Mercurial > hg > vamp-build-and-test
view DEPENDENCIES/generic/include/boost/container/flat_set.hpp @ 95:5addbcdc2e87
Ignore commented lines
author | Chris Cannam |
---|---|
date | Tue, 21 Apr 2015 12:40:12 +0100 |
parents | 2665513ce2d3 |
children | c530137014c0 |
line wrap: on
line source
////////////////////////////////////////////////////////////////////////////// // // (C) Copyright Ion Gaztanaga 2005-2012. Distributed under the Boost // Software License, Version 1.0. (See accompanying file // LICENSE_1_0.txt or copy at http://www.boost.org/LICENSE_1_0.txt) // // See http://www.boost.org/libs/container for documentation. // ////////////////////////////////////////////////////////////////////////////// #ifndef BOOST_CONTAINER_FLAT_SET_HPP #define BOOST_CONTAINER_FLAT_SET_HPP #if defined(_MSC_VER) # pragma once #endif #include <boost/container/detail/config_begin.hpp> #include <boost/container/detail/workaround.hpp> #include <boost/container/container_fwd.hpp> #include <utility> #include <functional> #include <memory> #include <boost/container/detail/flat_tree.hpp> #include <boost/container/detail/mpl.hpp> #include <boost/container/allocator_traits.hpp> #include <boost/move/utility.hpp> #include <boost/move/detail/move_helpers.hpp> namespace boost { namespace container { /// @cond // Forward declarations of operators < and ==, needed for friend declaration. #ifdef BOOST_CONTAINER_DOXYGEN_INVOKED template <class Key, class Compare = std::less<Key>, class Allocator = std::allocator<Key> > #else template <class Key, class Compare, class Allocator> #endif class flat_set; template <class Key, class Compare, class Allocator> inline bool operator==(const flat_set<Key,Compare,Allocator>& x, const flat_set<Key,Compare,Allocator>& y); template <class Key, class Compare, class Allocator> inline bool operator<(const flat_set<Key,Compare,Allocator>& x, const flat_set<Key,Compare,Allocator>& y); /// @endcond //! flat_set is a Sorted Associative Container that stores objects of type Key. //! It is also a Unique Associative Container, meaning that no two elements are the same. //! //! flat_set is similar to std::set but it's implemented like an ordered vector. //! This means that inserting a new element into a flat_set invalidates //! previous iterators and references //! //! Erasing an element of a flat_set invalidates iterators and references //! pointing to elements that come after (their keys are bigger) the erased element. //! //! This container provides random-access iterators. #ifdef BOOST_CONTAINER_DOXYGEN_INVOKED template <class Key, class Compare = std::less<Key>, class Allocator = std::allocator<Key> > #else template <class Key, class Compare, class Allocator> #endif class flat_set { /// @cond private: BOOST_COPYABLE_AND_MOVABLE(flat_set) typedef container_detail::flat_tree<Key, Key, container_detail::identity<Key>, Compare, Allocator> tree_t; tree_t m_flat_tree; // flat tree representing flat_set /// @endcond public: ////////////////////////////////////////////// // // types // ////////////////////////////////////////////// typedef Key key_type; typedef Key value_type; typedef Compare key_compare; typedef Compare value_compare; typedef typename ::boost::container::allocator_traits<Allocator>::pointer pointer; typedef typename ::boost::container::allocator_traits<Allocator>::const_pointer const_pointer; typedef typename ::boost::container::allocator_traits<Allocator>::reference reference; typedef typename ::boost::container::allocator_traits<Allocator>::const_reference const_reference; typedef typename ::boost::container::allocator_traits<Allocator>::size_type size_type; typedef typename ::boost::container::allocator_traits<Allocator>::difference_type difference_type; typedef Allocator allocator_type; typedef typename BOOST_CONTAINER_IMPDEF(tree_t::stored_allocator_type) stored_allocator_type; typedef typename BOOST_CONTAINER_IMPDEF(tree_t::iterator) iterator; typedef typename BOOST_CONTAINER_IMPDEF(tree_t::const_iterator) const_iterator; typedef typename BOOST_CONTAINER_IMPDEF(tree_t::reverse_iterator) reverse_iterator; typedef typename BOOST_CONTAINER_IMPDEF(tree_t::const_reverse_iterator) const_reverse_iterator; public: ////////////////////////////////////////////// // // construct/copy/destroy // ////////////////////////////////////////////// //! <b>Effects</b>: Default constructs an empty flat_set. //! //! <b>Complexity</b>: Constant. explicit flat_set() : m_flat_tree() {} //! <b>Effects</b>: Constructs an empty flat_set using the specified //! comparison object and allocator. //! //! <b>Complexity</b>: Constant. explicit flat_set(const Compare& comp, const allocator_type& a = allocator_type()) : m_flat_tree(comp, a) {} //! <b>Effects</b>: Constructs an empty flat_set using the specified allocator. //! //! <b>Complexity</b>: Constant. explicit flat_set(const allocator_type& a) : m_flat_tree(a) {} //! <b>Effects</b>: Constructs an empty set using the specified comparison object and //! allocator, and inserts elements from the range [first ,last ). //! //! <b>Complexity</b>: Linear in N if the range [first ,last ) is already sorted using //! comp and otherwise N logN, where N is last - first. template <class InputIterator> flat_set(InputIterator first, InputIterator last, const Compare& comp = Compare(), const allocator_type& a = allocator_type()) : m_flat_tree(true, first, last, comp, a) {} //! <b>Effects</b>: Constructs an empty flat_set using the specified comparison object and //! allocator, and inserts elements from the ordered unique range [first ,last). This function //! is more efficient than the normal range creation for ordered