Chris@16: ////////////////////////////////////////////////////////////////////////////// Chris@16: // Chris@16: // (C) Copyright Ion Gaztanaga 2005-2012. Distributed under the Boost Chris@16: // Software License, Version 1.0. (See accompanying file Chris@16: // LICENSE_1_0.txt or copy at http://www.boost.org/LICENSE_1_0.txt) Chris@16: // Chris@16: // See http://www.boost.org/libs/container for documentation. Chris@16: // Chris@16: ////////////////////////////////////////////////////////////////////////////// Chris@16: Chris@16: #ifndef BOOST_CONTAINER_MAP_HPP Chris@16: #define BOOST_CONTAINER_MAP_HPP Chris@16: Chris@16: #if defined(_MSC_VER) Chris@16: # pragma once Chris@16: #endif Chris@16: Chris@16: #include Chris@16: #include Chris@16: Chris@16: #include Chris@16: #include Chris@16: #include Chris@16: #include Chris@16: #include Chris@16: #include Chris@16: #include Chris@16: #include Chris@16: #include Chris@16: #include Chris@16: #include Chris@16: #include Chris@16: #include Chris@16: #include Chris@16: #include Chris@16: #include Chris@16: #include Chris@16: Chris@16: namespace boost { Chris@16: namespace container { Chris@16: Chris@16: /// @cond Chris@16: // Forward declarations of operators == and <, needed for friend declarations. Chris@16: template Chris@16: inline bool operator==(const map& x, Chris@16: const map& y); Chris@16: Chris@16: template Chris@16: inline bool operator<(const map& x, Chris@16: const map& y); Chris@16: /// @endcond Chris@16: Chris@16: //! A map is a kind of associative container that supports unique keys (contains at Chris@16: //! most one of each key value) and provides for fast retrieval of values of another Chris@16: //! type T based on the keys. The map class supports bidirectional iterators. Chris@16: //! Chris@16: //! A map satisfies all of the requirements of a container and of a reversible Chris@16: //! container and of an associative container. For a Chris@16: //! map the key_type is Key and the value_type is std::pair. Chris@16: //! Chris@16: //! Compare is the ordering function for Keys (e.g. std::less). Chris@16: //! Chris@16: //! Allocator is the allocator to allocate the value_types Chris@16: //! (e.g. allocator< std::pair > ). Chris@16: #ifdef BOOST_CONTAINER_DOXYGEN_INVOKED Chris@16: template , class Allocator = std::allocator< std::pair< const Key, T> > > Chris@16: #else Chris@16: template Chris@16: #endif Chris@16: class map Chris@16: { Chris@16: /// @cond Chris@16: private: Chris@16: BOOST_COPYABLE_AND_MOVABLE(map) Chris@16: Chris@16: typedef std::pair value_type_impl; Chris@16: typedef container_detail::rbtree Chris@16: , Compare, Allocator> tree_t; Chris@16: typedef container_detail::pair movable_value_type_impl; Chris@16: typedef container_detail::tree_value_compare Chris@16: < Key, value_type_impl, Compare, container_detail::select1st Chris@16: > value_compare_impl; Chris@16: tree_t m_tree; // red-black tree representing map Chris@16: /// @endcond Chris@16: Chris@16: public: Chris@16: ////////////////////////////////////////////// Chris@16: // Chris@16: // types Chris@16: // Chris@16: ////////////////////////////////////////////// Chris@16: Chris@16: typedef Key key_type; Chris@16: typedef T mapped_type; Chris@16: typedef std::pair value_type; Chris@16: typedef typename boost::container::allocator_traits::pointer pointer; Chris@16: typedef typename boost::container::allocator_traits::const_pointer const_pointer; Chris@16: typedef typename boost::container::allocator_traits::reference reference; Chris@16: typedef typename boost::container::allocator_traits::const_reference const_reference; Chris@16: typedef typename boost::container::allocator_traits::size_type size_type; Chris@16: typedef typename boost::container::allocator_traits::difference_type difference_type; Chris@16: typedef Allocator allocator_type; Chris@16: typedef typename BOOST_CONTAINER_IMPDEF(tree_t::stored_allocator_type) stored_allocator_type; Chris@16: typedef BOOST_CONTAINER_IMPDEF(value_compare_impl) value_compare; Chris@16: typedef Compare key_compare; Chris@16: typedef typename BOOST_CONTAINER_IMPDEF(tree_t::iterator) iterator; Chris@16: typedef typename BOOST_CONTAINER_IMPDEF(tree_t::const_iterator) const_iterator; Chris@16: typedef typename BOOST_CONTAINER_IMPDEF(tree_t::reverse_iterator) reverse_iterator; Chris@16: typedef typename BOOST_CONTAINER_IMPDEF(tree_t::const_reverse_iterator) const_reverse_iterator; Chris@16: typedef std::pair nonconst_value_type; Chris@16: typedef BOOST_CONTAINER_IMPDEF(movable_value_type_impl) movable_value_type; Chris@16: Chris@16: ////////////////////////////////////////////// Chris@16: // Chris@16: // construct/copy/destroy Chris@16: // Chris@16: ////////////////////////////////////////////// Chris@16: Chris@16: //! Effects: Default constructs an empty map. Chris@16: //! Chris@16: //! Complexity: Constant. Chris@16: map() Chris@16: : m_tree() Chris@16: { Chris@16: //Allocator type must be std::pair Chris@16: BOOST_STATIC_ASSERT((container_detail::is_same, typename Allocator::value_type>::value)); Chris@16: } Chris@16: Chris@16: //! Effects: Constructs an empty map using the specified comparison object Chris@16: //! and allocator. Chris@16: //! Chris@16: //! Complexity: Constant. Chris@16: explicit map(const Compare& comp, Chris@16: const allocator_type& a = allocator_type()) Chris@16: : m_tree(comp, a) Chris@16: { Chris@16: //Allocator type must be std::pair Chris@16: BOOST_STATIC_ASSERT((container_detail::is_same, typename Allocator::value_type>::value)); Chris@16: } Chris@16: Chris@16: //! Effects: Constructs an empty map using the specified allocator. Chris@16: //! Chris@16: //! Complexity: Constant. Chris@16: explicit map(const allocator_type& a) Chris@16: : m_tree(a) Chris@16: { Chris@16: //Allocator type must be std::pair Chris@16: BOOST_STATIC_ASSERT((container_detail::is_same, typename Allocator::value_type>::value)); Chris@16: } Chris@16: Chris@16: //! Effects: Constructs an empty map using the specified comparison object and Chris@16: //! allocator, and inserts elements from the range [first ,last ). Chris@16: //! Chris@16: //! Complexity: Linear in N if the range [first ,last ) is already sorted using Chris@16: //! comp and otherwise N logN, where N is last - first. Chris@16: template Chris@16: map(InputIterator first, InputIterator last, const Compare& comp = Compare(), Chris@16: const allocator_type& a = allocator_type()) Chris@16: : m_tree(true, first, last, comp, a) Chris@16: { Chris@16: //Allocator type must be std::pair Chris@16: BOOST_STATIC_ASSERT((container_detail::is_same, typename Allocator::value_type>::value)); Chris@16: } Chris@16: Chris@16: //! Effects: Constructs an empty map using the specified comparison object and Chris@16: //! allocator, and inserts elements from the ordered unique range [first ,last). This function Chris@16: //! is more efficient than the normal range creation for ordered ranges. Chris@16: //! Chris@16: //! Requires: [first ,last) must be ordered according to the predicate and must be Chris@16: //! unique values. Chris@16: //! Chris@16: //! Complexity: Linear in N. Chris@16: //! Chris@16: //! Note: Non-standard extension. Chris@16: template Chris@16: map( ordered_unique_range_t, InputIterator first, InputIterator last Chris@16: , const Compare& comp = Compare(), const allocator_type& a = allocator_type()) Chris@16: : m_tree(ordered_range, first, last, comp, a) Chris@16: { Chris@16: //Allocator type must be std::pair Chris@16: BOOST_STATIC_ASSERT((container_detail::is_same, typename Allocator::value_type>::value)); Chris@16: } Chris@16: Chris@16: //! Effects: Copy constructs a map. Chris@16: //! Chris@16: //! Complexity: Linear in x.size(). Chris@16: map(const map& x) Chris@16: : m_tree(x.m_tree) Chris@16: { Chris@16: //Allocator type must be std::pair