Mercurial > hg > vamp-build-and-test
view DEPENDENCIES/generic/include/boost/multiprecision/rational_adaptor.hpp @ 79:71000cf7f414
Dependencies for mingw64
author | Chris Cannam |
---|---|
date | Thu, 30 Oct 2014 17:39:24 +0000 |
parents | 2665513ce2d3 |
children | c530137014c0 |
line wrap: on
line source
/////////////////////////////////////////////////////////////// // Copyright 2011 John Maddock. Distributed under the Boost // Software License, Version 1.0. (See accompanying file // LICENSE_1_0.txt or copy at http://www.boost.org/LICENSE_1_ #ifndef BOOST_MATH_RATIONAL_ADAPTER_HPP #define BOOST_MATH_RATIONAL_ADAPTER_HPP #include <iostream> #include <iomanip> #include <sstream> #include <boost/cstdint.hpp> #include <boost/multiprecision/number.hpp> #ifdef BOOST_MSVC # pragma warning(push) # pragma warning(disable:4512 4127) #endif #include <boost/rational.hpp> #ifdef BOOST_MSVC # pragma warning(pop) #endif namespace boost{ namespace multiprecision{ namespace backends{ template <class IntBackend> struct rational_adaptor { typedef number<IntBackend> integer_type; typedef boost::rational<integer_type> rational_type; typedef typename IntBackend::signed_types signed_types; typedef typename IntBackend::unsigned_types unsigned_types; typedef typename IntBackend::float_types float_types; rational_adaptor(){} rational_adaptor(const rational_adaptor& o) { m_value = o.m_value; } rational_adaptor(const IntBackend& o) : m_value(o) {} template <class U> rational_adaptor(const U& u, typename enable_if_c<is_convertible<U, IntBackend>::value>::type* = 0) : m_value(IntBackend(u)){} template <class U> explicit rational_adaptor(const U& u, typename enable_if_c< boost::multiprecision::detail::is_explicitly_convertible<U, IntBackend>::value && !is_convertible<U, IntBackend>::value >::type* = 0) : m_value(IntBackend(u)){} template <class U> typename enable_if_c<(boost::multiprecision::detail::is_explicitly_convertible<U, IntBackend>::value && !is_arithmetic<U>::value), rational_adaptor&>::type operator = (const U& u) { m_value = IntBackend(u); } #ifndef BOOST_NO_CXX11_RVALUE_REFERENCES rational_adaptor(rational_adaptor&& o) : m_value(o.m_value) {} rational_adaptor(IntBackend&& o) : m_value(o) {} rational_adaptor& operator = (rational_adaptor&& o) { m_value = static_cast<rational_type&&>(o.m_value); return *this; } #endif rational_adaptor& operator = (const rational_adaptor& o) { m_value = o.m_value; return *this; } rational_adaptor& operator = (const IntBackend& o) { m_value = o; return *this; } template <class Int> typename enable_if<is_integral<Int>, rational_adaptor&>::type operator = (Int i) { m_value = i; return *this; } template <class Float> typename enable_if<is_floating_point<Float>, rational_adaptor&>::type operator = (Float i) { int e; Float f = std::frexp(i, &e); f = std::ldexp(f, std::numeric_limits<Float>::digits); e -= std::numeric_limits<Float>::digits; integer_type num(f); integer_type denom(1u); if(e > 0) { num <<= e; } else if(e < 0) { denom <<= -e; } m_value.assign(num, denom); return *this; } rational_adaptor& operator = (const char* s) { std::string s1; multiprecision::number<IntBackend> v1, v2; char c; bool have_hex = false; const char* p = s; // saved for later while((0 != (c = *s)) && (c == 'x' || c == 'X' || c == '-' || c == '+' || (c >= '0' && c <= '9') || (have_hex && (c >= 'a' && c <= 'f')) || (have_hex && (c >= 'A' && c <= 'F')))) { if(c == 'x' || c == 'X') have_hex = true; s1.append(1, c); ++s; } v1.assign(s1); s1.erase(); if(c == '/') { ++s; while((0 != (c = *s)) && (c == 'x' || c == 'X' || c == '-' || c == '+' || (c >= '0' && c <= '9') || (have_hex && (c >= 'a' && c <= 'f')) || (have_hex && (c >= 'A' && c <= 'F')))) { if(c == 'x' || c == 'X') have_hex = true; s1.append(1, c); ++s; } v2.assign(s1); } else v2 = 1; if(*s) { BOOST_THROW_EXCEPTION(std::runtime_error(std::string("Could parse the string \"") + p + std::string("\" as a valid rational number."))); } data().assign(v1, v2); return *this; } void swap(rational_adaptor& o) { std::swap(m_value, o.m_value); } std::string str(std::streamsize digits, std::ios_base::fmtflags f)const { // // We format the string ourselves so we can match what GMP's mpq type does: // std::string result = data().numerator().str(digits, f); if(data().denominator() != 1) { result.append(1, '/'); result.append(data().denominator().str(digits, f)); } return result; } void negate() { m_value = -m_value; } int compare(const rational_adaptor& o)const { return m_value > o.m_value ? 1 : (m_value < o.m_value ? -1 : 0); } template <class Arithmatic> typename enable_if<is_arithmetic<Arithmatic>, int>::type compare(Arithmatic i)const { return m_value > i ? 