ranges. //! //! <b>Requires</b>: [first ,last) must be ordered according to the predicate and must be //! unique values. //! //! <b>Complexity</b>: Linear in N. //! //! <b>Note</b>: Non-standard extension. template <class InputIterator> flat_set(ordered_unique_range_t, InputIterator first, InputIterator last, const Compare& comp = Compare(), const allocator_type& a = allocator_type()) : m_flat_tree(ordered_range, first, last, comp, a) {} //! <b>Effects</b>: Copy constructs a set. //! //! <b>Complexity</b>: Linear in x.size(). flat_set(const flat_set& x) : m_flat_tree(x.m_flat_tree) {} //! <b>Effects</b>: Move constructs a set. Constructs *this using x's resources. //! //! <b>Complexity</b>: Constant. //! //! <b>Postcondition</b>: x is emptied. flat_set(BOOST_RV_REF(flat_set) mx) : m_flat_tree(boost::move(mx.m_flat_tree)) {} //! <b>Effects</b>: Copy constructs a set using the specified allocator. //! //! <b>Complexity</b>: Linear in x.size(). flat_set(const flat_set& x, const allocator_type &a) : m_flat_tree(x.m_flat_tree, a) {} //! <b>Effects</b>: Move constructs a set using the specified allocator. //! Constructs *this using x's resources. //! //! <b>Complexity</b>: Constant if a == mx.get_allocator(), linear otherwise flat_set(BOOST_RV_REF(flat_set) mx, const allocator_type &a) : m_flat_tree(boost::move(mx.m_flat_tree), a) {} //! <b>Effects</b>: Makes *this a copy of x. //! //! <b>Complexity</b>: Linear in x.size(). flat_set& operator=(BOOST_COPY_ASSIGN_REF(flat_set) x) { m_flat_tree = x.m_flat_tree; return *this; } //! <b>Effects</b>: Makes *this a copy of the previous value of xx. //! //! <b>Complexity</b>: Linear in x.size(). flat_set& operator=(BOOST_RV_REF(flat_set) mx) { m_flat_tree = boost::move(mx.m_flat_tree); return *this; } //! <b>Effects</b>: Returns a copy of the Allocator that //! was passed to the object's constructor. //! //! <b>Complexity</b>: Constant. allocator_type get_allocator() const BOOST_CONTAINER_NOEXCEPT { return m_flat_tree.get_allocator(); } //! <b>Effects</b>: Returns a reference to the internal allocator. //! //! <b>Throws</b>: Nothing //! //! <b>Complexity</b>: Constant. //! //! <b>Note</b>: Non-standard extension. stored_allocator_type &get_stored_allocator() BOOST_CONTAINER_NOEXCEPT { return m_flat_tree.get_stored_allocator(); } //! <b>Effects</b>: Returns a reference to the internal allocator. //! //! <b>Throws</b>: Nothing //! //! <b>Complexity</b>: Constant. //! //! <b>Note</b>: Non-standard extension. const stored_allocator_type &get_stored_allocator() const BOOST_CONTAINER_NOEXCEPT { return m_flat_tree.get_stored_allocator(); } ////////////////////////////////////////////// // // iterators // ////////////////////////////////////////////// //! <b>Effects</b>: Returns an iterator to the first element contained in the container. //! //! <b>Throws</b>: Nothing. //! //! <b>Complexity</b>: Constant. iterator begin() BOOST_CONTAINER_NOEXCEPT { return m_flat_tree.begin(); } //! <b>Effects</b>: Returns a const_iterator to the first element contained in the container. //! //! <b>Throws</b>: Nothing. //! //! <b>Complexity</b>: Constant. const_iterator begin() const BOOST_CONTAINER_NOEXCEPT { return m_flat_tree.begin(); } //! <b>Effects</b>: Returns an iterator to the end of the container. //! //! <b>Throws</b>: Nothing. //! //! <b>Complexity</b>: Constant. iterator end() BOOST_CONTAINER_NOEXCEPT { return m_flat_tree.end(); } //! <b>Effects</b>: Returns a const_iterator to the end of the container. //! //! <b>Throws</b>: Nothing. //! //! <b>Complexity</b>: Constant. const_iterator end() const BOOST_CONTAINER_NOEXCEPT { return m_flat_tree.end(); } //! <b>Effects</b>: Returns a reverse_iterator pointing to the beginning //! of the reversed container. //! //! <b>Throws</b>: Nothing. //! //! <b>Complexity</b>: Constant. reverse_iterator rbegin() BOOST_CONTAINER_NOEXCEPT { return m_flat_tree.rbegin(); } //! <b>Effects</b>: Returns a const_reverse_iterator pointing to the beginning //! of the reversed container. //! //! <b>Throws</b>: Nothing. //! //! <b>Complexity</b>: Constant. const_reverse_iterator rbegin() const BOOST_CONTAINER_NOEXCEPT { return m_flat_tree.rbegin(); } //! <b>Effects</b>: Returns a reverse_iterator pointing to the end //! of the reversed container. //! //! <b>Throws</b>: Nothing. //! //! <b>Complexity</b>: Constant. reverse_iterator rend() BOOST_CONTAINER_NOEXCEPT { return m_flat_tree.rend(); } //! <b>Effects</b>: Returns a const_reverse_iterator pointing to the end //! of the reversed container. //! //! <b>Throws</b>: Nothing. //! //! <b>Complexity</b>: Constant. const_reverse_iterator rend() const BOOST_CONTAINER_NOEXCEPT { return m_flat_tree.rend(); } //! <b>Effects</b>: Returns a const_iterator to the first element contained in the container. //! //! <b>Throws</b>: Nothing. //! //! <b>Complexity</b>: Constant. const_iterator cbegin() const BOOST_CONTAINER_NOEXCEPT { return m_flat_tree.cbegin(); } //! <b>Effects</b>: Returns a const_iterator to the end of the container. //! //! <b>Throws</b>: Nothing. //! //! <b>Complexity</b>: Constant. const_iterator cend() const BOOST_CONTAINER_NOEXCEPT { return m_flat_tree.cend(); } //! <b>Effects</b>: Returns a const_reverse_iterator pointing to the beginning //! of the reversed container. //! //! <b>Throws</b>: Nothing. //! //! <b>Complexity</b>: Constant. const_reverse_iterator crbegin() const BOOST_CONTAINER_NOEXCEPT { return m_flat_tree.crbegin(); } //! <b>Effects</b>: Returns a const_reverse_iterator pointing to the end //! of the reversed container. //! //! <b>Throws</b>: Nothing. //! //! <b>Complexity</b>: Constant. const_reverse_iterator crend() const