Chris@16: BOOST_STATIC_ASSERT((container_detail::is_same, typename Allocator::value_type>::value)); Chris@16: } Chris@16: Chris@16: //! Effects: Move constructs a map. Constructs *this using x's resources. Chris@16: //! Chris@16: //! Complexity: Constant. Chris@16: //! Chris@16: //! Postcondition: x is emptied. Chris@16: map(BOOST_RV_REF(map) x) Chris@16: : m_tree(boost::move(x.m_tree)) Chris@16: { Chris@16: //Allocator type must be std::pair Chris@16: BOOST_STATIC_ASSERT((container_detail::is_same, typename Allocator::value_type>::value)); Chris@16: } Chris@16: Chris@16: //! Effects: Copy constructs a map using the specified allocator. Chris@16: //! Chris@16: //! Complexity: Linear in x.size(). Chris@16: map(const map& x, const allocator_type &a) Chris@16: : m_tree(x.m_tree, a) Chris@16: { Chris@16: //Allocator type must be std::pair Chris@16: BOOST_STATIC_ASSERT((container_detail::is_same, typename Allocator::value_type>::value)); Chris@16: } Chris@16: Chris@16: //! Effects: Move constructs a map using the specified allocator. Chris@16: //! Constructs *this using x's resources. Chris@16: //! Chris@16: //! Complexity: Constant if x == x.get_allocator(), linear otherwise. Chris@16: //! Chris@16: //! Postcondition: x is emptied. Chris@16: map(BOOST_RV_REF(map) x, const allocator_type &a) Chris@16: : m_tree(boost::move(x.m_tree), a) Chris@16: { Chris@16: //Allocator type must be std::pair Chris@16: BOOST_STATIC_ASSERT((container_detail::is_same, typename Allocator::value_type>::value)); Chris@16: } Chris@16: Chris@16: //! Effects: Makes *this a copy of x. Chris@16: //! Chris@16: //! Complexity: Linear in x.size(). Chris@16: map& operator=(BOOST_COPY_ASSIGN_REF(map) x) Chris@16: { m_tree = x.m_tree; return *this; } Chris@16: Chris@16: //! Effects: this->swap(x.get()). Chris@16: //! Chris@16: //! Complexity: Constant. Chris@16: map& operator=(BOOST_RV_REF(map) x) Chris@16: { m_tree = boost::move(x.m_tree); return *this; } Chris@16: Chris@16: //! Effects: Returns a copy of the Allocator that Chris@16: //! was passed to the object's constructor. Chris@16: //! Chris@16: //! Complexity: Constant. Chris@16: allocator_type get_allocator() const BOOST_CONTAINER_NOEXCEPT Chris@16: { return m_tree.get_allocator(); } Chris@16: Chris@16: //! Effects: Returns a reference to the internal allocator. Chris@16: //! Chris@16: //! Throws: Nothing Chris@16: //! Chris@16: //! Complexity: Constant. Chris@16: //! Chris@16: //! Note: Non-standard extension. Chris@16: stored_allocator_type &get_stored_allocator() BOOST_CONTAINER_NOEXCEPT Chris@16: { return m_tree.get_stored_allocator(); } Chris@16: Chris@16: //! Effects: Returns a reference to the internal allocator. Chris@16: //! Chris@16: //! Throws: Nothing Chris@16: //! Chris@16: //! Complexity: Constant. Chris@16: //! Chris@16: //! Note: Non-standard extension. Chris@16: const stored_allocator_type &get_stored_allocator() const BOOST_CONTAINER_NOEXCEPT Chris@16: { return m_tree.get_stored_allocator(); } Chris@16: Chris@16: ////////////////////////////////////////////// Chris@16: // Chris@16: // iterators Chris@16: // Chris@16: ////////////////////////////////////////////// Chris@16: Chris@16: //! Effects: Returns an iterator to the first element contained in the container. Chris@16: //! Chris@16: //! Throws: Nothing. Chris@16: //! Chris@16: //! Complexity: Constant. Chris@16: iterator begin() BOOST_CONTAINER_NOEXCEPT Chris@16: { return m_tree.begin(); } Chris@16: Chris@16: //! Effects: Returns a const_iterator to the first element contained in the container. Chris@16: //! Chris@16: //! Throws: Nothing. Chris@16: //! Chris@16: //! Complexity: Constant. Chris@16: const_iterator begin() const BOOST_CONTAINER_NOEXCEPT Chris@16: { return this->cbegin(); } Chris@16: Chris@16: //! Effects: Returns an iterator to the end of the container. Chris@16: //! Chris@16: //! Throws: Nothing. Chris@16: //! Chris@16: //! Complexity: Constant. Chris@16: iterator end() BOOST_CONTAINER_NOEXCEPT Chris@16: { return m_tree.end(); } Chris@16: Chris@16: //! Effects: Returns a const_iterator to the end of the container. Chris@16: //! Chris@16: //! Throws: Nothing. Chris@16: //! Chris@16: //! Complexity: Constant. Chris@16: const_iterator end() const BOOST_CONTAINER_NOEXCEPT Chris@16: { return this->cend(); } Chris@16: Chris@16: //! Effects: Returns a reverse_iterator pointing to the beginning Chris@16: //! of the reversed container. Chris@16: //! Chris@16: //! Throws: Nothing. Chris@16: //! Chris@16: //! Complexity: Constant. Chris@16: reverse_iterator rbegin() BOOST_CONTAINER_NOEXCEPT Chris@16: { return m_tree.rbegin(); } Chris@16: Chris@16: //! Effects: Returns a const_reverse_iterator pointing to the beginning Chris@16: //! of the reversed container. Chris@16: //! Chris@16: //! Throws: Nothing. Chris@16: //! Chris@16: //! Complexity: Constant. Chris@16: const_reverse_iterator rbegin() const BOOST_CONTAINER_NOEXCEPT Chris@16: { return this->crbegin(); } Chris@16: Chris@16: //! Effects: Returns a reverse_iterator pointing to the end Chris@16: //! of the reversed container. Chris@16: //! Chris@16: //! Throws: Nothing. Chris@16: //! Chris@16: //! Complexity: Constant. Chris@16: reverse_iterator rend() BOOST_CONTAINER_NOEXCEPT Chris@16: { return m_tree.rend(); } Chris@16: Chris@16: //! Effects: Returns a const_reverse_iterator pointing to the end Chris@16: //! of the reversed container. Chris@16: //! Chris@16: //! Throws: Nothing. Chris@16: //! Chris@16: //! Complexity: Constant. Chris@16: const_reverse_iterator rend() const BOOST_CONTAINER_NOEXCEPT Chris@16: { return this->crend(); } Chris@16: Chris@16: //! Effects: Returns a const_iterator to the first element contained in the container. Chris@16: //! Chris@16: //! Throws: Nothing. Chris@16: //! Chris@16: //! Complexity: Constant. Chris@16: const_iterator cbegin() const BOOST_CONTAINER_NOEXCEPT Chris@16: { return m_tree.begin(); } Chris@16: Chris@16: //! Effects: Returns a const_iterator to the end of the container. Chris@16: //! Chris@16: //! Throws: Nothing. Chris@16: //! Chris@16: //! Complexity: Constant. Chris@16: const_iterator cend() const BOOST_CONTAINER_NOEXCEPT Chris@16: { return m_tree.end(); } Chris@16: Chris@16: //! Effects: Returns a const_reverse_iterator pointing to the beginning Chris@16: //! of the reversed container. Chris@16: //! Chris@16: //! Throws: Nothing. Chris@16: //! Chris@16: //! Complexity: Constant. Chris@16: const_reverse_iterator crbegin() const BOOST_CONTAINER_NOEXCEPT Chris@16: { return m_tree.rbegin(); } Chris@16: Chris@16: //! Effects: Returns a const_reverse_iterator pointing to the end Chris@16: //! of the reversed container. Chris@16: //! Chris@16: //! Throws: Nothing. Chris@16: //! Chris@16: //! Complexity: Constant. Chris@16: const_reverse_iterator crend() const BOOST_CONTAINER_NOEXCEPT Chris@16: { return m_tree.rend(); } Chris@16: Chris@16: ////////////////////////////////////////////// Chris@16: // Chris@16: // capacity Chris@16: // Chris@16: ////////////////////////////////////////////// Chris@16: Chris@16: //! Effects: Returns true if the container contains no elements. Chris@16: //! Chris@16: //! Throws: Nothing. Chris@16: //! Chris@16: //! Complexity: Constant. Chris@16: bool empty() const BOOST_CONTAINER_NOEXCEPT Chris@16: { return m_tree.empty(); } Chris@16: Chris@16: //! Effects: Returns the number of the elements contained in the container. Chris@16: //! Chris@16: //! Throws: Nothing. Chris@16: //! Chris@16: //! Complexity: Constant. Chris@16: size_type size() const BOOST_CONTAINER_NOEXCEPT Chris@16: { return m_tree.size(); } Chris@16: Chris@16: //! Effects: Returns the largest possible size of the container. Chris@16: //! Chris@16: //! Throws: Nothing. Chris@16: //! Chris@16: //! Complexity: Constant. Chris@16: size_type max_size() const BOOST_CONTAINER_NOEXCEPT Chris@16: { return m_tree.max_size(); } Chris@16: Chris@16: ////////////////////////////////////////////// Chris@16: // Chris@16: // element access Chris@16: // Chris@16: ////////////////////////////////////////////// Chris@16: Chris@16: #if defined(BOOST_CONTAINER_DOXYGEN_INVOKED) Chris@16: //! Effects: If there is no key equivalent to x in the map, inserts Chris@16: //! value_type(x, T()) into the map. Chris@16: //! Chris@16: //! Returns: Allocator reference to the mapped_type corresponding to x in *this. Chris@16: //! Chris@16: //! Complexity: Logarithmic. Chris@16: mapped_type& operator[](const key_type &k); Chris@16: Chris@16: //! Effects: If there is no key equivalent to x in the map, inserts Chris@16: //! value_type(boost::move(x), T()) into the map (the key is move-constructed) Chris@16: //! Chris@16: //! Returns: Allocator reference to the mapped_type corresponding to x in *this. Chris@16: //! Chris@16: //! Complexity: Logarithmic. Chris@16: mapped_type& operator[](key_type &&k); Chris@16: #else Chris@16: BOOST_MOVE_CONVERSION_AWARE_CATCH( operator[] , key_type, mapped_type&, this->priv_subscript) Chris@16: #endif Chris@16: Chris@16: //! Returns: Allocator reference to the element whose key is equivalent to x. Chris@16: //! Throws: An exception object of type out_of_range if no such element is present. Chris@16: //! Complexity: logarithmic. Chris@16: T& at(const key_type& k) Chris@16: { Chris@16: iterator i = this->find(k); Chris@16: if(i == this->end()){ Chris@16: throw_out_of_range("map::at key not found"); Chris@16: } Chris@16: return i->second; Chris@16: } Chris@16: Chris@16: //! Returns: Allocator reference to the element whose key is equivalent to x. Chris@16: //! Throws: An exception object of type out_of_range if no such element is present. Chris@16: //! Complexity: logarithmic. Chris@16: const T& at(const key_type& k) const Chris@16: { Chris@16: const_iterator i = this->find(k); Chris@16: if(i == this->end()){ Chris@16: throw_out_of_range("map::at key not found"); Chris@16: } Chris@16: return i->second; Chris@16: } Chris@16: Chris@16: ////////////////////////////////////////////// Chris@16: // Chris@16: // modifiers Chris@16: // Chris@16: ////////////////////////////////////////////// Chris@16: Chris@16: //! Effects: Inserts x if and only if there is no element in the container Chris@16: //! with key equivalent to the key of x. Chris@16: //! Chris@16: //! Returns: The bool component of the returned pair is true if and only Chris@16: //! if the insertion takes place, and the iterator component of the pair Chris@16: //! points to the element with key equivalent to the key of x. Chris@16: //! Chris@16: //! Complexity: Logarithmic. Chris@16: std::pair insert(const value_type& x) Chris@16: { return m_tree.insert_unique(x); } Chris@16: Chris@16: //! Effects: Inserts a new value_type created from the pair if and only if Chris@16: //! there is no element in the container with key equivalent to the key of x. Chris@16: //! Chris@16: //! Returns: The bool component of the returned pair is true if and only Chris@16: //! if the insertion takes place, and the iterator component of the pair Chris@16: //! points to the element with key equivalent to the key of x. Chris@16: //! Chris@16: //! Complexity: Logarithmic. Chris@16: std::pair insert(const nonconst_value_type& x) Chris@16: { return m_tree.insert_unique(x); } Chris@16: Chris@16: //! Effects: Inserts a new value_type move constructed from the pair if and Chris@16: //! only if there is no element in the container with key equivalent to the key of x. Chris@16: //! Chris@16: //! Returns: The bool component of the returned pair is true if and only Chris@16: //! if the insertion takes place, and the iterator component of the pair Chris@16: //! points to the element with key equivalent to the key of x. Chris@16: //! Chris@16: //! Complexity: Logarithmic. Chris@16: std::pair insert(BOOST_RV_REF(nonconst_value_type) x) Chris@16: { return m_tree.insert_unique(boost::move(x)); } Chris@16: Chris@16: //! Effects: Inserts a new value_type move constructed from the pair if and Chris@16: //! only if there is no element in the container with key equivalent to the key of x. Chris@16: //! Chris@16: //! Returns: The bool component of the returned pair is true if and only Chris@16: //! if the insertion takes place, and the iterator component of the pair Chris@16: //! points to the element with key equivalent to the key of x. Chris@16: //! Chris@16: //! Complexity: Logarithmic. Chris@16: std::pair insert(BOOST_RV_REF(movable_value_type) x) Chris@16: { return m_tree.insert_unique(boost::move(x)); } Chris@16: Chris@16: //! Effects: Move constructs a new value from x if and only if there is Chris@16: //! no element in the container with key equivalent to the key of x. Chris@16: //! Chris@16: //! Returns: The bool component of the returned pair is true if and only Chris@16: //! if the insertion takes place, and the iterator component of the pair Chris@16: //! points to the element with key equivalent to the key of x. Chris@16: //! Chris@16: //! Complexity: Logarithmic. Chris@16: std::pair insert(BOOST_RV_REF(value_type) x) Chris@16: { return m_tree.insert_unique(boost::move(x)); } Chris@16: Chris@16: //! Effects: Inserts a copy of x in the container if and only if there is Chris@16: //! no element in the container with key equivalent to the key of x. Chris@16: //! p is a hint pointing to where the insert should start to search. Chris@16: //! Chris@16: //! Returns: An iterator pointing to the element with key equivalent Chris@16: //! to the key of x. Chris@16: //! Chris@16: //! Complexity: Logarithmic in general, but amortized constant if t Chris@16: //! is inserted right before p. Chris@16: iterator insert(const_iterator position, const value_type& x) Chris@16: { return m_tree.insert_unique(position, x); } Chris@16: Chris@16: //! Effects: Move constructs a new value from x if and only if there is Chris@16: //! no element in the container with key equivalent to the key of x. Chris@16: //! p is a hint pointing to where the insert should start to search. Chris@16: //! Chris@16: //! Returns: An iterator pointing to the element with key equivalent Chris@16: //! to the key of x. Chris@16: //! Chris@16: //! Complexity: Logarithmic in general, but amortized constant if t Chris@16: //! is inserted right before p. Chris@16: iterator insert(const_iterator position, BOOST_RV_REF(nonconst_value_type) x) Chris@16: { return m_tree.insert_unique(position, boost::move(x)); } Chris@16: Chris@16: //! Effects: Move constructs a new value from x if and only if there is Chris@16: //! no element in the container with key equivalent to the key of x. Chris@16: //! p is a hint pointing to where the insert should start to search. Chris@16: //! Chris@16: //! Returns: An iterator pointing to the element with key equivalent Chris@16: //! to the key of x. Chris@16: //! Chris@16: //! Complexity: Logarithmic in general, but amortized constant if t Chris@16: //! is inserted right before p. Chris@16: iterator insert(const_iterator position, BOOST_RV_REF(movable_value_type) x) Chris@16: { return m_tree.insert_unique(position, boost::move(x)); } Chris@16: Chris@16: //! Effects: Inserts a copy of x in the container. Chris@16: //! p is a hint pointing to where the insert should start to search. Chris@16: //! Chris@16: //! Returns: An iterator pointing to the element with key equivalent to the key of x. Chris@16: //! Chris@16: //! Complexity: Logarithmic. Chris@16: iterator insert(const_iterator position, const nonconst_value_type& x) Chris@16: { return m_tree.insert_unique(position, x); } Chris@16: Chris@16: //! Effects: Inserts an element move constructed from x in the container. Chris@16: //! p is a hint pointing to where the insert should start to search. Chris@16: //! Chris@16: //! Returns: An iterator pointing to the element with key equivalent to the key of x. Chris@16: //! Chris@16: //! Complexity: Logarithmic. Chris@16: iterator insert(const_iterator position, BOOST_RV_REF(value_type) x) Chris@16: { return m_tree.insert_unique(position, boost::move(x)); } Chris@16: Chris@16: //! Requires: first, last are not iterators into *this. Chris@16: //! Chris@16: //! Effects: inserts each element from the range [first,last) if and only Chris@16: //! if there is no element with key equivalent to the key of that element. Chris@16: //! Chris@16: //! Complexity: At most N log(size()+N) (N is the distance from first to last) Chris@16: template Chris@16: void insert(InputIterator first, InputIterator last) Chris@16: { m_tree.insert_unique(first, last); } Chris@16: Chris@16: #if defined(BOOST_CONTAINER_PERFECT_FORWARDING) || defined(BOOST_CONTAINER_DOXYGEN_INVOKED) Chris@16: Chris@16: //! Effects: Inserts an object x of type T constructed with Chris@16: //! std::forward(args)... in the container if and only if there is Chris@16: //! no element in the container with an equivalent key. Chris@16: //! p is a hint pointing to where the insert should start to search. Chris@16: //! Chris@16: //! Returns: The bool component of the returned pair is true if and only Chris@16: //! if the insertion takes place, and the iterator component of the pair Chris@16: //! points to the element with key equivalent to the key of x. Chris@16: //! Chris@16: //! Complexity: Logarithmic in general, but amortized constant if t Chris@16: //! is inserted right before p. Chris@16: template Chris@16: std::pair emplace(Args&&... args) Chris@16: { return m_tree.emplace_unique(boost::forward(args)...); } Chris@16: Chris@16: //! Effects: Inserts an object of type T constructed with Chris@16: //! std::forward(args)... in the container if and only if there is Chris@16: //! no element in the container with an equivalent key. Chris@16: //! p is a hint pointing to where the insert should start to search. Chris@16: //! Chris@16: //! Returns: An iterator pointing to the element with key equivalent Chris@16: //! to the key of x. Chris@16: //! Chris@16: //! Complexity: Logarithmic in general, but amortized constant if t Chris@16: //! is inserted right before p. Chris@16: template Chris@16: iterator emplace_hint(const_iterator hint, Args&&... args) Chris@16: { return m_tree.emplace_hint_unique(hint, boost::forward(args)...); } Chris@16: Chris@16: #else //#ifdef BOOST_CONTAINER_PERFECT_FORWARDING Chris@16: Chris@16: #define BOOST_PP_LOCAL_MACRO(n) \ Chris@16: BOOST_PP_EXPR_IF(n, template<) BOOST_PP_ENUM_PARAMS(n, class P) BOOST_PP_EXPR_IF(n, >) \ Chris@16: std::pair emplace(BOOST_PP_ENUM(n, BOOST_CONTAINER_PP_PARAM_LIST, _)) \ Chris@16: { return m_tree.emplace_unique(BOOST_PP_ENUM(n, BOOST_CONTAINER_PP_PARAM_FORWARD, _)); } \ Chris@16: \ Chris@16: BOOST_PP_EXPR_IF(n, template<) BOOST_PP_ENUM_PARAMS(n, class P) BOOST_PP_EXPR_IF(n, >) \ Chris@16: iterator emplace_hint(const_iterator hint \ Chris@16: BOOST_PP_ENUM_TRAILING(n, BOOST_CONTAINER_PP_PARAM_LIST, _)) \ Chris@16: { return m_tree.emplace_hint_unique(hint \ Chris@16: BOOST_PP_ENUM_TRAILING(n, BOOST_CONTAINER_PP_PARAM_FORWARD, _));} \ Chris@16: //! Chris@16: #define BOOST_PP_LOCAL_LIMITS (0, BOOST_CONTAINER_MAX_CONSTRUCTOR_PARAMETERS) Chris@16: #include BOOST_PP_LOCAL_ITERATE() Chris@16: Chris@16: #endif //#ifdef BOOST_CONTAINER_PERFECT_FORWARDING Chris@16: Chris@16: //! Effects: Erases the element pointed to by position. Chris@16: //! Chris@16: //! Returns: Returns an iterator pointing to the element immediately Chris@16: //! following q prior to the element being erased. If no such element exists, Chris@16: //! returns end(). Chris@16: //! Chris@16: //! Complexity: Amortized constant time Chris@16: iterator erase(const_iterator position) BOOST_CONTAINER_NOEXCEPT Chris@16: { return m_tree.erase(position); } Chris@16: Chris@16: //! Effects: Erases all elements in the container with key equivalent to x. Chris@16: //! Chris@16: //! Returns: Returns the number of erased elements. Chris@16: //! Chris@16: //! Complexity: log(size()) + count(k) Chris@16: size_type erase(const key_type& x) BOOST_CONTAINER_NOEXCEPT Chris@16: { return m_tree.erase(x); } Chris@16: Chris@16: //! Effects: Erases all the elements in the range [first, last). Chris@16: //! Chris@16: //! Returns: Returns last. Chris@16: //! Chris@16: //! Complexity: log(size())+N where N is the distance from first to last. Chris@16: iterator erase(const_iterator first, const_iterator last) BOOST_CONTAINER_NOEXCEPT Chris@16: { return m_tree.erase(first, last); } Chris@16: Chris@16: //! Effects: Swaps the contents of *this and x. Chris@16: //! Chris@16: //! Throws: Nothing. Chris@16: //! Chris@16: //! Complexity: Constant. Chris@16: void swap(map& x) Chris@16: { m_tree.swap(x.m_tree); } Chris@16: Chris@16: //! Effects: erase(a.begin(),a.end()). Chris@16: //! Chris@16: //! Postcondition: size() == 0. Chris@16: //! Chris@16: //! Complexity: linear in size(). Chris@16: void clear() BOOST_CONTAINER_NOEXCEPT Chris@16: { m_tree.clear(); } Chris@16: Chris@16: ////////////////////////////////////////////// Chris@16: // Chris@16: // observers Chris@16: // Chris@16: ////////////////////////////////////////////// Chris@16: Chris@16: //! Effects: Returns the comparison object out Chris@16: //! of which a was constructed. Chris@16: //! Chris@16: //! Complexity: Constant. Chris@16: key_compare key_comp() const Chris@16: { return m_tree.key_comp(); } Chris@16: Chris@16: //! Effects: Returns an object of value_compare constructed out Chris@16: //! of the comparison object. Chris@16: //! Chris@16: //! Complexity: Constant. Chris@16: value_compare value_comp() const Chris@16: { return value_compare(m_tree.key_comp()); } Chris@16: Chris@16: ////////////////////////////////////////////// Chris@16: // Chris@16: // map operations Chris@16: // Chris@16: ////////////////////////////////////////////// Chris@16: Chris@16: //! Returns: An iterator pointing to an element with the key Chris@16: //! equivalent to x, or end() if such an element is not found. Chris@16: //! Chris@16: //! Complexity: Logarithmic. Chris@16: iterator find(const key_type& x) Chris@16: { return m_tree.find(x); } Chris@16: Chris@16: //! Returns: Allocator const_iterator pointing to an element with the key Chris@16: //! equivalent to x, or end() if such an element is not found. Chris@16: //! Chris@16: //! Complexity: Logarithmic. Chris@16: const_iterator find(const key_type& x) const Chris@16: { return m_tree.find(x); } Chris@16: Chris@16: //! Returns: The number of elements with key equivalent to x. Chris@16: //! Chris@16: //! Complexity: log(size())+count(k) Chris@16: size_type count(const key_type& x) const Chris@16: { return static_cast(m_tree.find(x) != m_tree.end()); } Chris@16: Chris@16: //! Returns: An iterator pointing to the first element with key not less Chris@16: //! than k, or a.end() if such an element is not found. Chris@16: //! Chris@16: //! Complexity: Logarithmic Chris@16: iterator lower_bound(const key_type& x) Chris@16: { return m_tree.lower_bound(x); } Chris@16: Chris@16: //! Returns: Allocator const iterator pointing to the first element with key not Chris@16: //! less than k, or a.end() if such an element is not found. Chris@16: //! Chris@16: //! Complexity: Logarithmic Chris@16: const_iterator lower_bound(const key_type& x) const Chris@16: { return m_tree.lower_bound(x); } Chris@16: Chris@16: //! Returns: An iterator pointing to the first element with key not less Chris@16: //! than x, or end() if such an element is not found. Chris@16: //! Chris@16: //! Complexity: Logarithmic Chris@16: iterator upper_bound(const key_type& x) Chris@16: { return m_tree.upper_bound(x); } Chris@16: Chris@16: //! Returns: Allocator const iterator