Mercurial > hg > vamp-build-and-test
view DEPENDENCIES/generic/include/boost/geometry/strategies/cartesian/distance_projected_point.hpp @ 75:a76b96026c2d
Update summarisation
author | Chris Cannam |
---|---|
date | Thu, 30 Oct 2014 13:25:15 +0000 |
parents | 2665513ce2d3 |
children | c530137014c0 |
line wrap: on
line source
// Boost.Geometry (aka GGL, Generic Geometry Library) // Copyright (c) 2008-2012 Bruno Lalande, Paris, France. // Copyright (c) 2008-2012 Barend Gehrels, Amsterdam, the Netherlands. // Copyright (c) 2009-2012 Mateusz Loskot, London, UK. // Parts of Boost.Geometry are redesigned from Geodan's Geographic Library // (geolib/GGL), copyright (c) 1995-2010 Geodan, Amsterdam, the Netherlands. // Use, modification and distribution is subject to the Boost Software License, // Version 1.0. (See accompanying file LICENSE_1_0.txt or copy at // http://www.boost.org/LICENSE_1_0.txt) #ifndef BOOST_GEOMETRY_STRATEGIES_CARTESIAN_DISTANCE_PROJECTED_POINT_HPP #define BOOST_GEOMETRY_STRATEGIES_CARTESIAN_DISTANCE_PROJECTED_POINT_HPP #include <boost/concept_check.hpp> #include <boost/mpl/if.hpp> #include <boost/type_traits.hpp> #include <boost/geometry/core/access.hpp> #include <boost/geometry/core/point_type.hpp> #include <boost/geometry/algorithms/convert.hpp> #include <boost/geometry/arithmetic/arithmetic.hpp> #include <boost/geometry/arithmetic/dot_product.hpp> #include <boost/geometry/strategies/tags.hpp> #include <boost/geometry/strategies/distance.hpp> #include <boost/geometry/strategies/default_distance_result.hpp> #include <boost/geometry/strategies/cartesian/distance_pythagoras.hpp> #include <boost/geometry/util/select_coordinate_type.hpp> // Helper geometry (projected point on line) #include <boost/geometry/geometries/point.hpp> namespace boost { namespace geometry { namespace strategy { namespace distance { /*! \brief Strategy for distance point to segment \ingroup strategies \details Calculates distance using projected-point method, and (optionally) Pythagoras \author Adapted from: http://geometryalgorithms.com/Archive/algorithm_0102/algorithm_0102.htm \tparam CalculationType \tparam_calculation \tparam Strategy underlying point-point distance strategy \par Concepts for Strategy: - cartesian_distance operator(Point,Point) \note If the Strategy is a "comparable::pythagoras", this strategy automatically is a comparable projected_point strategy (so without sqrt) \qbk{ [heading See also] [link geometry.reference.algorithms.distance.distance_3_with_strategy distance (with strategy)] } */ template < typename CalculationType = void, typename Strategy = pythagoras<CalculationType> > class projected_point { public : // The three typedefs below are necessary to calculate distances // from segments defined in integer coordinates. // Integer coordinates can still result in FP distances. // There is a division, which must be represented in FP. // So promote. template <typename Point, typename PointOfSegment> struct calculation_type : promote_floating_point < typename strategy::distance::services::return_type < Strategy, Point, PointOfSegment >::type > {}; public : template <typename Point, typename PointOfSegment> inline typename calculation_type<Point, PointOfSegment>::type apply(Point const& p, PointOfSegment const& p1, PointOfSegment const& p2) const { assert_dimension_equal<Point, PointOfSegment>(); typedef typename calculation_type<Point, PointOfSegment>::type calculation_type; // A projected point of points in Integer coordinates must be able to be // represented in FP. typedef model::point < calculation_type, dimension<PointOfSegment>::value, typename coordinate_system<PointOfSegment>::type > fp_point_type; // For convenience typedef fp_point_type fp_vector_type; /* Algorithm [p1: (x1,y1), p2: (x2,y2), p: (px,py)] VECTOR v(x2 - x1, y2 - y1) VECTOR w(px - x1, py - y1) c1 = w . v c2 = v . v b = c1 / c2 RETURN POINT(x1 + b * vx, y1 + b * vy) */ // v is multiplied below with a (possibly) FP-value, so should be in FP // For consistency we define w also in FP fp_vector_type v, w; geometry::convert(p2, v); geometry::convert(p, w); subtract_point(v, p1); subtract_point(w, p1); Strategy strategy; boost::ignore_unused_variable_warning(strategy); calculation_type const zero = calculation_type(); calculation_type const c1 = dot_product(w, v); if (c1 <= zero) { return strategy.apply(p, p1); } calculation_type const c2 = dot_product(v, v); if (c2 <= c1) { return strategy.apply(p, p2); } // See above, c1 > 0 AND c2 > c1 so: c2 != 0 calculation_type const b = c1 / c2; fp_point_type projected; geometry::convert(p1, projected); multiply_value(v, b); add_point(projected, v); return strategy.apply(p, projected); } }; #ifndef DOXYGEN_NO_STRATEGY_SPECIALIZATIONS namespace services { template <typename CalculationType, typename Strategy> struct tag<projected_point<CalculationType, Strategy> > { typedef strategy_tag_distance_point_segment type; }; template <typename CalculationType, typename Strategy, typename P, typename PS> struct return_type<projected_point<CalculationType, Strategy>, P, PS> : projected_point<CalculationType, Strategy>::template calculation_type<P, PS> {}; template <typename CalculationType, typename Strategy> struct strategy_point_point<projected_point<CalculationType, Strategy> > { typedef Strategy type; }; template <typename CalculationType, typename Strategy> struct comparable_type<projected_point<CalculationType, Strategy> > { // Define a projected_point strategy with its underlying point-point-strategy // being comparable typedef projected_point < CalculationType, typename comparable_type<Strategy>::type > type; }; template <typename CalculationType, typename Strategy> struct get_comparable<projected_point<CalculationType, Strategy> > { typedef typename comparable_type < projected_point<CalculationType, Strategy> >::type comparable_type; public : static inline comparable_type apply(projected_point<CalculationType, Strategy> const& ) { return comparable_type(); } }; template <typename CalculationType, typename Strategy, typename P, typename PS> struct result_from_distance<projected_point<CalculationType, Strategy>, P, PS> { private : typedef typename return_type<projected_point<CalculationType, Strategy>, P, PS>::type return_type; public : template <typename T> static inline return_type apply(projected_point<CalculationType, Strategy> const& , T const& value) { Strategy s; return result_from_distance<Strategy, P, PS>::apply(s, value); } }; // Get default-strategy for point-segment distance calculation // while still have the possibility to specify point-point distance strategy (PPS) // It is used in algorithms/distance.hpp where users specify PPS for distance // of point-to-segment or point-to-linestring. // Convenient for geographic coordinate systems especially. template <typename Point, typename PointOfSegment, typename Strategy> struct default_strategy<segment_tag, Point, PointOfSegment, cartesian_tag, cartesian_tag, Strategy> { typedef strategy::distance::projected_point < void, typename boost::mpl::if_ < boost::is_void<Strategy>, typename default_strategy < point_tag, Point, PointOfSegment, cartesian_tag, cartesian_tag >::type, Strategy >::type > type; }; } // namespace services #endif // DOXYGEN_NO_STRATEGY_SPECIALIZATIONS }} // namespace strategy::distance }} // namespace boost::geometry #endif // BOOST_GEOMETRY_STRATEGIES_CARTESIAN_DISTANCE_PROJECTED_POINT_HPP