1 : (m_value < i ? -1 : 0); } rational_type& data() { return m_value; } const rational_type& data()const { return m_value; } template <class Archive> void serialize(Archive& ar, const mpl::true_&) { // Saving integer_type n(m_value.numerator()), d(m_value.denominator()); ar & n; ar & d; } template <class Archive> void serialize(Archive& ar, const mpl::false_&) { // Loading integer_type n, d; ar & n; ar & d; m_value.assign(n, d); } template <class Archive> void serialize(Archive& ar, const unsigned int /*version*/) { typedef typename Archive::is_saving tag; serialize(ar, tag()); } private: rational_type m_value; }; template <class IntBackend> inline void eval_add(rational_adaptor<IntBackend>& result, const rational_adaptor<IntBackend>& o) { result.data() += o.data(); } template <class IntBackend> inline void eval_subtract(rational_adaptor<IntBackend>& result, const rational_adaptor<IntBackend>& o) { result.data() -= o.data(); } template <class IntBackend> inline void eval_multiply(rational_adaptor<IntBackend>& result, const rational_adaptor<IntBackend>& o) { result.data() *= o.data(); } template <class IntBackend> inline void eval_divide(rational_adaptor<IntBackend>& result, const rational_adaptor<IntBackend>& o) { using default_ops::eval_is_zero; if(eval_is_zero(o)) { BOOST_THROW_EXCEPTION(std::overflow_error("Divide by zero.")); } result.data() /= o.data(); } template <class R, class IntBackend> inline void eval_convert_to(R* result, const rational_adaptor<IntBackend>& backend) { *result = backend.data().numerator().template convert_to<R>(); *result /= backend.data().denominator().template convert_to<R>(); } template <class IntBackend> inline bool eval_is_zero(const rational_adaptor<IntBackend>& val) { return eval_is_zero(val.data().numerator().backend()); } template <class IntBackend> inline int eval_get_sign(const rational_adaptor<IntBackend>& val) { return eval_get_sign(val.data().numerator().backend()); } template<class IntBackend, class V> inline void assign_components(rational_adaptor<IntBackend>& result, const V& v1, const V& v2) { result.data().assign(v1, v2); } } // namespace backends template<class IntBackend> struct expression_template_default<backends::rational_adaptor<IntBackend> > : public expression_template_default<IntBackend> {}; template<class IntBackend> struct number_category<backends::rational_adaptor<IntBackend> > : public mpl::int_<number_kind_rational>{}; using boost::multiprecision::backends::rational_adaptor; template <class T> struct component_type<rational_adaptor<T> > { typedef number<T> type; }; template <class IntBackend, expression_template_option ET> inline number<IntBackend, ET> numerator(const number<rational_adaptor<IntBackend>, ET>& val) { return val.backend().data().numerator(); } template <class IntBackend, expression_template_option ET> inline number<IntBackend, ET> denominator(const number<rational_adaptor<IntBackend>, ET>& val) { return val.backend().data().denominator(); } #ifdef BOOST_NO_SFINAE_EXPR namespace detail{ template<class U, class IntBackend> struct is_explicitly_convertible<U, rational_adaptor<IntBackend> > : public is_explicitly_convertible<U, IntBackend> {}; } #endif }} // namespaces namespace std{ template <class IntBackend, boost::multiprecision::expression_template_option ExpressionTemplates> class numeric_limits<boost::multiprecision::number<boost::multiprecision::rational_adaptor<IntBackend>, ExpressionTemplates> > : public std::numeric_limits<boost::multiprecision::number<IntBackend, ExpressionTemplates> > { typedef std::numeric_limits<boost::multiprecision::number<IntBackend> > base_type; typedef boost::multiprecision::number<boost::multiprecision::rational_adaptor<IntBackend> > number_type; public: BOOST_STATIC_CONSTEXPR bool is_integer = false; BOOST_STATIC_CONSTEXPR bool is_exact = true; BOOST_STATIC_CONSTEXPR number_type (min)() { return (base_type::min)(); } BOOST_STATIC_CONSTEXPR number_type (max)() { return (base_type::max)(); } BOOST_STATIC_CONSTEXPR number_type lowest() { return -(max)(); } BOOST_STATIC_CONSTEXPR number_type epsilon() { return base_type::epsilon(); } BOOST_STATIC_CONSTEXPR number_type round_error() { return epsilon() / 2; } BOOST_STATIC_CONSTEXPR number_type infinity() { return base_type::infinity(); } BOOST_STATIC_CONSTEXPR number_type quiet_NaN() { return base_type::quiet_NaN(); } BOOST_STATIC_CONSTEXPR number_type signaling_NaN() { return base_type::signaling_NaN(); } BOOST_STATIC_CONSTEXPR number_type denorm_min() { return base_type::denorm_min(); } }; #ifndef BOOST_NO_INCLASS_MEMBER_INITIALIZATION template <class IntBackend, boost::multiprecision::expression_template_option ExpressionTemplates> BOOST_CONSTEXPR_OR_CONST bool numeric_limits<boost::multiprecision::number<boost::multiprecision::rational_adaptor<IntBackend>, ExpressionTemplates> >::is_integer; template <class IntBackend, boost::multiprecision::expression_template_option ExpressionTemplates> BOOST_CONSTEXPR_OR_CONST bool numeric_limits<boost::multiprecision::number<boost::multiprecision::rational_adaptor<IntBackend>, ExpressionTemplates> >::is_exact; #endif } #endif