Mercurial > hg > vamp-build-and-test
view DEPENDENCIES/generic/include/boost/geometry/algorithms/detail/partition.hpp @ 101:c530137014c0
Update Boost headers (1.58.0)
author | Chris Cannam |
---|---|
date | Mon, 07 Sep 2015 11:12:49 +0100 |
parents | 2665513ce2d3 |
children |
line wrap: on
line source
// Boost.Geometry (aka GGL, Generic Geometry Library) // Copyright (c) 2011-2014 Barend Gehrels, Amsterdam, the Netherlands. // Use, modification and distribution is subject to the Boost Software License, // Version 1.0. (See accompanying file LICENSE_1_0.txt or copy at // http://www.boost.org/LICENSE_1_0.txt) #ifndef BOOST_GEOMETRY_ALGORITHMS_DETAIL_PARTITION_HPP #define BOOST_GEOMETRY_ALGORITHMS_DETAIL_PARTITION_HPP #include <vector> #include <boost/range/algorithm/copy.hpp> #include <boost/geometry/algorithms/assign.hpp> #include <boost/geometry/core/coordinate_type.hpp> namespace boost { namespace geometry { namespace detail { namespace partition { typedef std::vector<std::size_t> index_vector_type; template <int Dimension, typename Box> inline void divide_box(Box const& box, Box& lower_box, Box& upper_box) { typedef typename coordinate_type<Box>::type ctype; // Divide input box into two parts, e.g. left/right ctype two = 2; ctype mid = (geometry::get<min_corner, Dimension>(box) + geometry::get<max_corner, Dimension>(box)) / two; lower_box = box; upper_box = box; geometry::set<max_corner, Dimension>(lower_box, mid); geometry::set<min_corner, Dimension>(upper_box, mid); } // Divide collection into three subsets: lower, upper and oversized // (not-fitting) // (lower == left or bottom, upper == right or top) template <typename OverlapsPolicy, typename InputCollection, typename Box> inline void divide_into_subsets(Box const& lower_box, Box const& upper_box, InputCollection const& collection, index_vector_type const& input, index_vector_type& lower, index_vector_type& upper, index_vector_type& exceeding) { typedef boost::range_iterator < index_vector_type const >::type index_iterator_type; for(index_iterator_type it = boost::begin(input); it != boost::end(input); ++it) { bool const lower_overlapping = OverlapsPolicy::apply(lower_box, collection[*it]); bool const upper_overlapping = OverlapsPolicy::apply(upper_box, collection[*it]); if (lower_overlapping && upper_overlapping) { exceeding.push_back(*it); } else if (lower_overlapping) { lower.push_back(*it); } else if (upper_overlapping) { upper.push_back(*it); } else { // Is nowhere. That is (since 1.58) possible, it might be // skipped by the OverlapsPolicy to enhance performance } } } template <typename ExpandPolicy, typename Box, typename InputCollection> inline void expand_with_elements(Box& total, InputCollection const& collection, index_vector_type const& input) { typedef boost::range_iterator<index_vector_type const>::type it_type; for(it_type it = boost::begin(input); it != boost::end(input); ++it) { ExpandPolicy::apply(total, collection[*it]); } } // Match collection with itself template <typename InputCollection, typename Policy> inline void handle_one(InputCollection const& collection, index_vector_type const& input, Policy& policy) { if (boost::size(input) == 0) { return; } typedef boost::range_iterator<index_vector_type const>::type index_iterator_type; // Quadratic behaviour at lowest level (lowest quad, or all exceeding) for(index_iterator_type it1 = boost::begin(input); it1 != boost::end(input); ++it1) { index_iterator_type it2 = it1; for(++it2; it2 != boost::end(input); ++it2) { policy.apply(collection[*it1], collection[*it2]); } } } // Match collection 1 with collection 2 template < typename InputCollection1, typename InputCollection2, typename Policy > inline void handle_two( InputCollection1 const& collection1, index_vector_type const& input1, InputCollection2 const& collection2, index_vector_type const& input2, Policy& policy) { if (boost::size(input1) == 0 || boost::size(input2) == 0) { return; } typedef boost::range_iterator < index_vector_type const >::type index_iterator_type; for(index_iterator_type