BOOST_CONTAINER_NOEXCEPT { return m_flat_tree.crend(); } ////////////////////////////////////////////// // // capacity // ////////////////////////////////////////////// //! <b>Effects</b>: Returns true if the container contains no elements. //! //! <b>Throws</b>: Nothing. //! //! <b>Complexity</b>: Constant. bool empty() const BOOST_CONTAINER_NOEXCEPT { return m_flat_tree.empty(); } //! <b>Effects</b>: Returns the number of the elements contained in the container. //! //! <b>Throws</b>: Nothing. //! //! <b>Complexity</b>: Constant. size_type size() const BOOST_CONTAINER_NOEXCEPT { return m_flat_tree.size(); } //! <b>Effects</b>: Returns the largest possible size of the container. //! //! <b>Throws</b>: Nothing. //! //! <b>Complexity</b>: Constant. size_type max_size() const BOOST_CONTAINER_NOEXCEPT { return m_flat_tree.max_size(); } //! <b>Effects</b>: Number of elements for which memory has been allocated. //! capacity() is always greater than or equal to size(). //! //! <b>Throws</b>: Nothing. //! //! <b>Complexity</b>: Constant. size_type capacity() const BOOST_CONTAINER_NOEXCEPT { return m_flat_tree.capacity(); } //! <b>Effects</b>: If n is less than or equal to capacity(), this call has no //! effect. Otherwise, it is a request for allocation of additional memory. //! If the request is successful, then capacity() is greater than or equal to //! n; otherwise, capacity() is unchanged. In either case, size() is unchanged. //! //! <b>Throws</b>: If memory allocation allocation throws or Key's copy constructor throws. //! //! <b>Note</b>: If capacity() is less than "cnt", iterators and references to //! to values might be invalidated. void reserve(size_type cnt) { m_flat_tree.reserve(cnt); } //! <b>Effects</b>: Tries to deallocate the excess of memory created // with previous allocations. The size of the vector is unchanged //! //! <b>Throws</b>: If memory allocation throws, or Key's copy constructor throws. //! //! <b>Complexity</b>: Linear to size(). void shrink_to_fit() { m_flat_tree.shrink_to_fit(); } ////////////////////////////////////////////// // // modifiers // ////////////////////////////////////////////// #if defined(BOOST_CONTAINER_PERFECT_FORWARDING) || defined(BOOST_CONTAINER_DOXYGEN_INVOKED) //! <b>Effects</b>: Inserts an object x of type Key constructed with //! std::forward<Args>(args)... if and only if there is no element in the container //! with key equivalent to the key of x. //! //! <b>Returns</b>: The bool component of the returned pair is true if and only //! if the insertion takes place, and the iterator component of the pair //! points to the element with key equivalent to the key of x. //! //! <b>Complexity</b>: Logarithmic search time plus linear insertion //! to the elements with bigger keys than x. //! //! <b>Note</b>: If an element is inserted it might invalidate elements. template <class... Args> std::pair<iterator,bool> emplace(Args&&... args) { return m_flat_tree.emplace_unique(boost::forward<Args>(args)...); } //! <b>Effects</b>: Inserts an object of type Key constructed with //! std::forward<Args>(args)... in the container if and only if there is //! no element in the container with key equivalent to the key of x. //! p is a hint pointing to where the insert should start to search. //! //! <b>Returns</b>: An iterator pointing to the element with key equivalent //! to the key of x. //! //! <b>Complexity</b>: Logarithmic search time (constant if x is inserted //! right before p) plus insertion linear to the elements with bigger keys than x. //! //! <b>Note</b>: If an element is inserted it might invalidate elements. template <class... Args> iterator emplace_hint(const_iterator hint, Args&&... args) { return m_flat_tree.emplace_hint_unique(hint, boost::forward<Args>(args)...); } #else //#ifdef BOOST_CONTAINER_PERFECT_FORWARDING #define BOOST_PP_LOCAL_MACRO(n) \ BOOST_PP_EXPR_IF(n, template<) BOOST_PP_ENUM_PARAMS(n, class P) BOOST_PP_EXPR_IF(n, >) \ std::pair<iterator,bool> emplace(BOOST_PP_ENUM(n, BOOST_CONTAINER_PP_PARAM_LIST, _)) \ { return m_flat_tree.emplace_unique(BOOST_PP_ENUM(n, BOOST_CONTAINER_PP_PARAM_FORWARD, _)); } \ \ BOOST_PP_EXPR_IF(n, template<) BOOST_PP_ENUM_PARAMS(n, class P) BOOST_PP_EXPR_IF(n, >) \ iterator emplace_hint(const_iterator hint \ BOOST_PP_ENUM_TRAILING(n, BOOST_CONTAINER_PP_PARAM_LIST, _)) \ { return m_flat_tree.emplace_hint_unique \ (hint BOOST_PP_ENUM_TRAILING(n, BOOST_CONTAINER_PP_PARAM_FORWARD, _)); } \ //! #define BOOST_PP_LOCAL_LIMITS (0, BOOST_CONTAINER_MAX_CONSTRUCTOR_PARAMETERS) #include BOOST_PP_LOCAL_ITERATE() #endif //#ifdef BOOST_CONTAINER_PERFECT_FORWARDING #if defined(BOOST_CONTAINER_DOXYGEN_INVOKED) //! <b>Effects</b>: Inserts x if and only if there is no element in the container //! with key equivalent to the key of x. //! //! <b>Returns</b>: The bool component of the returned pair is true if and only //! if the insertion takes place, and the iterator component of the pair //! points to the element with key equivalent to the key of x. //! //! <b>Complexity</b>: Logarithmic search time plus linear insertion //! to the elements with bigger keys than x. //! //! <b>Note</b>: If an element is inserted it might invalidate elements. std::pair<iterator, bool> insert(const value_type &x); //! <b>Effects</b>: Inserts a new value_type move constructed from the pair if and //! only if there is no element in the container with key equivalent to the key of x. //! //! <b>Returns</b>: The bool component of the returned pair is true if and only //! if the insertion takes place, and the iterator component of the pair //! points to the element with key equivalent to the key of