pointing to the first element with key not Chris@16: //! less than x, or end() if such an element is not found. Chris@16: //! Chris@16: //! Complexity: Logarithmic Chris@16: const_iterator upper_bound(const key_type& x) const Chris@16: { return m_tree.upper_bound(x); } Chris@16: Chris@16: //! Effects: Equivalent to std::make_pair(this->lower_bound(k), this->upper_bound(k)). Chris@16: //! Chris@16: //! Complexity: Logarithmic Chris@16: std::pair equal_range(const key_type& x) Chris@16: { return m_tree.equal_range(x); } Chris@16: Chris@16: //! Effects: Equivalent to std::make_pair(this->lower_bound(k), this->upper_bound(k)). Chris@16: //! Chris@16: //! Complexity: Logarithmic Chris@16: std::pair equal_range(const key_type& x) const Chris@16: { return m_tree.equal_range(x); } Chris@16: Chris@16: /// @cond Chris@16: template Chris@16: friend bool operator== (const map&, Chris@16: const map&); Chris@16: template Chris@16: friend bool operator< (const map&, Chris@16: const map&); Chris@16: private: Chris@16: mapped_type& priv_subscript(const key_type &k) Chris@16: { Chris@16: //we can optimize this Chris@16: iterator i = lower_bound(k); Chris@16: // i->first is greater than or equivalent to k. Chris@16: if (i == end() || key_comp()(k, (*i).first)){ Chris@16: container_detail::value_init m; Chris@16: movable_value_type val(k, boost::move(m.m_t)); Chris@16: i = insert(i, boost::move(val)); Chris@16: } Chris@16: return (*i).second; Chris@16: } Chris@16: Chris@16: mapped_type& priv_subscript(BOOST_RV_REF(key_type) mk) Chris@16: { Chris@16: key_type &k = mk; Chris@16: //we can optimize this Chris@16: iterator i = lower_bound(k); Chris@16: // i->first is greater than or equivalent to k. Chris@16: if (i == end() || key_comp()(k, (*i).first)){ Chris@16: container_detail::value_init m; Chris@16: movable_value_type val(boost::move(k), boost::move(m.m_t)); Chris@16: i = insert(i, boost::move(val)); Chris@16: } Chris@16: return (*i).second; Chris@16: } Chris@16: Chris@16: /// @endcond Chris@16: }; Chris@16: Chris@16: template Chris@16: inline bool operator==(const map& x, Chris@16: const map& y) Chris@16: { return x.m_tree == y.m_tree; } Chris@16: Chris@16: template Chris@16: inline bool operator<(const map& x, Chris@16: const map& y) Chris@16: { return x.m_tree < y.m_tree; } Chris@16: Chris@16: template Chris@16: inline bool operator!=(const map& x, Chris@16: const map& y) Chris@16: { return !(x == y); } Chris@16: Chris@16: template Chris@16: inline bool operator>(const map& x, Chris@16: const map& y) Chris@16: { return y < x; } Chris@16: Chris@16: template Chris@16: inline bool operator<=(const map& x, Chris@16: const map& y) Chris@16: { return !(y < x); } Chris@16: Chris@16: template Chris@16: inline bool operator>=(const map& x, Chris@16: const map& y) Chris@16: { return !(x < y); } Chris@16: Chris@16: template Chris@16: inline void swap(map& x, map& y) Chris@16: { x.swap(y); } Chris@16: Chris@16: /// @cond Chris@16: Chris@16: // Forward declaration of operators < and ==, needed for friend declaration. Chris@16: Chris@16: template Chris@16: inline bool operator==(const multimap& x, Chris@16: const multimap& y); Chris@16: Chris@16: template Chris@16: inline bool operator<(const multimap& x, Chris@16: const multimap& y); Chris@16: Chris@16: } //namespace container { Chris@16: Chris@16: //!has_trivial_destructor_after_move<> == true_type Chris@16: //!specialization for optimizations Chris@16: template Chris@16: struct has_trivial_destructor_after_move > Chris@16: { Chris@16: static const bool value = has_trivial_destructor_after_move::value && has_trivial_destructor_after_move::value; Chris@16: }; Chris@16: Chris@16: namespace container { Chris@16: Chris@16: /// @endcond Chris@16: Chris@16: //! A multimap is a kind of associative container that supports equivalent keys Chris@16: //! (possibly containing multiple copies of the same key value) and provides for Chris@16: //! fast retrieval of values of another type T based on the keys. The multimap class Chris@16: //! supports bidirectional iterators. Chris@16: //! Chris@16: //! A multimap satisfies all of the requirements of a container and of a reversible Chris@16: //! container and of an associative container. For a Chris@16: //! map the key_type is Key and the value_type is std::pair. Chris@16: //! Chris@16: //! Compare is the ordering function for Keys (e.g. std::less). Chris@16: //! Chris@16: //! Allocator is the allocator to allocate the value_types Chris@16: //!(e.g. allocator< std::pair<const Key, T> >). Chris@16: #ifdef BOOST_CONTAINER_DOXYGEN_INVOKED Chris@16: template , class Allocator = std::allocator< std::pair< const Key, T> > > Chris@16: #else Chris@16: template Chris@16: #endif Chris@16: class multimap Chris@16: { Chris@16: /// @cond Chris@16: private: Chris@16: BOOST_COPYABLE_AND_MOVABLE(multimap) Chris@16: Chris@16: typedef std::pair value_type_impl; Chris@16: typedef container_detail::rbtree Chris@16: , Compare, Allocator> tree_t; Chris@16: typedef container_detail::pair movable_value_type_impl; Chris@16: typedef container_detail::tree_value_compare Chris@16: < Key, value_type_impl, Compare, container_detail::select1st Chris@16: > value_compare_impl; Chris@16: tree_t m_tree; // red-black tree representing map Chris@16: /// @endcond Chris@16: Chris@16: public: Chris@16: ////////////////////////////////////////////// Chris@16: // Chris@16: // types Chris@16: // Chris@16: ////////////////////////////////////////////// Chris@16: Chris@16: typedef Key key_type; Chris@16: typedef T mapped_type; Chris@16: typedef std::pair value_type; Chris@16: typedef typename boost::container::allocator_traits::pointer pointer; Chris@16: typedef typename boost::container::allocator_traits::const_pointer const_pointer; Chris@16: typedef typename boost::container::allocator_traits::reference reference; Chris@16: typedef typename boost::container::allocator_traits::const_reference const_reference; Chris@16: typedef typename boost::container::allocator_traits::size_type size_type; Chris@16: typedef typename boost::container::allocator_traits::difference_type difference_type; Chris@16: typedef Allocator allocator_type; Chris@16: typedef typename BOOST_CONTAINER_IMPDEF(tree_t::stored_allocator_type) stored_allocator_type; Chris@16: typedef BOOST_CONTAINER_IMPDEF(value_compare_impl) value_compare; Chris@16: typedef Compare key_compare; Chris@16: typedef typename BOOST_CONTAINER_IMPDEF(tree_t::iterator) iterator; Chris@16: typedef typename BOOST_CONTAINER_IMPDEF(tree_t::const_iterator) const_iterator; Chris@16: typedef typename BOOST_CONTAINER_IMPDEF(tree_t::reverse_iterator) reverse_iterator; Chris@16: typedef typename BOOST_CONTAINER_IMPDEF(tree_t::const_reverse_iterator) const_reverse_iterator; Chris@16: typedef std::pair nonconst_value_type; Chris@16: typedef BOOST_CONTAINER_IMPDEF(movable_value_type_impl) movable_value_type; Chris@16: Chris@16: ////////////////////////////////////////////// Chris@16: // Chris@16: // construct/copy/destroy Chris@16: // Chris@16: ////////////////////////////////////////////// Chris@16: Chris@16: //! Effects: Default constructs an empty multimap. Chris@16: //! Chris@16: //! Complexity: Constant. Chris@16: multimap() Chris@16: : m_tree() Chris@16: { Chris@16: //Allocator type must be std::pair Chris@16: BOOST_STATIC_ASSERT((container_detail::is_same, typename Allocator::value_type>::value)); Chris@16: } Chris@16: Chris@16: //! Effects: Constructs an empty multimap using the specified allocator. Chris@16: //! Chris@16: //! Complexity: Constant. Chris@16: explicit multimap(const Compare& comp, const allocator_type& a = allocator_type()) Chris@16: : m_tree(comp, a) Chris@16: { Chris@16: //Allocator type must be std::pair Chris@16: BOOST_STATIC_ASSERT((container_detail::is_same, typename Allocator::value_type>::value)); Chris@16: } Chris@16: Chris@16: //! Effects: Constructs an empty multimap using the specified comparison Chris@16: //! object and allocator. Chris@16: //! Chris@16: //! Complexity: Constant. Chris@16: explicit multimap(const allocator_type& a) Chris@16: : m_tree(a) Chris@16: { Chris@16: //Allocator type must be std::pair Chris@16: BOOST_STATIC_ASSERT((container_detail::is_same, typename Allocator::value_type>::value)); Chris@16: } Chris@16: Chris@16: //! Effects: Constructs an empty multimap using the specified comparison object Chris@16: //! and allocator, and inserts elements from the range [first ,last ). Chris@16: //! Chris@16: //! Complexity: Linear in N if the range [first ,last ) is already sorted using Chris@16: //! comp and otherwise N logN, where N is last - first. Chris@16: template Chris@16: multimap(InputIterator first, InputIterator last, Chris@16: const Compare& comp = Compare(), Chris@16: const allocator_type& a = allocator_type()) Chris@16: : m_tree(false, first, last, comp, a) Chris@16: { Chris@16: //Allocator type must be std::pair Chris@16: BOOST_STATIC_ASSERT((container_detail::is_same, typename Allocator::value_type>::value)); Chris@16: } Chris@16: Chris@16: //! Effects: Constructs an empty multimap using the specified comparison object and Chris@16: //! allocator, and inserts elements from the ordered range [first ,last). This function Chris@16: //! is more efficient than the normal range creation for ordered ranges. Chris@16: //! Chris@16: //! Requires: [first ,last) must be ordered according to the predicate. Chris@16: //! Chris@16: //! Complexity: Linear in N. Chris@16: //! Chris@16: //! Note: Non-standard extension. Chris@16: template Chris@16: multimap(ordered_range_t, InputIterator first, InputIterator last, const Compare& comp = Compare(), Chris@16: const allocator_type& a = allocator_type()) Chris@16: : m_tree(ordered_range, first, last, comp, a) Chris@16: {} Chris@16: Chris@16: //! Effects: Copy constructs a multimap. Chris@16: //! Chris@16: //! Complexity: Linear in x.size(). Chris@16: multimap(const multimap& x) Chris@16: : m_tree(x.m_tree) Chris@16: { Chris@16: //Allocator type must be std::pair Chris@16: BOOST_STATIC_ASSERT((container_detail::is_same, typename Allocator::value_type>::value)); Chris@16: } Chris@16: Chris@16: //! Effects: Move constructs a multimap. Constructs *this using x's resources. Chris@16: //! Chris@16: //! Complexity: Constant. Chris@16: //! Chris@16: //! Postcondition: x is emptied. Chris@16: multimap(BOOST_RV_REF(multimap) x) Chris@16: : m_tree(boost::move(x.m_tree)) Chris@16: { Chris@16: //Allocator type must be std::pair Chris@16: BOOST_STATIC_ASSERT((container_detail::is_same, typename Allocator::value_type>::value)); Chris@16: } Chris@16: Chris@16: //! Effects: Copy constructs a multimap. Chris@16: //! Chris@16: //! Complexity: Linear in x.size(). Chris@16: multimap(const multimap& x, const allocator_type &a) Chris@16: : m_tree(x.m_tree, a) Chris@16: { Chris@16: //Allocator type must be std::pair Chris@16: BOOST_STATIC_ASSERT((container_detail::is_same, typename Allocator::value_type>::value)); Chris@16: } Chris@16: Chris@16: //! Effects: Move constructs a multimap using the specified allocator. Chris@16: //! Constructs *this using x's resources. Chris@16: //! Complexity: Constant if a == x.get_allocator(), linear otherwise. Chris@16: //! Chris@16: //! Postcondition: x is emptied. Chris@16: multimap(BOOST_RV_REF(multimap) x, const allocator_type &a) Chris@16: : m_tree(boost::move(x.m_tree), a) Chris@16: { Chris@16: //Allocator type must be std::pair Chris@16: BOOST_STATIC_ASSERT((container_detail::is_same, typename Allocator::value_type>::value)); Chris@16: } Chris@16: Chris@16: //! Effects: Makes *this a copy of x. Chris@16: //! Chris@16: //! Complexity: Linear in x.size(). Chris@16: multimap& operator=(BOOST_COPY_ASSIGN_REF(multimap) x) Chris@16: { m_tree = x.m_tree; return *this; } Chris@16: Chris@16: //! Effects: this->swap(x.get()). Chris@16: //! Chris@16: //! Complexity: Constant. Chris@16: multimap& operator=(BOOST_RV_REF(multimap) x) Chris@16: { m_tree = boost::move(x.m_tree); return *this; } Chris@16: Chris@16: //! Effects: Returns a copy of the Allocator that Chris@16: //! was passed to the object's constructor. Chris@16: //! Chris@16: //! Complexity: Constant. Chris@16: allocator_type get_allocator() const BOOST_CONTAINER_NOEXCEPT Chris@16: { return m_tree.get_allocator(); } Chris@16: Chris@16: //! Effects: Returns a reference to the internal allocator. Chris@16: //! Chris@16: //! Throws: Nothing Chris@16: //! Chris@16: //! Complexity: Constant. Chris@16: //! Chris@16: //! Note: Non-standard extension. Chris@16: stored_allocator_type &get_stored_allocator() BOOST_CONTAINER_NOEXCEPT Chris@16: { return m_tree.get_stored_allocator(); } Chris@16: Chris@16: //! Effects: Returns a reference to the internal allocator. Chris@16: //! Chris@16: //! Throws: Nothing Chris@16: //! Chris@16: //! Complexity: Constant. Chris@16: //! Chris@16: //! Note: Non-standard extension. Chris@16: const stored_allocator_type &get_stored_allocator() const BOOST_CONTAINER_NOEXCEPT Chris@16: { return m_tree.get_stored_allocator(); } Chris@16: Chris@16: ////////////////////////////////////////////// Chris@16: // Chris@16: // iterators Chris@16: // Chris@16: ////////////////////////////////////////////// Chris@16: Chris@16: //! Effects: Returns an iterator to the first element contained in the container. Chris@16: //! Chris@16: //! Throws: Nothing. Chris@16: //! Chris@16: //! Complexity: Constant. Chris@16: iterator begin() BOOST_CONTAINER_NOEXCEPT Chris@16: { return m_tree.begin(); } Chris@16: Chris@16: //! Effects: Returns a const_iterator to the first element contained in the container. Chris@16: //! Chris@16: //! Throws: Nothing. Chris@16: //! Chris@16: //! Complexity: Constant. Chris@16: const_iterator begin() const BOOST_CONTAINER_NOEXCEPT Chris@16: { return this->cbegin(); } Chris@16: Chris@16: //! Effects: Returns an iterator to the end of the container. Chris@16: //! Chris@16: //! Throws: Nothing. Chris@16: //! Chris@16: //! Complexity: Constant. Chris@16: iterator end() BOOST_CONTAINER_NOEXCEPT Chris@16: { return m_tree.end(); } Chris@16: Chris@16: //! Effects: Returns a const_iterator to the end of the container. Chris@16: //! Chris@16: //! Throws: Nothing. Chris@16: //! Chris@16: //! Complexity: Constant. Chris@16: const_iterator end() const BOOST_CONTAINER_NOEXCEPT Chris@16: { return this->cend(); } Chris@16: Chris@16: //! Effects: Returns a reverse_iterator pointing to the beginning Chris@16: //! of the reversed container. Chris@16: //! Chris@16: //! Throws: Nothing. Chris@16: //! Chris@16: //! Complexity: Constant. Chris@16: reverse_iterator rbegin() BOOST_CONTAINER_NOEXCEPT Chris@16: { return m_tree.rbegin(); } Chris@16: Chris@16: //! Effects: Returns a const_reverse_iterator pointing to the beginning Chris@16: //! of the reversed container. Chris@16: //! Chris@16: //! Throws: Nothing. Chris@16: //! Chris@16: //! Complexity: Constant. Chris@16: const_reverse_iterator rbegin() const BOOST_CONTAINER_NOEXCEPT Chris@16: { return this->crbegin(); } Chris@16: Chris@16: //! Effects: Returns a reverse_iterator pointing to the end Chris@16: //! of the reversed container. Chris@16: //! Chris@16: //! Throws: Nothing. Chris@16: //! Chris@16: //! Complexity: Constant. Chris@16: reverse_iterator rend() BOOST_CONTAINER_NOEXCEPT Chris@16: { return m_tree.rend(); } Chris@16: Chris@16: //! Effects: Returns a const_reverse_iterator pointing to the end Chris@16: //! of the reversed container. Chris@16: //! Chris@16: //! Throws: Nothing. Chris@16: //! Chris@16: //! Complexity: Constant. Chris@16: const_reverse_iterator rend() const BOOST_CONTAINER_NOEXCEPT Chris@16: { return this->crend(); } Chris@16: Chris@16: //! Effects: Returns