it1 = boost::begin(input1); it1 != boost::end(input1); ++it1) { for(index_iterator_type it2 = boost::begin(input2); it2 != boost::end(input2); ++it2) { policy.apply(collection1[*it1], collection2[*it2]); } } } inline bool recurse_ok(index_vector_type const& input, std::size_t min_elements, std::size_t level) { return boost::size(input) >= min_elements && level < 100; } inline bool recurse_ok(index_vector_type const& input1, index_vector_type const& input2, std::size_t min_elements, std::size_t level) { return boost::size(input1) >= min_elements && recurse_ok(input2, min_elements, level); } inline bool recurse_ok(index_vector_type const& input1, index_vector_type const& input2, index_vector_type const& input3, std::size_t min_elements, std::size_t level) { return boost::size(input1) >= min_elements && recurse_ok(input2, input3, min_elements, level); } template < int Dimension, typename Box, typename OverlapsPolicy1, typename OverlapsPolicy2, typename ExpandPolicy1, typename ExpandPolicy2, typename VisitBoxPolicy > class partition_two_collections; template < int Dimension, typename Box, typename OverlapsPolicy, typename ExpandPolicy, typename VisitBoxPolicy > class partition_one_collection { typedef std::vector<std::size_t> index_vector_type; template <typename InputCollection> static inline Box get_new_box(InputCollection const& collection, index_vector_type const& input) { Box box; geometry::assign_inverse(box); expand_with_elements<ExpandPolicy>(box, collection, input); return box; } template <typename InputCollection, typename Policy> static inline void next_level(Box const& box, InputCollection const& collection, index_vector_type const& input, std::size_t level, std::size_t min_elements, Policy& policy, VisitBoxPolicy& box_policy) { if (recurse_ok(input, min_elements, level)) { partition_one_collection < 1 - Dimension, Box, OverlapsPolicy, ExpandPolicy, VisitBoxPolicy >::apply(box, collection, input, level + 1, min_elements, policy, box_policy); } else { handle_one(collection, input, policy); } } // Function to switch to two collections if there are geometries exceeding // the separation line template <typename InputCollection, typename Policy> static inline void next_level2(Box const& box, InputCollection const& collection, index_vector_type const& input1, index_vector_type const& input2, std::size_t level, std::size_t min_elements, Policy& policy, VisitBoxPolicy& box_policy) { if (recurse_ok(input1, input2, min_elements, level)) { partition_two_collections < 1 - Dimension, Box, OverlapsPolicy, OverlapsPolicy, ExpandPolicy, ExpandPolicy, VisitBoxPolicy >::apply(box, collection, input1, collection, input2, level + 1, min_elements, policy, box_policy); } else { handle_two(collection, input1, collection, input2, policy); } } public : template <typename InputCollection, typename Policy> static inline void apply(Box const& box, InputCollection const& collection, index_vector_type const& input, std::size_t level, std::size_t min_elements, Policy& policy, VisitBoxPolicy& box_policy) { box_policy.apply(box, level); Box lower_box, upper_box; divide_box<Dimension>(box, lower_box, upper_box); index_vector_type lower, upper, exceeding; divide_into_subsets<OverlapsPolicy>(lower_box, upper_box, collection, input, lower, upper, exceeding); if (boost::size(exceeding) > 0) { // Get the box of exceeding-only Box exceeding_box = get_new_box(collection, exceeding); // Recursively do exceeding elements only, in next dimension they // will probably be less exceeding within the new box next_level(exceeding_box, collection, exceeding, level, min_elements, policy, box_policy); // Switch to two collections, combine exceeding with lower resp upper // but not lower/lower, upper/upper next_level2(exceeding_box, collection, exceeding, lower, level, min_elements, policy, box_policy); next_level2(exceeding_box, collection, exceeding, upper, level, min_elements, policy, box_policy); } // Recursively call operation both parts