_service_.init_task(); Chris@16: } Chris@16: Chris@16: int kqueue_reactor::register_descriptor(socket_type descriptor, Chris@16: kqueue_reactor::per_descriptor_data& descriptor_data) Chris@16: { Chris@16: descriptor_data = allocate_descriptor_state(); Chris@16: Chris@16: mutex::scoped_lock lock(descriptor_data->mutex_); Chris@16: Chris@16: descriptor_data->descriptor_ = descriptor; Chris@101: descriptor_data->num_kevents_ = 0; Chris@16: descriptor_data->shutdown_ = false; Chris@16: Chris@16: return 0; Chris@16: } Chris@16: Chris@16: int kqueue_reactor::register_internal_descriptor( Chris@16: int op_type, socket_type descriptor, Chris@16: kqueue_reactor::per_descriptor_data& descriptor_data, reactor_op* op) Chris@16: { Chris@16: descriptor_data = allocate_descriptor_state(); Chris@16: Chris@16: mutex::scoped_lock lock(descriptor_data->mutex_); Chris@16: Chris@16: descriptor_data->descriptor_ = descriptor; Chris@101: descriptor_data->num_kevents_ = 1; Chris@16: descriptor_data->shutdown_ = false; Chris@16: descriptor_data->op_queue_[op_type].push(op); Chris@16: Chris@101: struct kevent events[1]; Chris@101: BOOST_ASIO_KQUEUE_EV_SET(&events[0], descriptor, EVFILT_READ, Chris@101: EV_ADD | EV_CLEAR, 0, 0, descriptor_data); Chris@101: if (::kevent(kqueue_fd_, events, 1, 0, 0, 0) == -1) Chris@101: return errno; Chris@16: Chris@16: return 0; Chris@16: } Chris@16: Chris@16: void kqueue_reactor::move_descriptor(socket_type, Chris@16: kqueue_reactor::per_descriptor_data& target_descriptor_data, Chris@16: kqueue_reactor::per_descriptor_data& source_descriptor_data) Chris@16: { Chris@16: target_descriptor_data = source_descriptor_data; Chris@16: source_descriptor_data = 0; Chris@16: } Chris@16: Chris@16: void kqueue_reactor::start_op(int op_type, socket_type descriptor, Chris@16: kqueue_reactor::per_descriptor_data& descriptor_data, reactor_op* op, Chris@16: bool is_continuation, bool allow_speculative) Chris@16: { Chris@16: if (!descriptor_data) Chris@16: { Chris@16: op->ec_ = boost::asio::error::bad_descriptor; Chris@16: post_immediate_completion(op, is_continuation); Chris@16: return; Chris@16: } Chris@16: Chris@16: mutex::scoped_lock descriptor_lock(descriptor_data->mutex_); Chris@16: Chris@16: if (descriptor_data->shutdown_) Chris@16: { Chris@16: post_immediate_completion(op, is_continuation); Chris@16: return; Chris@16: } Chris@16: Chris@101: if (descriptor_data->op_queue_[op_type].empty()) Chris@16: { Chris@101: static const int num_kevents[max_ops] = { 1, 2, 1 }; Chris@101: Chris@101: if (allow_speculative Chris@101: && (op_type != read_op Chris@101: || descriptor_data->op_queue_[except_op].empty())) Chris@16: { Chris@101: if (op->perform()) Chris@16: { Chris@101: descriptor_lock.unlock(); Chris@101: io_service_.post_immediate_completion(op, is_continuation); Chris@101: return; Chris@101: } Chris@101: Chris@101: if (descriptor_data->num_kevents_ < num_kevents[op_type]) Chris@101: { Chris@101: struct kevent events[2]; Chris@101: BOOST_ASIO_KQUEUE_EV_SET(&events[0], descriptor, EVFILT_READ, Chris@101: EV_ADD | EV_CLEAR, 0, 0, descriptor_data); Chris@101: BOOST_ASIO_KQUEUE_EV_SET(&events[1], descriptor, EVFILT_WRITE, Chris@101: EV_ADD | EV_CLEAR, 0, 0, descriptor_data); Chris@101: if (::kevent(kqueue_fd_, events, num_kevents[op_type], 0, 0, 0) != -1) Chris@16: { Chris@101: descriptor_data->num_kevents_ = num_kevents[op_type]; Chris@101: } Chris@101: else Chris@101: { Chris@101: op->ec_ = boost::system::error_code(errno, Chris@101: boost::asio::error::get_system_category()); Chris@16: io_service_.post_immediate_completion(op, is_continuation); Chris@16: return; Chris@16: } Chris@16: } Chris@16: } Chris@101: else Chris@101: { Chris@101: if (descriptor_data->num_kevents_ < num_kevents[op_type]) Chris@101: descriptor_data->num_kevents_ = num_kevents[op_type]; Chris@101: Chris@101: struct kevent events[2]; Chris@101: BOOST_ASIO_KQUEUE_EV_SET(&events[0], descriptor, EVFILT_READ, Chris@101: EV_ADD | EV_CLEAR, 0, 0, descriptor_data); Chris@101: BOOST_ASIO_KQUEUE_EV_SET(&events[1], descriptor, EVFILT_WRITE, Chris@101: EV_ADD | EV_CLEAR, 0, 0, descriptor_data); Chris@101: ::kevent(kqueue_fd_, events, descriptor_data->num_kevents_, 0, 0, 0); Chris@101: } Chris@16: } Chris@16: Chris@16: descriptor_data->op_queue_[op_type].push(op); Chris@16: io_service_.work_started(); Chris@16: } Chris@16: Chris@16: void kqueue_reactor::cancel_ops(socket_type, Chris@16: kqueue_reactor::per_descriptor_data& descriptor_data) Chris@16: { Chris@16: if (!descriptor_data) Chris@16: return; Chris@16: Chris@16: mutex::scoped_lock descriptor_lock(descriptor_data->mutex_); Chris@16: Chris@16: op_queue ops; Chris@16: for (int i = 0; i < max_ops; ++i) Chris@16: { Chris@16: while (reactor_op* op = descriptor_data->op_queue_[i].front()) Chris@16: { Chris@16: op->ec_ = boost::asio::error::operation_aborted; Chris@16: descriptor_data->op_queue_[i].pop(); Chris@16: ops.push(op); Chris@16: } Chris@16: } Chris@16: Chris@16: descriptor_lock.unlock(); Chris@16: Chris@16: io_service_.post_deferred_completions(ops); Chris@16: } Chris@16: Chris@16: void kqueue_reactor::deregister_descriptor(socket_type descriptor, Chris@16: kqueue_reactor::per_descriptor_data& descriptor_data, bool closing) Chris@16: { Chris@16: if (!descriptor_data) Chris@16: return; Chris@16: Chris@16: mutex::scoped_lock descriptor_lock(descriptor_data->mutex_); Chris@16: Chris@16: if (!descriptor_data->shutdown_) Chris@16: { Chris@16: if (closing) Chris@16: { Chris@16: // The descriptor will be automatically removed from the kqueue when it Chris@16: // is closed. Chris@16: } Chris@16: else Chris@16: { Chris@16: struct kevent events[2]; Chris@16: BOOST_ASIO_KQUEUE_EV_SET(&events[0], descriptor, Chris@16: EVFILT_READ, EV_DELETE, 0, 0, 0); Chris@16: BOOST_ASIO_KQUEUE_EV_SET(&events[1], descriptor, Chris@16: EVFILT_WRITE, EV_DELETE, 0, 0, 0); Chris@101: ::kevent(kqueue_fd_, events, descriptor_data->num_kevents_, 0, 0, 0); Chris@16: } Chris@16: Chris@16: op_queue ops; Chris@16: for (int i = 0; i < max_ops; ++i) Chris@16: { Chris@16: while (reactor_op* op = descriptor_data->op_queue_[i].front()) Chris@16: { Chris@16: op->ec_ = boost::asio::error::operation_aborted; Chris@16: descriptor_data->op_queue_[i].pop(); Chris@16: ops.push(op); Chris@16: } Chris@16: } Chris@16: Chris@16: descriptor_data->descriptor_ = -1; Chris@16: descriptor_data->shutdown_ = true; Chris@16: Chris@16: descriptor_lock.unlock(); Chris@16: Chris@16: free_descriptor_state(descriptor_data); Chris@16: descriptor_data = 0; Chris@16: Chris@16: io_service_.post_deferred_completions(ops); Chris@16: } Chris@16: } Chris@16: Chris@16: void kqueue_reactor::deregister_internal_descriptor(socket_type descriptor, Chris@16: kqueue_reactor::per_descriptor_data& descriptor_data) Chris@16: { Chris@16: if (!descriptor_data) Chris@16: return; Chris@16: Chris@16: mutex::scoped_lock descriptor_lock(descriptor_data->mutex_); Chris@16: Chris@16: if (!descriptor_data->shutdown_) Chris@16: { Chris@16: struct kevent events[2]; Chris@16: BOOST_ASIO_KQUEUE_EV_SET(&events[0], descriptor, Chris@16: EVFILT_READ, EV_DELETE, 0, 0, 0); Chris@16: BOOST_ASIO_KQUEUE_EV_SET(&events[1], descriptor, Chris@16: EVFILT_WRITE, EV_DELETE, 0, 0, 0); Chris@101: ::kevent(kqueue_fd_, events, descriptor_data->num_kevents_, 0, 0, 0); Chris@16: Chris@16: op_queue ops; Chris@16: for (int i = 0; i < max_ops; ++i) Chris@16: ops.push(descriptor_data->op_queue_[i]); Chris@16: Chris@16: descriptor_data->descriptor_ = -1; Chris@16: descriptor_data->shutdown_ = true; Chris@16: Chris@16: descriptor_lock.unlock(); Chris@16: Chris@16: free_descriptor_state(descriptor_data); Chris@16: descriptor_data = 0; Chris@16: } Chris@16: } Chris@16: Chris@16: void kqueue_reactor::run(bool block, op_queue& ops) Chris@16: { Chris@16: mutex::scoped_lock lock(mutex_); Chris@16: Chris@16: // Determine how long to block while waiting for events. Chris@16: timespec timeout_buf = { 0, 0 }; Chris@16: timespec* timeout = block ? get_timeout(timeout_buf) : &timeout_buf; Chris@16: Chris@16: lock.unlock(); Chris@16: Chris@16: // Block on the kqueue descriptor. Chris@16: struct kevent events[128]; Chris@16: int num_events = kevent(kqueue_fd_, 0, 0, events, 128, timeout); Chris@16: Chris@16: // Dispatch the waiting events. Chris@16: for (int i = 0; i < num_events; ++i) Chris@16: { Chris@16: void* ptr = reinterpret_cast(events[i].udata); Chris@16: if (ptr == &interrupter_) Chris@16: { Chris@101: interrupter_.reset(); Chris@16: } Chris@16: else Chris@16: { Chris@16: descriptor_state* descriptor_data = static_cast(ptr); Chris@16: mutex::scoped_lock descriptor_lock(descriptor_data->mutex_); Chris@16: Chris@101: if (events[i].filter == EVFILT_WRITE Chris@101: && descriptor_data->num_kevents_ == 2 Chris@101: && descriptor_data->op_queue_[write_op].empty()) Chris@101: { Chris@101: // Some descriptor types, like serial ports, don't seem to support Chris@101: // EV_CLEAR with EVFILT_WRITE. Since we have no pending write Chris@101: // operations we'll remove the EVFILT_WRITE registration here so that Chris@101: // we don't end up in a tight spin. Chris@101: struct kevent delete_events[1]; Chris@101: BOOST_ASIO_KQUEUE_EV_SET(&delete_events[0], Chris@101: descriptor_data->descriptor_, EVFILT_WRITE, EV_DELETE, 0, 0, 0); Chris@101: ::kevent(kqueue_fd_, delete_events, 1, 0, 0, 0); Chris@101: descriptor_data->num_kevents_ = 1; Chris@101: } Chris@101: Chris@16: // Exception operations must be processed first to ensure that any Chris@16: // out-of-band data is read before normal data. Chris@16: #if