a const_iterator to the first element contained in the container. Chris@16: //! Chris@16: //! Throws: Nothing. Chris@16: //! Chris@16: //! Complexity: Constant. Chris@16: const_iterator cbegin() const BOOST_CONTAINER_NOEXCEPT Chris@16: { return m_tree.begin(); } Chris@16: Chris@16: //! Effects: Returns a const_iterator to the end of the container. Chris@16: //! Chris@16: //! Throws: Nothing. Chris@16: //! Chris@16: //! Complexity: Constant. Chris@16: const_iterator cend() const BOOST_CONTAINER_NOEXCEPT Chris@16: { return m_tree.end(); } Chris@16: Chris@16: //! Effects: Returns a const_reverse_iterator pointing to the beginning Chris@16: //! of the reversed container. Chris@16: //! Chris@16: //! Throws: Nothing. Chris@16: //! Chris@16: //! Complexity: Constant. Chris@16: const_reverse_iterator crbegin() const BOOST_CONTAINER_NOEXCEPT Chris@16: { return m_tree.rbegin(); } Chris@16: Chris@16: //! Effects: Returns a const_reverse_iterator pointing to the end Chris@16: //! of the reversed container. Chris@16: //! Chris@16: //! Throws: Nothing. Chris@16: //! Chris@16: //! Complexity: Constant. Chris@16: const_reverse_iterator crend() const BOOST_CONTAINER_NOEXCEPT Chris@16: { return m_tree.rend(); } Chris@16: Chris@16: ////////////////////////////////////////////// Chris@16: // Chris@16: // capacity Chris@16: // Chris@16: ////////////////////////////////////////////// Chris@16: Chris@16: //! Effects: Returns true if the container contains no elements. Chris@16: //! Chris@16: //! Throws: Nothing. Chris@16: //! Chris@16: //! Complexity: Constant. Chris@16: bool empty() const BOOST_CONTAINER_NOEXCEPT Chris@16: { return m_tree.empty(); } Chris@16: Chris@16: //! Effects: Returns the number of the elements contained in the container. Chris@16: //! Chris@16: //! Throws: Nothing. Chris@16: //! Chris@16: //! Complexity: Constant. Chris@16: size_type size() const BOOST_CONTAINER_NOEXCEPT Chris@16: { return m_tree.size(); } Chris@16: Chris@16: //! Effects: Returns the largest possible size of the container. Chris@16: //! Chris@16: //! Throws: Nothing. Chris@16: //! Chris@16: //! Complexity: Constant. Chris@16: size_type max_size() const BOOST_CONTAINER_NOEXCEPT Chris@16: { return m_tree.max_size(); } Chris@16: Chris@16: ////////////////////////////////////////////// Chris@16: // Chris@16: // modifiers Chris@16: // Chris@16: ////////////////////////////////////////////// Chris@16: Chris@16: #if defined(BOOST_CONTAINER_PERFECT_FORWARDING) || defined(BOOST_CONTAINER_DOXYGEN_INVOKED) Chris@16: Chris@16: //! Effects: Inserts an object of type T constructed with Chris@16: //! std::forward(args)... in the container. Chris@16: //! p is a hint pointing to where the insert should start to search. Chris@16: //! Chris@16: //! Returns: An iterator pointing to the element with key equivalent Chris@16: //! to the key of x. Chris@16: //! Chris@16: //! Complexity: Logarithmic in general, but amortized constant if t Chris@16: //! is inserted right before p. Chris@16: template Chris@16: iterator emplace(Args&&... args) Chris@16: { return m_tree.emplace_equal(boost::forward(args)...); } Chris@16: Chris@16: //! Effects: Inserts an object of type T constructed with Chris@16: //! std::forward(args)... in the container. Chris@16: //! p is a hint pointing to where the insert should start to search. Chris@16: //! Chris@16: //! Returns: An iterator pointing to the element with key equivalent Chris@16: //! to the key of x. Chris@16: //! Chris@16: //! Complexity: Logarithmic in general, but amortized constant if t Chris@16: //! is inserted right before p. Chris@16: template Chris@16: iterator emplace_hint(const_iterator hint, Args&&... args) Chris@16: { return m_tree.emplace_hint_equal(hint, boost::forward(args)...); } Chris@16: Chris@16: #else //#ifdef BOOST_CONTAINER_PERFECT_FORWARDING Chris@16: Chris@16: #define BOOST_PP_LOCAL_MACRO(n) \ Chris@16: BOOST_PP_EXPR_IF(n, template<) BOOST_PP_ENUM_PARAMS(n, class P) BOOST_PP_EXPR_IF(n, >) \ Chris@16: iterator emplace(BOOST_PP_ENUM(n, BOOST_CONTAINER_PP_PARAM_LIST, _)) \ Chris@16: { return m_tree.emplace_equal(BOOST_PP_ENUM(n, BOOST_CONTAINER_PP_PARAM_FORWARD, _)); } \ Chris@16: \ Chris@16: BOOST_PP_EXPR_IF(n, template<) BOOST_PP_ENUM_PARAMS(n, class P) BOOST_PP_EXPR_IF(n, >) \ Chris@16: iterator emplace_hint(const_iterator hint \ Chris@16: BOOST_PP_ENUM_TRAILING(n, BOOST_CONTAINER_PP_PARAM_LIST, _)) \ Chris@16: { return m_tree.emplace_hint_equal(hint \ Chris@16: BOOST_PP_ENUM_TRAILING(n, BOOST_CONTAINER_PP_PARAM_FORWARD, _));} \ Chris@16: //! Chris@16: #define BOOST_PP_LOCAL_LIMITS (0, BOOST_CONTAINER_MAX_CONSTRUCTOR_PARAMETERS) Chris@16: #include BOOST_PP_LOCAL_ITERATE() Chris@16: Chris@16: #endif //#ifdef BOOST_CONTAINER_PERFECT_FORWARDING Chris@16: Chris@16: //! Effects: Inserts x and returns the iterator pointing to the Chris@16: //! newly inserted element. Chris@16: //! Chris@16: //! Complexity: Logarithmic. Chris@16: iterator insert(const value_type& x) Chris@16: { return m_tree.insert_equal(x); } Chris@16: Chris@16: //! Effects: Inserts a new value constructed from x and returns Chris@16: //! the iterator pointing to the newly inserted element. Chris@16: //! Chris@16: //! Complexity: Logarithmic. Chris@16: iterator insert(const nonconst_value_type& x) Chris@16: { return m_tree.insert_equal(x); } Chris@16: Chris@16: //! Effects: Inserts a new value move-constructed from x and returns Chris@16: //! the iterator pointing to the newly inserted element. Chris@16: //! Chris@16: //! Complexity: Logarithmic. Chris@16: iterator insert(BOOST_RV_REF(nonconst_value_type) x) Chris@16: { return m_tree.insert_equal(boost::move(x)); } Chris@16: Chris@16: //! Effects: Inserts a new value move-constructed from x and returns Chris@16: //! the iterator pointing to the newly inserted element. Chris@16: //! Chris@16: //! Complexity: Logarithmic. Chris@16: iterator insert(BOOST_RV_REF(movable_value_type) x) Chris@16: { return m_tree.insert_equal(boost::move(x)); } Chris@16: Chris@16: //! Effects: Inserts a copy of x in the container. Chris@16: //! p is a hint pointing to where the insert should start to search. Chris@16: //! Chris@16: //! Returns: An iterator pointing to the element with key equivalent Chris@16: //! to the key of x. Chris@16: //! Chris@16: //! Complexity: Logarithmic in general, but amortized constant if t Chris@16: //! is inserted right before p. Chris@16: iterator insert(const_iterator position, const value_type& x) Chris@16: { return m_tree.insert_equal(position, x); } Chris@16: Chris@16: //! Effects: Inserts a new value constructed from x in the container. Chris@16: //! p is a hint pointing to where the insert should start to search. Chris@16: //! Chris@16: //! Returns: An iterator pointing to the element with key equivalent Chris@16: //! to the key of x. Chris@16: //! Chris@16: //! Complexity: Logarithmic in general, but amortized constant if t Chris@16: //! is inserted right before p. Chris@16: iterator insert(const_iterator position, const nonconst_value_type& x) Chris@16: { return m_tree.insert_equal(position, x); } Chris@16: Chris@16: //! Effects: Inserts a new value move constructed from x in the container. Chris@16: //! p is a hint pointing to where the insert should start to search. Chris@16: //! Chris@16: //! Returns: An iterator pointing to the element with key equivalent Chris@16: //! to the key of x. Chris@16: //! Chris@16: //! Complexity: Logarithmic in general, but amortized constant if t Chris@16: //! is inserted right before p. Chris@16: iterator insert(const_iterator position, BOOST_RV_REF(nonconst_value_type) x) Chris@16: { return m_tree.insert_equal(position, boost::move(x)); } Chris@16: Chris@16: //! Effects: Inserts a new value move constructed from x in the container. Chris@16: //! p is a hint pointing to where the insert should start to