next_level(lower_box, collection, lower, level, min_elements, policy, box_policy); next_level(upper_box, collection, upper, level, min_elements, policy, box_policy); } }; template < int Dimension, typename Box, typename OverlapsPolicy1, typename OverlapsPolicy2, typename ExpandPolicy1, typename ExpandPolicy2, typename VisitBoxPolicy > class partition_two_collections { typedef std::vector<std::size_t> index_vector_type; template < typename InputCollection1, typename InputCollection2, typename Policy > static inline void next_level(Box const& box, InputCollection1 const& collection1, index_vector_type const& input1, InputCollection2 const& collection2, index_vector_type const& input2, std::size_t level, std::size_t min_elements, Policy& policy, VisitBoxPolicy& box_policy) { partition_two_collections < 1 - Dimension, Box, OverlapsPolicy1, OverlapsPolicy2, ExpandPolicy1, ExpandPolicy2, VisitBoxPolicy >::apply(box, collection1, input1, collection2, input2, level + 1, min_elements, policy, box_policy); } template < typename ExpandPolicy, typename InputCollection > static inline Box get_new_box(InputCollection const& collection, index_vector_type const& input) { Box box; geometry::assign_inverse(box); expand_with_elements<ExpandPolicy>(box, collection, input); return box; } template < typename InputCollection1, typename InputCollection2 > static inline Box get_new_box(InputCollection1 const& collection1, index_vector_type const& input1, InputCollection2 const& collection2, index_vector_type const& input2) { Box box = get_new_box<ExpandPolicy1>(collection1, input1); expand_with_elements<ExpandPolicy2>(box, collection2, input2); return box; } public : template < typename InputCollection1, typename InputCollection2, typename Policy > static inline void apply(Box const& box, InputCollection1 const& collection1, index_vector_type const& input1, InputCollection2 const& collection2, index_vector_type const& input2, std::size_t level, std::size_t min_elements, Policy& policy, VisitBoxPolicy& box_policy) { box_policy.apply(box, level); Box lower_box, upper_box; divide_box<Dimension>(box, lower_box, upper_box); index_vector_type lower1, upper1, exceeding1; index_vector_type lower2, upper2, exceeding2; divide_into_subsets<OverlapsPolicy1>(lower_box, upper_box, collection1, input1, lower1, upper1, exceeding1); divide_into_subsets<OverlapsPolicy2>(lower_box, upper_box, collection2, input2, lower2, upper2, exceeding2); if (boost::size(exceeding1) > 0) { // All exceeding from 1 with 2: if (recurse_ok(exceeding1, exceeding2, min_elements, level)) { Box exceeding_box = get_new_box(collection1, exceeding1, collection2, exceeding2); next_level(exceeding_box, collection1, exceeding1, collection2, exceeding2, level, min_elements, policy, box_policy); } else { handle_two(collection1, exceeding1, collection2, exceeding2, policy); } // All exceeding from 1 with lower and upper of 2: // (Check sizes of all three collections to avoid recurse into // the same combinations again and again) if (recurse_ok(lower2, upper2, exceeding1, min_elements, level)) { Box exceeding_box = get_new_box<ExpandPolicy1>(collection1, exceeding1); next_level(exceeding_box, collection1, exceeding1, collection2, lower2, level, min_elements, policy, box_policy); next_level(exceeding_box, collection1, exceeding1, collection2, upper2, level, min_elements, policy, box_policy); } else { handle_two(collection1, exceeding1, collection2, lower2, policy); handle_two(collection1, exceeding1, collection2, upper2, policy); } } if (boost::size(exceeding2) > 0) { // All exceeding from 2 with lower and upper of 1: if (recurse_ok(lower1, upper1, exceeding2, min_elements, level)) { Box exceeding_box = get_new_box<ExpandPolicy2>(collection2, exceeding2); next_level(exceeding_box, collection1, lower1, collection2, exceeding2, level, min_elements, policy, box_policy); next_level(exceeding_box, collection1, upper1, collection2, exceeding2, level, min_elements, policy, box_policy); } else { handle_two(collection1, lower1, collection2, exceeding2, policy); handle_two(collection1, upper1, collection2, exceeding2, policy); } } if (recurse_ok(lower1, lower2, min_elements, level)) { next_level(lower_box, collection1, lower1, collection2, lower2, level, min_elements, policy, box_policy); } else { handle_two(collection1, lower1, collection2, lower2, policy); } if (recurse_ok(upper1, upper2, min_elements, level)) { next_level(upper_box, collection1, upper1, collection2, upper2, level, min_elements, policy, box_policy); } else { handle_two(collection1, upper1, collection2, upper2, policy); } } }; struct visit_no_policy { template <typename Box> static inline void apply(Box const&, std::size_t ) {} }; struct include_all_policy { template <typename Item> static inline bool apply(Item const&) { return true; } }; }} // namespace detail::partition template < typename Box, typename ExpandPolicy1, typename OverlapsPolicy1, typename ExpandPolicy2 = ExpandPolicy1, typename OverlapsPolicy2 = OverlapsPolicy1, typename IncludePolicy1 = detail::partition::include_all_policy, typename IncludePolicy2 = detail::partition::include_all_policy, typename VisitBoxPolicy = detail::partition::visit_no_policy > class partition { typedef std::vector<std::size_t> index_vector_type; template <typename ExpandPolicy, typename IncludePolicy, typename InputCollection> static inline void expand_to_collection(InputCollection const& collection, Box& total, index_vector_type& index_vector) { std::size_t index = 0; for(typename boost::range_iterator<InputCollection const>::type it = boost::begin(collection); it != boost::end(collection); ++it, ++index) { if (IncludePolicy::apply(*it)) { ExpandPolicy::apply(total, *it); index_vector.push_back(index); } } } public : template <typename InputCollection, typename VisitPolicy> static inline void apply(InputCollection const& collection, VisitPolicy& visitor, std::size_t min_elements = 16, VisitBoxPolicy box_visitor = detail::partition::visit_no_policy() ) { if (std::size_t(boost::size(collection)) > min_elements) { index_vector_type index_vector; Box total; assign_inverse(total); expand_to_collection<ExpandPolicy1, IncludePolicy1>(collection, total, index_vector); detail::partition::partition_one_collection < 0, Box, OverlapsPolicy1, ExpandPolicy1, VisitBoxPolicy >::apply(total, collection, index_vector, 0, min_elements, visitor, box_visitor); } else { typedef typename boost::range_iterator < InputCollection const >::type iterator_type; for(iterator_type it1 = boost::begin(collection); it1 != boost::end(collection); ++it1) { iterator_type it2 = it1; for(++it2; it2 != boost::end(collection); ++it2) { visitor.apply(*it1, *it2); } } } } template < typename InputCollection1, typename InputCollection2, typename VisitPolicy > static inline void apply(InputCollection1 const& collection1, InputCollection2 const& collection2, VisitPolicy& visitor, std::size_t min_elements = 16, VisitBoxPolicy box_visitor = detail::partition::visit_no_policy() ) { if (std::size_t(boost::size(collection1)) > min_elements && std::size_t(boost::size(collection2)) > min_elements) { index_vector_type index_vector1, index_vector2; Box total; assign_inverse(total); expand_to_collection<ExpandPolicy1, IncludePolicy1>(collection1, total, index_vector1); expand_to_collection<ExpandPolicy2, IncludePolicy2>(collection2, total, index_vector2); detail::partition::partition_two_collections < 0, Box, OverlapsPolicy1, OverlapsPolicy2, ExpandPolicy1, ExpandPolicy2, VisitBoxPolicy >::apply(total, collection1, index_vector1, collection2, index_vector2, 0, min_elements, visitor, box_visitor); } else { typedef typename boost::range_iterator < InputCollection1 const >::type iterator_type1; typedef typename boost::range_iterator < InputCollection2 const >::type iterator_type2; for(iterator_type1 it1 = boost::begin(collection1); it1 != boost::end(collection1); ++it1) { for(iterator_type2 it2 = boost::begin(collection2); it2 != boost::end(collection2); ++it2) { visitor.apply(*it1, *it2); } } } } }; }} // namespace boost::geometry #endif // BOOST_GEOMETRY_ALGORITHMS_DETAIL_PARTITION_HPP