defined(__NetBSD__) Chris@16: static const unsigned int filter[max_ops] = Chris@16: #else Chris@16: static const int filter[max_ops] = Chris@16: #endif Chris@16: { EVFILT_READ, EVFILT_WRITE, EVFILT_READ }; Chris@16: for (int j = max_ops - 1; j >= 0; --j) Chris@16: { Chris@16: if (events[i].filter == filter[j]) Chris@16: { Chris@16: if (j != except_op || events[i].flags & EV_OOBAND) Chris@16: { Chris@16: while (reactor_op* op = descriptor_data->op_queue_[j].front()) Chris@16: { Chris@16: if (events[i].flags & EV_ERROR) Chris@16: { Chris@16: op->ec_ = boost::system::error_code( Chris@16: static_cast(events[i].data), Chris@16: boost::asio::error::get_system_category()); Chris@16: descriptor_data->op_queue_[j].pop(); Chris@16: ops.push(op); Chris@16: } Chris@16: if (op->perform()) Chris@16: { Chris@16: descriptor_data->op_queue_[j].pop(); Chris@16: ops.push(op); Chris@16: } Chris@16: else Chris@16: break; Chris@16: } Chris@16: } Chris@16: } Chris@16: } Chris@16: } Chris@16: } Chris@16: Chris@16: lock.lock(); Chris@16: timer_queues_.get_ready_timers(ops); Chris@16: } Chris@16: Chris@16: void kqueue_reactor::interrupt() Chris@16: { Chris@101: interrupter_.interrupt(); Chris@16: } Chris@16: Chris@16: int kqueue_reactor::do_kqueue_create() Chris@16: { Chris@16: int fd = ::kqueue(); Chris@16: if (fd == -1) Chris@16: { Chris@16: boost::system::error_code ec(errno, Chris@16: boost::asio::error::get_system_category()); Chris@16: boost::asio::detail::throw_error(ec, "kqueue"); Chris@16: } Chris@16: return fd; Chris@16: } Chris@16: Chris@16: kqueue_reactor::descriptor_state* kqueue_reactor::allocate_descriptor_state() Chris@16: { Chris@16: mutex::scoped_lock descriptors_lock(registered_descriptors_mutex_); Chris@16: return registered_descriptors_.alloc(); Chris@16: } Chris@16: Chris@16: void kqueue_reactor::free_descriptor_state(kqueue_reactor::descriptor_state* s) Chris@16: { Chris@16: mutex::scoped_lock descriptors_lock(registered_descriptors_mutex_); Chris@16: registered_descriptors_.free(s); Chris@16: } Chris@16: Chris@16: void kqueue_reactor::do_add_timer_queue(timer_queue_base& queue) Chris@16: { Chris@16: mutex::scoped_lock lock(mutex_); Chris@16: timer_queues_.insert(&queue); Chris@16: } Chris@16: Chris@16: void kqueue_reactor::do_remove_timer_queue(timer_queue_base& queue) Chris@16: { Chris@16: mutex::scoped_lock lock(mutex_); Chris@16: timer_queues_.erase(&queue); Chris@16: } Chris@16: Chris@16: timespec* kqueue_reactor::get_timeout(timespec& ts) Chris@16: { Chris@16: // By default we will wait no longer than 5 minutes. This will ensure that Chris@16: // any changes to the system clock are detected after no longer than this. Chris@16: long usec = timer_queues_.wait_duration_usec(5 * 60 * 1000 * 1000); Chris@16: ts.tv_sec = usec / 1000000; Chris@16: ts.tv_nsec = (usec % 1000000) * 1000; Chris@16: return &ts; Chris@16: } Chris@16: Chris@16: } // namespace detail Chris@16: } // namespace asio Chris@16: } // namespace boost Chris@16: Chris@16: #undef BOOST_ASIO_KQUEUE_EV_SET Chris@16: Chris@16: #include Chris@16: Chris@16: #endif // defined(BOOST_ASIO_HAS_KQUEUE) Chris@16: Chris@16: #endif // BOOST_ASIO_DETAIL_IMPL_KQUEUE_REACTOR_IPP