search. Chris@16: //! Chris@16: //! Returns: An iterator pointing to the element with key equivalent Chris@16: //! to the key of x. Chris@16: //! Chris@16: //! Complexity: Logarithmic in general, but amortized constant if t Chris@16: //! is inserted right before p. Chris@16: iterator insert(const_iterator position, BOOST_RV_REF(movable_value_type) x) Chris@16: { return m_tree.insert_equal(position, boost::move(x)); } Chris@16: Chris@16: //! Requires: first, last are not iterators into *this. Chris@16: //! Chris@16: //! Effects: inserts each element from the range [first,last) . Chris@16: //! Chris@16: //! Complexity: At most N log(size()+N) (N is the distance from first to last) Chris@16: template Chris@16: void insert(InputIterator first, InputIterator last) Chris@16: { m_tree.insert_equal(first, last); } Chris@16: Chris@16: //! Effects: Erases the element pointed to by position. Chris@16: //! Chris@16: //! Returns: Returns an iterator pointing to the element immediately Chris@16: //! following q prior to the element being erased. If no such element exists, Chris@16: //! returns end(). Chris@16: //! Chris@16: //! Complexity: Amortized constant time Chris@16: iterator erase(const_iterator position) BOOST_CONTAINER_NOEXCEPT Chris@16: { return m_tree.erase(position); } Chris@16: Chris@16: //! Effects: Erases all elements in the container with key equivalent to x. Chris@16: //! Chris@16: //! Returns: Returns the number of erased elements. Chris@16: //! Chris@16: //! Complexity: log(size()) + count(k) Chris@16: size_type erase(const key_type& x) BOOST_CONTAINER_NOEXCEPT Chris@16: { return m_tree.erase(x); } Chris@16: Chris@16: //! Effects: Erases all the elements in the range [first, last). Chris@16: //! Chris@16: //! Returns: Returns last. Chris@16: //! Chris@16: //! Complexity: log(size())+N where N is the distance from first to last. Chris@16: iterator erase(const_iterator first, const_iterator last) BOOST_CONTAINER_NOEXCEPT Chris@16: { return m_tree.erase(first, last); } Chris@16: Chris@16: //! Effects: Swaps the contents of *this and x. Chris@16: //! Chris@16: //! Throws: Nothing. Chris@16: //! Chris@16: //! Complexity: Constant. Chris@16: void swap(multimap& x) Chris@16: { m_tree.swap(x.m_tree); } Chris@16: Chris@16: //! Effects: erase(a.begin(),a.end()). Chris@16: //! Chris@16: //! Postcondition: size() == 0. Chris@16: //! Chris@16: //! Complexity: linear in size(). Chris@16: void clear() BOOST_CONTAINER_NOEXCEPT Chris@16: { m_tree.clear(); } Chris@16: Chris@16: ////////////////////////////////////////////// Chris@16: // Chris@16: // observers Chris@16: // Chris@16: ////////////////////////////////////////////// Chris@16: Chris@16: //! Effects: Returns the comparison object out Chris@16: //! of which a was constructed. Chris@16: //! Chris@16: //! Complexity: Constant. Chris@16: key_compare key_comp() const Chris@16: { return m_tree.key_comp(); } Chris@16: Chris@16: //! Effects: Returns an object of value_compare constructed out Chris@16: //! of the comparison object. Chris@16: //! Chris@16: //! Complexity: Constant. Chris@16: value_compare value_comp() const Chris@16: { return value_compare(m_tree.key_comp()); } Chris@16: Chris@16: ////////////////////////////////////////////// Chris@16: // Chris@16: // map operations Chris@16: // Chris@16: ////////////////////////////////////////////// Chris@16: Chris@16: //! Returns: An iterator pointing to an element with the key Chris@16: //! equivalent to x, or end() if such an element is not found. Chris@16: //! Chris@16: //! Complexity: Logarithmic. Chris@16: iterator find(const key_type& x) Chris@16: { return m_tree.find(x); } Chris@16: Chris@16: //! Returns: Allocator const iterator pointing to an element with the key Chris@16: //! equivalent to x, or end() if such an element is not found. Chris@16: //! Chris@16: //! Complexity: Logarithmic. Chris@16: const_iterator find(const key_type& x) const Chris@16: { return m_tree.find(x); } Chris@16: Chris@16: //! Returns: The number of elements with key equivalent to x. Chris@16: //! Chris@16: //! Complexity: log(size())+count(k) Chris@16: size_type count(const key_type& x) const Chris@16: { return m_tree.count(x); } Chris@16: Chris@16: //! Returns: An iterator pointing to the first element with key not less Chris@16: //! than k, or a.end() if such an element is not found. Chris@16: //! Chris@16: //! Complexity: Logarithmic Chris@16: iterator lower_bound(const key_type& x) Chris@16: {return m_tree.lower_bound(x); } Chris@16: Chris@16: //! Returns: Allocator const iterator pointing to the first element with key not Chris@16: //! less than k, or a.end() if such an element is not found. Chris@16: //! Chris@16: //! Complexity: Logarithmic Chris@16: const_iterator lower_bound(const key_type& x) const Chris@16: { return m_tree.lower_bound(x); } Chris@16: Chris@16: //! Returns: An iterator pointing to the first element with key not less Chris@16: //! than x, or end() if such an element is not found. Chris@16: //! Chris@16: //! Complexity: Logarithmic Chris@16: iterator upper_bound(const key_type& x) Chris@16: { return m_tree.upper_bound(x); } Chris@16: Chris@16: //! Returns: Allocator const iterator pointing to the first element with key not Chris@16: //! less than x, or end() if such an element is not found. Chris@16: //! Chris@16: //! Complexity: Logarithmic Chris@16: const_iterator upper_bound(const key_type& x) const Chris@16: { return m_tree.upper_bound(x); } Chris@16: Chris@16: //! Effects: Equivalent to std::make_pair(this->lower_bound(k), this->upper_bound(k)). Chris@16: //! Chris@16: //! Complexity: Logarithmic Chris@16: std::pair equal_range(const key_type& x) Chris@16: { return m_tree.equal_range(x); } Chris@16: Chris@16: //! Effects: Equivalent to std::make_pair(this->lower_bound(k), this->upper_bound(k)). Chris@16: //! Chris@16: //! Complexity: Logarithmic Chris@16: std::pair equal_range(const key_type& x) const Chris@16: { return m_tree.equal_range(x); } Chris@16: Chris@16: /// @cond Chris@16: template Chris@16: friend bool operator== (const multimap& x, Chris@16: const multimap& y); Chris@16: Chris@16: template Chris@16: friend bool operator< (const multimap& x, Chris@16: const multimap& y); Chris@16: /// @endcond Chris@16: }; Chris@16: Chris@16: template Chris@16: inline bool operator==(const multimap& x, Chris@16: const multimap& y) Chris@16: { return x.m_tree == y.m_tree; } Chris@16: Chris@16: template Chris@16: inline bool operator<(const multimap& x, Chris@16: const multimap& y) Chris@16: { return x.m_tree < y.m_tree; } Chris@16: Chris@16: template Chris@16: inline bool operator!=(const multimap& x, Chris@16: const multimap& y) Chris@16: { return !(x == y); } Chris@16: Chris@16: template Chris@16: inline bool operator>(const multimap& x, Chris@16: const multimap& y) Chris@16: { return y < x; } Chris@16: Chris@16: template Chris@16: inline bool operator<=(const multimap& x, Chris@16: const multimap& y) Chris@16: { return !(y < x); } Chris@16: Chris@16: template Chris@16: inline bool operator>=(const multimap& x, Chris@16: const multimap& y) Chris@16: { return !(x < y); } Chris@16: Chris@16: template Chris@16: inline void swap(multimap& x, multimap& y) Chris@16: { x.swap(y); } Chris@16: Chris@16: /// @cond Chris@16: Chris@16: } //namespace container { Chris@16: Chris@16: //!has_trivial_destructor_after_move<> == true_type Chris@16: //!specialization for optimizations Chris@16: template Chris@16: struct has_trivial_destructor_after_move > Chris@16: { Chris@16: static const bool value = has_trivial_destructor_after_move::value && has_trivial_destructor_after_move::value; Chris@16: }; Chris@16: Chris@16: namespace container { Chris@16: Chris@16: /// @endcond Chris@16: Chris@16: }} Chris@16: Chris@16: #include Chris@16: Chris@16: #endif /* BOOST_CONTAINER_MAP_HPP */ Chris@16: