Mercurial > hg > vamp-build-and-test
view DEPENDENCIES/generic/include/boost/geometry/algorithms/disjoint.hpp @ 79:71000cf7f414
Dependencies for mingw64
author | Chris Cannam |
---|---|
date | Thu, 30 Oct 2014 17:39:24 +0000 |
parents | 2665513ce2d3 |
children | c530137014c0 |
line wrap: on
line source
// Boost.Geometry (aka GGL, Generic Geometry Library) // Copyright (c) 2007-2012 Barend Gehrels, Amsterdam, the Netherlands. // Copyright (c) 2008-2012 Bruno Lalande, Paris, France. // Copyright (c) 2009-2012 Mateusz Loskot, London, UK. // Copyright (c) 2013 Adam Wulkiewicz, Lodz, Poland. // Parts of Boost.Geometry are redesigned from Geodan's Geographic Library // (geolib/GGL), copyright (c) 1995-2010 Geodan, Amsterdam, the Netherlands. // Use, modification and distribution is subject to the Boost Software License, // Version 1.0. (See accompanying file LICENSE_1_0.txt or copy at // http://www.boost.org/LICENSE_1_0.txt) #ifndef BOOST_GEOMETRY_ALGORITHMS_DISJOINT_HPP #define BOOST_GEOMETRY_ALGORITHMS_DISJOINT_HPP #include <cstddef> #include <deque> #include <boost/mpl/if.hpp> #include <boost/range.hpp> #include <boost/static_assert.hpp> #include <boost/geometry/core/access.hpp> #include <boost/geometry/core/coordinate_dimension.hpp> #include <boost/geometry/core/reverse_dispatch.hpp> #include <boost/geometry/algorithms/detail/disjoint.hpp> #include <boost/geometry/algorithms/detail/for_each_range.hpp> #include <boost/geometry/algorithms/detail/point_on_border.hpp> #include <boost/geometry/algorithms/detail/overlay/get_turns.hpp> #include <boost/geometry/algorithms/within.hpp> #include <boost/geometry/geometries/concepts/check.hpp> #include <boost/geometry/util/math.hpp> namespace boost { namespace geometry { #ifndef DOXYGEN_NO_DETAIL namespace detail { namespace disjoint { template<typename Geometry> struct check_each_ring_for_within { bool has_within; Geometry const& m_geometry; inline check_each_ring_for_within(Geometry const& g) : has_within(false) , m_geometry(g) {} template <typename Range> inline void apply(Range const& range) { typename geometry::point_type<Range>::type p; geometry::point_on_border(p, range); if (geometry::within(p, m_geometry)) { has_within = true; } } }; template <typename FirstGeometry, typename SecondGeometry> inline bool rings_containing(FirstGeometry const& geometry1, SecondGeometry const& geometry2) { check_each_ring_for_within<FirstGeometry> checker(geometry1); geometry::detail::for_each_range(geometry2, checker); return checker.has_within; } struct assign_disjoint_policy { // We want to include all points: static bool const include_no_turn = true; static bool const include_degenerate = true; static bool const include_opposite = true; // We don't assign extra info: template < typename Info, typename Point1, typename Point2, typename IntersectionInfo, typename DirInfo > static inline void apply(Info& , Point1 const& , Point2 const&, IntersectionInfo const&, DirInfo const&) {} }; template <typename Geometry1, typename Geometry2> struct disjoint_linear { static inline bool apply(Geometry1 const& geometry1, Geometry2 const& geometry2) { typedef typename geometry::point_type<Geometry1>::type point_type; typedef overlay::turn_info<point_type> turn_info; std::deque<turn_info> turns; // Specify two policies: // 1) Stop at any intersection // 2) In assignment, include also degenerate points (which are normally skipped) disjoint_interrupt_policy policy; geometry::get_turns < false, false, assign_disjoint_policy >(geometry1, geometry2, turns, policy); if (policy.has_intersections) { return false; } return true; } }; template <typename Segment1, typename Segment2> struct disjoint_segment { static inline bool apply(Segment1 const& segment1, Segment2 const& segment2) { typedef typename point_type<Segment1>::type point_type; segment_intersection_points<point_type> is = strategy::intersection::relate_cartesian_segments < policies::relate::segments_intersection_points < Segment1, Segment2, segment_intersection_points<point_type> > >::apply(segment1, segment2); return is.count == 0; } }; template <typename Geometry1, typename Geometry2> struct general_areal { static inline bool apply(Geometry1 const& geometry1, Geometry2 const& geometry2) { if (! disjoint_linear<Geometry1, Geometry2>::apply(geometry1, geometry2)) { return false; } // If there is no intersection of segments, they might located // inside each other if (rings_containing(geometry1, geometry2) || rings_containing(geometry2, geometry1)) { return false; } return true; } }; template <typename Segment, typename Box> struct disjoint_segment_box { static inline bool apply(Segment const& segment, Box const& box) { typedef typename point_type<Segment>::type point_type; point_type p0, p1; geometry::detail::assign_point_from_index<0>(segment, p0); geometry::detail::assign_point_from_index<1>(segment, p1); return ! detail::disjoint::segment_box_intersection<point_type, Box>::apply(p0, p1, box); } }; template <typename Linestring, typename Box> struct disjoint_linestring_box { static inline bool apply(Linestring const& linestring, Box const& box) { typedef typename ::boost::range_value<Linestring>::type point_type; typedef typename ::boost::range_const_iterator<Linestring>::type const_iterator; typedef typename ::boost::range_size<Linestring>::type size_type; const size_type count = ::boost::size(linestring); if ( count == 0 ) return false; else if ( count == 1 ) return detail::disjoint::point_box<point_type, Box, 0, dimension<point_type>::value> ::apply(*::boost::begin(linestring), box); else { const_iterator it0 = ::boost::begin(linestring); const_iterator it1 = ::boost::begin(linestring) + 1; const_iterator last = ::boost::end(linestring); for ( ; it1 != last ; ++it0, ++it1 ) { if ( detail::disjoint::segment_box_intersection<point_type, Box>::apply(*it0, *it1, box) ) return false; } return true; } } }; }} // namespace detail::disjoint #endif // DOXYGEN_NO_DETAIL #ifndef DOXYGEN_NO_DISPATCH namespace dispatch { template < typename Geometry1, typename Geometry2, std::size_t DimensionCount = dimension<Geometry1>::type::value, typename Tag1 = typename tag<Geometry1>::type, typename Tag2 = typename tag<Geometry2>::type, bool Reverse = reverse_dispatch<Geometry1, Geometry2>::type::value > struct disjoint : detail::disjoint::general_areal<Geometry1, Geometry2> {}; // If reversal is needed, perform it template < typename Geometry1, typename Geometry2, std::size_t DimensionCount, typename Tag1, typename Tag2 > struct disjoint<Geometry1, Geometry2, DimensionCount, Tag1, Tag2, true> : disjoint<Geometry2, Geometry1, DimensionCount, Tag2, Tag1, false> { static inline bool apply(Geometry1 const& g1, Geometry2 const& g2) { return disjoint < Geometry2, Geometry1, DimensionCount, Tag2, Tag1 >::apply(g2, g1); } }; template <typename Point1, typename Point2, std::size_t DimensionCount, bool Reverse> struct disjoint<Point1, Point2, DimensionCount, point_tag, point_tag, Reverse> : detail::disjoint::point_point<Point1, Point2, 0, DimensionCount> {}; template <typename Box1, typename Box2, std::size_t DimensionCount, bool Reverse> struct disjoint<Box1, Box2, DimensionCount, box_tag, box_tag, Reverse> : detail::disjoint::box_box<Box1, Box2, 0, DimensionCount> {}; template <typename Point, typename Box, std::size_t DimensionCount, bool Reverse> struct disjoint<Point, Box, DimensionCount, point_tag, box_tag, Reverse> : detail::disjoint::point_box<Point, Box, 0, DimensionCount> {}; template <typename Point, typename Ring, std::size_t DimensionCount, bool Reverse> struct disjoint<Point, Ring, DimensionCount, point_tag, ring_tag, Reverse> : detail::disjoint::reverse_covered_by<Point, Ring> {}; template <typename Point, typename Polygon, std::size_t DimensionCount, bool Reverse> struct disjoint<Point, Polygon, DimensionCount, point_tag, polygon_tag, Reverse> : detail::disjoint::reverse_covered_by<Point, Polygon> {}; template <typename Linestring1, typename Linestring2, bool Reverse> struct disjoint<Linestring1, Linestring2, 2, linestring_tag, linestring_tag, Reverse> : detail::disjoint::disjoint_linear<Linestring1, Linestring2> {}; template <typename Segment1, typename Segment2, bool Reverse> struct disjoint<Segment1, Segment2, 2, segment_tag, segment_tag, Reverse> : detail::disjoint::disjoint_segment<Segment1, Segment2> {}; template <typename Linestring, typename Segment, bool Reverse> struct disjoint<Linestring, Segment, 2, linestring_tag, segment_tag, Reverse> : detail::disjoint::disjoint_linear<Linestring, Segment> {}; template <typename Segment, typename Box, std::size_t DimensionCount, bool Reverse> struct disjoint<Segment, Box, DimensionCount, segment_tag, box_tag, Reverse> : detail::disjoint::disjoint_segment_box<Segment, Box> {}; template <typename Linestring, typename Box, std::size_t DimensionCount, bool Reverse> struct disjoint<Linestring, Box, DimensionCount, linestring_tag, box_tag, Reverse> : detail::disjoint::disjoint_linestring_box<Linestring, Box> {}; } // namespace dispatch #endif // DOXYGEN_NO_DISPATCH /*! \brief \brief_check2{are disjoint} \ingroup disjoint \tparam Geometry1 \tparam_geometry \tparam Geometry2 \tparam_geometry \param geometry1 \param_geometry \param geometry2 \param_geometry \return \return_check2{are disjoint} \qbk{[include reference/algorithms/disjoint.qbk]} */ template <typename Geometry1, typename Geometry2> inline bool disjoint(Geometry1 const& geometry1, Geometry2 const& geometry2) { concept::check_concepts_and_equal_dimensions < Geometry1 const, Geometry2 const >(); return dispatch::disjoint<Geometry1, Geometry2>::apply(geometry1, geometry2); } }} // namespace boost::geometry #endif // BOOST_GEOMETRY_ALGORITHMS_DISJOINT_HPP