x. //! //! <b>Complexity</b>: Logarithmic search time plus linear insertion //! to the elements with bigger keys than x. //! //! <b>Note</b>: If an element is inserted it might invalidate elements. std::pair<iterator, bool> insert(value_type &&x); #else private: typedef std::pair<iterator, bool> insert_return_pair; public: BOOST_MOVE_CONVERSION_AWARE_CATCH(insert, value_type, insert_return_pair, this->priv_insert) #endif #if defined(BOOST_CONTAINER_DOXYGEN_INVOKED) //! <b>Effects</b>: Inserts a copy of x in the container if and only if there is //! no element in the container with key equivalent to the key of x. //! p is a hint pointing to where the insert should start to search. //! //! <b>Returns</b>: An iterator pointing to the element with key equivalent //! to the key of x. //! //! <b>Complexity</b>: Logarithmic search time (constant if x is inserted //! right before p) plus insertion linear to the elements with bigger keys than x. //! //! <b>Note</b>: If an element is inserted it might invalidate elements. iterator insert(const_iterator p, const value_type &x); //! <b>Effects</b>: Inserts an element move constructed from x in the container. //! p is a hint pointing to where the insert should start to search. //! //! <b>Returns</b>: An iterator pointing to the element with key equivalent to the key of x. //! //! <b>Complexity</b>: Logarithmic search time (constant if x is inserted //! right before p) plus insertion linear to the elements with bigger keys than x. //! //! <b>Note</b>: If an element is inserted it might invalidate elements. iterator insert(const_iterator position, value_type &&x); #else BOOST_MOVE_CONVERSION_AWARE_CATCH_1ARG(insert, value_type, iterator, this->priv_insert, const_iterator, const_iterator) #endif //! <b>Requires</b>: first, last are not iterators into *this. //! //! <b>Effects</b>: inserts each element from the range [first,last) if and only //! if there is no element with key equivalent to the key of that element. //! //! <b>Complexity</b>: At most N log(size()+N) (N is the distance from first to last) //! search time plus N*size() insertion time. //! //! <b>Note</b>: If an element is inserted it might invalidate elements. template <class InputIterator> void insert(InputIterator first, InputIterator last) { m_flat_tree.insert_unique(first, last); } //! <b>Requires</b>: first, last are not iterators into *this and //! must be ordered according to the predicate and must be //! unique values. //! //! <b>Effects</b>: inserts each element from the range [first,last) .This function //! is more efficient than the normal range creation for ordered ranges. //! //! <b>Complexity</b>: At most N log(size()+N) (N is the distance from first to last) //! search time plus N*size() insertion time. //! //! <b>Note</b>: Non-standard extension. If an element is inserted it might invalidate elements. template <class InputIterator> void insert(ordered_unique_range_t, InputIterator first, InputIterator last) { m_flat_tree.insert_unique(ordered_unique_range, first, last); } //! <b>Effects</b>: Erases the element pointed to by position. //! //! <b>Returns</b>: Returns an iterator pointing to the element immediately //! following q prior to the element being erased. If no such element exists, //! returns end(). //! //! <b>Complexity</b>: Linear to the elements with keys bigger than position //! //! <b>Note</b>: Invalidates elements with keys //! not less than the erased element. iterator erase(const_iterator position) { return m_flat_tree.erase(position); } //! <b>Effects</b>: Erases all elements in the container with key equivalent to x. //! //! <b>Returns</b>: Returns the number of erased elements. //! //! <b>Complexity</b>: Logarithmic search time plus erasure time //! linear to the elements with bigger keys. size_type erase(const key_type& x) { return m_flat_tree.erase(x); } //! <b>Effects</b>: Erases all the elements in the range [first, last). //! //! <b>Returns</b>: Returns last. //! //! <b>Complexity</b>: size()*N where N is the distance from first to last. //! //! <b>Complexity</b>: Logarithmic search time plus erasure time //! linear to the elements with bigger keys. iterator erase(const_iterator first, const_iterator last) { return m_flat_tree.erase(first, last); } //! <b>Effects</b>: Swaps the contents of *this and x. //! //! <b>Throws</b>: Nothing. //! //! <b>Complexity</b>: Constant. void swap(flat_set& x) { m_flat_tree.swap(x.m_flat_tree); } //! <b>Effects</b>: erase(a.begin(),a.end()). //! //! <b>Postcondition</b>: size() == 0. //! //! <b>Complexity</b>: linear in size(). void clear() BOOST_CONTAINER_NOEXCEPT { m_flat_tree.clear(); } ////////////////////////////////////////////// // // observers // ////////////////////////////////////////////// //! <b>Effects</b>: Returns the comparison object out //! of which a was constructed. //! //! <b>Complexity</b>: Constant. key_compare key_comp() const { return m_flat_tree.key_comp(); } //! <b>Effects</b>: Returns an object of value_compare constructed out //! of the comparison object. //! //! <b>Complexity</b>: Constant. value_compare value_comp() const { return m_flat_tree.key_comp(); } ////////////////////////////////////////////// // // set operations // ////////////////////////////////////////////// //! <b>Returns</b>: An iterator pointing to an element with the key //! equivalent to x, or end() if such an element is not found. //! //! <b>Complexity</b>: Logarithmic. iterator find(const key_type& x) { return m_flat_tree.find(x); } //! <b>Returns</b>: Allocator const_iterator pointing to an element with the key //! equivalent to x, or end() if such an element is not found. //! //! <b>Complexity</b>: Logarithmic.s const_iterator find(const key_type& x) const { return m_flat_tree.find(x); } //! <b>Returns</b>: The number of elements with key equivalent to x. //! //! <b>Complexity</b>: log(size())+count(k) size_type count(const key_type& x) const { return static_cast<size_type>(m_flat_tree.find(x) != m_flat_tree.end()); } //! <b>Returns</b>: An iterator pointing to the first element with key not less //! than k, or a.end() if such an element is not found. //! //! <b>Complexity</b>: Logarithmic iterator lower_bound(const key_type& x) { return m_flat_tree.lower_bound(x); } //! <b>Returns</b>: Allocator const iterator pointing to the first element with key not //! less than k, or a.end() if such an element is not found. //! //! <b>Complexity</b>: Logarithmic const_iterator lower_bound(const key_type& x) const { return m_flat_tree.lower_bound(x); } //! <b>Returns</b>: An iterator pointing to the first element with key not less //! than x, or end() if such an element is not found. //! //! <b>Complexity</b>: Logarithmic iterator upper_bound(const key_type& x) { return m_flat_tree.upper_bound(x); } //! <b>Returns</b>: Allocator const iterator pointing to the first element with key not //! less than x, or end() if such an element is not found. //! //! <b>Complexity</b>: Logarithmic const_iterator upper_bound(const key_type& x) const { return m_flat_tree.upper_bound(x); } //! <b>Effects</b>: Equivalent to std::make_pair(this->lower_bound(k), this->upper_bound(k)). //! //! <b>Complexity</b>: Logarithmic std::pair<const_iterator, const_iterator> equal_range(const key_type& x) const { return m_flat_tree.equal_range(x); } //! <b>Effects</b>: Equivalent to std::make_pair(this->lower_bound(k), this->upper_bound(k)). //! //! <b>Complexity</b>: Logarithmic std::pair<iterator,iterator> equal_range(const key_type& x) { return m_flat_tree.equal_range(x); } /// @cond template <class K1, class C1, class A1> friend bool operator== (const flat_set<K1,C1,A1>&, const flat_set<K1,C1,A1>&); template <class K1, class C1, class A1> friend bool operator< (const flat_set<K1,C1,A1>&, const flat_set<K1,C1,A1>&); private: template<class KeyType> std::pair<iterator, bool> priv_insert(BOOST_FWD_REF(KeyType) x) { return m_flat_tree.insert_unique(::boost::forward<KeyType>(x)); } template<class KeyType> iterator priv_insert(const_iterator p, BOOST_FWD_REF(KeyType) x) { return m_flat_tree.insert_unique(p, ::boost::forward<KeyType>(x)); } /// @endcond }; template <class Key, class Compare, class Allocator> inline bool operator==(const flat_set<Key,Compare,Allocator>& x, const flat_set<Key,Compare,Allocator>& y) { return x.m_flat_tree == y.m_flat_tree; } template <class Key, class Compare, class Allocator> inline bool operator<(const flat_set<Key,Compare,Allocator>& x, const flat_set<Key,Compare,Allocator>& y) { return x.m_flat_tree < y.m_flat_tree; } template <class Key, class Compare, class Allocator> inline bool operator!=(const flat_set<Key,Compare,Allocator>& x, const flat_set<Key,Compare,Allocator>& y) { return !(x == y); } template <class Key, class Compare, class Allocator> inline bool operator>(const flat_set<Key,Compare,Allocator>& x, const flat_set<Key,Compare,Allocator>& y) { return y < x; } template <class Key, class Compare, class Allocator> inline bool operator<=(const flat_set<Key,Compare,Allocator>& x, const flat_set<Key,Compare,Allocator>& y) { return !(y < x); } template <class Key, class Compare, class Allocator> inline bool operator>=(const flat_set<Key,Compare,Allocator>& x, const flat_set<Key,Compare,Allocator>& y) { return !(x < y); } template <class Key, class Compare, class Allocator> inline void swap(flat_set<Key,Compare,Allocator>& x, flat_set<Key,Compare,Allocator>& y) { x.swap(y); } /// @cond } //namespace container { //!has_trivial_destructor_after_move<> == true_type //!specialization for optimizations template <class Key, class C, class Allocator> struct has_trivial_destructor_after_move<boost::container::flat_set<Key, C, Allocator> > { static const bool value = has_trivial_destructor_after_move<Allocator>::value &&has_trivial_destructor_after_move<C>::value; }; namespace container { // Forward declaration of operators < and ==, needed for friend declaration. #ifdef BOOST_CONTAINER_DOXYGEN_INVOKED template <class Key, class Compare = std::less<Key>, class Allocator = std::allocator<Key> > #else template <class Key, class Compare, class Allocator> #endif class flat_multiset; template <class Key, class Compare, class Allocator> inline bool operator==(const flat_multiset<Key,Compare,Allocator>& x, const flat_multiset<Key,Compare,Allocator>& y); template <class Key, class Compare, class Allocator> inline bool operator<(const flat_multiset<Key,Compare,Allocator>& x, const flat_multiset<Key,Compare,Allocator>& y); /// @endcond //! flat_multiset is a Sorted Associative Container that stores objects of type Key. //! //! flat_multiset can store multiple copies of the same key value. //! //! flat_multiset is similar to std::multiset but it's implemented like an ordered vector. //! This means that inserting a new element into a flat_multiset invalidates //! previous iterators and references //! //! Erasing an element invalidates iterators and references //! pointing to elements that come after (their keys are bigger) the erased element. //! //! This container provides random-access iterators. #ifdef BOOST_CONTAINER_DOXYGEN_INVOKED template <class Key, class Compare = std::less<Key>, class Allocator = std::allocator<Key> > #else template <class Key, class Compare, class Allocator> #endif class flat_multiset { /// @cond private: BOOST_COPYABLE_AND_MOVABLE(flat_multiset) typedef container_detail::flat_tree<Key, Key, container_detail::identity<Key>, Compare, Allocator> tree_t; tree_t m_flat_tree; // flat tree representing flat_multiset /// @endcond public: ////////////////////////////////////////////// // // types // ////////////////////////////////////////////// typedef Key key_type; typedef Key value_type; typedef Compare key_compare; typedef Compare value_compare; typedef typename ::boost::container::allocator_traits<Allocator>::pointer pointer; typedef typename ::boost::container::allocator_traits<Allocator>::const_pointer const_pointer; typedef typename ::boost::container::allocator_traits<Allocator>::reference reference; typedef typename ::boost::container::allocator_traits<Allocator>::const_reference const_reference; typedef typename ::boost::container::allocator_traits<Allocator>::size_type size_type; typedef typename ::boost::container::allocator_traits<Allocator>::difference_type difference_type; typedef Allocator allocator_type; typedef typename BOOST_CONTAINER_IMPDEF(tree_t::stored_allocator_type) stored_allocator_type; typedef typename BOOST_CONTAINER_IMPDEF(tree_t::iterator) iterator; typedef typename BOOST_CONTAINER_IMPDEF(tree_t::const_iterator) const_iterator; typedef typename BOOST_CONTAINER_IMPDEF(tree_t::reverse_iterator) reverse_iterator; typedef typename BOOST_CONTAINER_IMPDEF(tree_t::const_reverse_iterator) const_reverse_iterator; //! <b>Effects</b>: Default constructs an empty flat_multiset. //! //! <b>Complexity</b>: Constant. explicit flat_multiset() : m_flat_tree() {} //! <b>Effects</b>: Constructs an empty flat_multiset using the specified //! comparison object and allocator. //! //! <b>Complexity</b>: Constant. explicit flat_multiset(const Compare& comp, const allocator_type& a = allocator_type()) : m_flat_tree(comp, a) {} //! <b>Effects</b>: Constructs an empty flat_multiset using the specified allocator. //! //! <b>Complexity</b>: Constant. explicit flat_multiset(const allocator_type& a) : m_flat_tree(a) {} template <class InputIterator> flat_multiset(InputIterator first, InputIterator last, const Compare& comp = Compare(), const allocator_type& a = allocator_type()) : m_flat_tree(false, first, last, comp, a) {} //! <b>Effects</b>: Constructs an empty flat_multiset using the specified comparison object and //! allocator, and inserts elements from the ordered range [first ,last ). This function //! is more efficient than the normal range creation for ordered ranges. //! //! <b>Requires</b>: [first ,last) must be ordered according to the predicate. //! //! <b>Complexity</b>: Linear in N. //! //! <b>Note</b>: Non-standard extension. template <class InputIterator> flat_multiset(ordered_range_t, InputIterator first, InputIterator last, const Compare& comp = Compare(), const allocator_type& a = allocator_type()) : m_flat_tree(ordered_range, first, last, comp, a) {} //! <b>Effects</b>: Copy constructs a flat_multiset. //! //! <b>Complexity</b>: Linear in x.size(). flat_multiset(const flat_multiset& x) : m_flat_tree(x.m_flat_tree) {} //! <b>Effects</b>: Move constructs a flat_multiset. Constructs *this using x's resources. //! //! <b>Complexity</b>: Constant. //! //! <b>Postcondition</b>: x is emptied. flat_multiset(BOOST_RV_REF(flat_multiset) mx) : m_flat_tree(boost::move(mx.m_flat_tree)) {} //! <b>Effects</b>: Copy constructs a flat_multiset using the specified allocator. //! //! <b>Complexity</b>: Linear in x.size(). flat_multiset(const flat_multiset& x, const allocator_type &a) : m_flat_tree(x.m_flat_tree, a) {} //! <b>Effects</b>: Move constructs a flat_multiset using the specified allocator. //! Constructs *this using x's resources. //! //! <b>Complexity</b>: Constant if a == mx.get_allocator(), linear otherwise flat_multiset(BOOST_RV_REF(flat_multiset) mx, const allocator_type &a) : m_flat_tree(boost::move(mx.m_flat_tree), a) {} //! <b>Effects</b>: Makes *this a copy of x. //! //! <b>Complexity</b>: Linear in x.size(). flat_multiset& operator=(BOOST_COPY_ASSIGN_REF(flat_multiset) x) { m_flat_tree = x.m_flat_tree; return *this; } //! <b>Effects</b>: Makes *this a copy of x. //! //! <b>Complexity</b>: Linear in x.size(). flat_multiset& operator=(BOOST_RV_REF(flat_multiset) mx) { m_flat_tree = boost::move(mx.m_flat_tree); return *this; } //! <b>Effects</b>: Returns a copy of the Allocator that //! was passed to the object's constructor. //! //! <b>Complexity</b>: Constant. allocator_type get_allocator() const BOOST_CONTAINER_NOEXCEPT { return m_flat_tree.get_allocator(); } //! <b>Effects</b>: Returns a reference to the internal allocator. //! //! <b>Throws</b>: Nothing //! //! <b>Complexity</b>: Constant. //! //! <b>Note</b>: Non-standard extension. stored_allocator_type &get_stored_allocator() BOOST_CONTAINER_NOEXCEPT { return m_flat_tree.get_stored_allocator(); } //! <b>Effects</b>: Returns a reference to the internal allocator. //! //! <b>Throws</b>: Nothing //! //! <b>Complexity</b>: Constant. //! //! <b>Note</b>: Non-standard extension. const stored_allocator_type &get_stored_allocator() const BOOST_CONTAINER_NOEXCEPT { return m_flat_tree.get_stored_allocator(); } //! <b>Effects</b>: Returns an iterator to the first element contained in the container. //! //! <b>Throws</b>: Nothing. //! //! <b>Complexity</b>: Constant. iterator begin() BOOST_CONTAINER_NOEXCEPT { return m_flat_tree.begin(); } //! <b>Effects</b>: Returns a const_iterator to the first element contained in the container. //! //! <b>Throws</b>: Nothing. //! //! <b>Complexity</b>: Constant. const_iterator begin() const { return m_flat_tree.begin(); } //! <b>Effects</b>: Returns a const_iterator to the first element contained in the container. //! //! <b>Throws</b>: Nothing. //! //! <b>Complexity</b>: Constant. const_iterator cbegin() const BOOST_CONTAINER_NOEXCEPT { return m_flat_tree.cbegin(); } //! <b>Effects</b>: Returns an iterator to the end of the container. //! //! <b>Throws</b>: Nothing. //! //! <b>Complexity</b>: Constant. iterator end() BOOST_CONTAINER_NOEXCEPT { return m_flat_tree.end(); } //! <b>Effects</b>: Returns a const_iterator to the end of the container. //! //! <b>Throws</b>: Nothing. //! //! <b>Complexity</b>: Constant. const_iterator end() const BOOST_CONTAINER_NOEXCEPT { return m_flat_tree.end(); } //! <b>Effects</b>: Returns a const_iterator to the end of the container. //! //! <b>Throws</b>: Nothing. //! //! <b>Complexity</b>: Constant. const_iterator cend() const BOOST_CONTAINER_NOEXCEPT { return m_flat_tree.cend(); } //! <b>Effects</b>: Returns a reverse_iterator pointing to the beginning //! of the reversed container. //! //! <b>Throws</b>: Nothing. //! //! <b>Complexity</b>: Constant. reverse_iterator rbegin() BOOST_CONTAINER_NOEXCEPT { return m_flat_tree.rbegin(); } //! <b>Effects</b>: Returns a const_reverse_iterator pointing to the beginning //! of the reversed container. //! //! <b>Throws</b>: Nothing. //! //! <b>Complexity</b>: Constant. const_reverse_iterator rbegin() const BOOST_CONTAINER_NOEXCEPT { return m_flat_tree.rbegin(); } //! <b>Effects</b>: Returns a const_reverse_iterator pointing to the beginning //! of the reversed container. //! //! <b>Throws</b>: Nothing. //! //! <b>Complexity</b>: Constant. const_reverse_iterator crbegin() const BOOST_CONTAINER_NOEXCEPT { return m_flat_tree.crbegin(); } //! <b>Effects</b>: Returns a reverse_iterator pointing to the end //! of the reversed container. //! //! <b>Throws</b>: Nothing. //! //! <b>Complexity</b>: Constant. reverse_iterator rend() BOOST_CONTAINER_NOEXCEPT { return m_flat_tree.rend(); } //! <b>Effects</b>: Returns a const_reverse_iterator pointing to the end //! of the reversed container. //! //! <b>Throws</b>: Nothing. //! //! <b>Complexity</b>: Constant. const_reverse_iterator rend() const BOOST_CONTAINER_NOEXCEPT { return m_flat_tree.rend(); } //! <b>Effects</b>: Returns a const_reverse_iterator pointing to the end //! of the reversed container. //! //! <b>Throws</b>: Nothing. //! //! <b>Complexity</b>: Constant. const_reverse_iterator crend() const BOOST_CONTAINER_NOEXCEPT { return m_flat_tree.crend(); } ////////////////////////////////////////////// // // capacity // ////////////////////////////////////////////// //! <b>Effects</b>: Returns true if the container contains no elements. //! //! <b>Throws</b>: Nothing. //! //! <b>Complexity</b>: Constant. bool empty() const BOOST_CONTAINER_NOEXCEPT { return m_flat_tree.empty(); } //! <b>Effects</b>: Returns the number of the elements contained in the container. //! //! <b>Throws</b>: Nothing. //! //! <b>Complexity</b>: Constant. size_type size() const BOOST_CONTAINER_NOEXCEPT { return m_flat_tree.size(); } //! <b>Effects</b>: Returns the largest possible size of the container. //! //! <b>Throws</b>: Nothing. //! //! <b>Complexity</b>: Constant. size_type max_size() const BOOST_CONTAINER_NOEXCEPT { return m_flat_tree.max_size(); } //! <b>Effects</b>: Number of elements for which memory has been allocated. //! capacity() is always greater than or equal to size(). //! //! <b>Throws</b>: Nothing. //! //! <b>Complexity</b>: Constant. size_type capacity() const BOOST_CONTAINER_NOEXCEPT { return m_flat_tree.capacity(); } //! <b>Effects</b>: If n is less than or equal to capacity(), this call has no //! effect. Otherwise, it is a request for allocation of additional memory. //! If the request is successful, then capacity() is greater than or equal to //! n; otherwise, capacity() is unchanged. In either case, size() is unchanged. //! //! <b>Throws</b>: If memory allocation allocation throws or Key's copy constructor throws. //! //! <b>Note</b>: If capacity() is less than "cnt", iterators and references to //! to values might be invalidated. void reserve(size_type cnt) { m_flat_tree.reserve(cnt); } //! <b>Effects</b>: Tries to deallocate the excess of memory created // with previous allocations. The size of the vector is unchanged //! //! <b>Throws</b>: If memory allocation throws, or Key's copy constructor throws. //! //! <b>Complexity</b>: Linear to size(). void shrink_to_fit() { m_flat_tree.shrink_to_fit(); } ////////////////////////////////////////////// // // modifiers // ////////////////////////////////////////////// #if defined(BOOST_CONTAINER_PERFECT_FORWARDING) || defined(BOOST_CONTAINER_DOXYGEN_INVOKED) //! <b>Effects</b>: Inserts an object of type Key constructed with //! std::forward<Args>(args)... and returns the iterator pointing to the //! newly inserted element. //! //! <b>Complexity</b>: Logarithmic search time plus linear insertion //! to the elements with bigger keys than x. //! //! <b>Note</b>: If an element is inserted it might invalidate elements. template <class... Args> iterator emplace(Args&&... args) { return m_flat_tree.emplace_equal(boost::forward<Args>(args)...); } //! <b>Effects</b>: Inserts an object of type Key constructed with //! std::forward<Args>(args)... in the container. //! p is a hint pointing to where the insert should start to search. //! //! <b>Returns</b>: An iterator pointing to the element with key equivalent //! to the key of x. //! //! <b>Complexity</b>: Logarithmic search time (constant if x is inserted //! right before p) plus insertion linear to the elements with bigger keys than x. //! //! <b>Note</b>: If an element is inserted it might invalidate elements. template <class... Args> iterator emplace_hint(const_iterator hint, Args&&... args) { return m_flat_tree.emplace_hint_equal(hint, boost::forward<Args>(args)...); } #else //#ifdef BOOST_CONTAINER_PERFECT_FORWARDING #define BOOST_PP_LOCAL_MACRO(n) \ BOOST_PP_EXPR_IF(n, template<) BOOST_PP_ENUM_PARAMS(n, class P) BOOST_PP_EXPR_IF(n, >) \ iterator emplace(BOOST_PP_ENUM(n, BOOST_CONTAINER_PP_PARAM_LIST, _)) \ { return m_flat_tree.emplace_equal(BOOST_PP_ENUM(n, BOOST_CONTAINER_PP_PARAM_FORWARD, _)); } \ \ BOOST_PP_EXPR_IF(n, template<) BOOST_PP_ENUM_PARAMS(n, class P) BOOST_PP_EXPR_IF(n, >) \ iterator emplace_hint(const_iterator hint \ BOOST_PP_ENUM_TRAILING(n, BOOST_CONTAINER_PP_PARAM_LIST, _)) \ { return m_flat_tree.emplace_hint_equal \ (hint BOOST_PP_ENUM_TRAILING(n, BOOST_CONTAINER_PP_PARAM_FORWARD, _)); } \ //! #define BOOST_PP_LOCAL_LIMITS (0, BOOST_CONTAINER_MAX_CONSTRUCTOR_PARAMETERS) #include BOOST_PP_LOCAL_ITERATE() #endif //#ifdef BOOST_CONTAINER_PERFECT_FORWARDING #if defined(BOOST_CONTAINER_DOXYGEN_INVOKED) //! <b>Effects</b>: Inserts x and returns the iterator pointing to the //! newly inserted element. //! //! <b>Complexity</b>: Logarithmic search time plus linear insertion //! to the elements with bigger keys than x. //! //! <b>Note</b>: If an element is inserted it might invalidate elements. iterator insert(const value_type &x); //! <b>Effects</b>: Inserts a new value_type move constructed from x //! and returns the iterator pointing to the newly inserted element. //! //! <b>Complexity</b>: Logarithmic search time plus linear insertion //! to the elements with bigger keys than x. //! //! <b>Note</b>: If an element is inserted it might invalidate elements. iterator insert(value_type &&x); #else BOOST_MOVE_CONVERSION_AWARE_CATCH(insert, value_type, iterator, this->priv_insert) #endif #if defined(BOOST_CONTAINER_DOXYGEN_INVOKED) //! <b>Effects</b>: Inserts a copy of x in the container. //! p is a hint pointing to where the insert should start to search. //! //! <b>Returns</b>: An iterator pointing to the element with key equivalent //! to the key of x. //! //! <b>Complexity</b>: Logarithmic search time (constant if x is inserted //! right before p) plus insertion linear to the elements with bigger keys than x. //! //! <b>Note</b>: If an element is inserted it might invalidate elements. iterator insert(const_iterator p, const value_type &x); //! <b>Effects</b>: Inserts a new value move constructed from x in the container. //! p is a hint pointing to where the insert should start to search. //! //! <b>Returns</b>: An iterator pointing to the element with key equivalent //! to the key of x. //! //! <b>Complexity</b>: Logarithmic search time (constant if x is inserted //! right before p) plus insertion linear to the elements with bigger keys than x. //! //! <b>Note</b>: If an element is inserted it might invalidate elements. iterator insert(const_iterator position, value_type &&x); #else BOOST_MOVE_CONVERSION_AWARE_CATCH_1ARG(insert, value_type, iterator, this->priv_insert, const_iterator, const_iterator) #endif //! <b>Requires</b>: first, last are not iterators into *this. //! //! <b>Effects</b>: inserts each element from the range [first,last) . //! //! <b>Complexity</b>: At most N log(size()+N) (N is the distance from first to last) //! search time plus N*size() insertion time. //! //! <b>Note</b>: If an element is inserted it might invalidate elements. template <class InputIterator> void insert(InputIterator first, InputIterator last) { m_flat_tree.insert_equal(first, last); } //! <b>Requires</b>: first, last are not iterators into *this and //! must be ordered according to the predicate. //! //! <b>Effects</b>: inserts each element from the range [first,last) .This function //! is more efficient than the normal range creation for ordered ranges. //! //! <b>Complexity</b>: At most N log(size()+N) (N is the distance from first to last) //! search time plus N*size() insertion time. //! //! <b>Note</b>: Non-standard extension. If an element is inserted it might invalidate elements. template <class InputIterator> void insert(ordered_range_t, InputIterator first, InputIterator last) { m_flat_tree.insert_equal(ordered_range, first, last); } //! <b>Effects</b>: Erases the element pointed to by position. //! //! <b>Returns</b>: Returns an iterator pointing to the element immediately //! following q prior to the element being erased. If no such element exists, //! returns end(). //! //! <b>Complexity</b>: Linear to the elements with keys bigger than position //! //! <b>Note</b>: Invalidates elements with keys //! not less than the erased element. iterator erase(const_iterator position) { return m_flat_tree.erase(position); } //! <b>Effects</b>: Erases all elements in the container with key equivalent to x. //! //! <b>Returns</b>: Returns the number of erased elements. //! //! <b>Complexity</b>: Logarithmic search time plus erasure time //! linear to the elements with bigger keys. size_type erase(const key_type& x) { return m_flat_tree.erase(x); } //! <b>Effects</b>: Erases all the elements in the range [first, last). //! //! <b>Returns</b>: Returns last. //! //! <b>Complexity</b>: size()*N where N is the distance from first to last. //! //! <b>Complexity</b>: Logarithmic search time plus erasure time //! linear to the elements with bigger keys. iterator erase(const_iterator first, const_iterator last) { return m_flat_tree.erase(first, last); } //! <b>Effects</b>: Swaps the contents of *this and x. //! //! <b>Throws</b>: Nothing. //! //! <b>Complexity</b>: Constant. void swap(flat_multiset& x) { m_flat_tree.swap(x.m_flat_tree); } //! <b>Effects</b>: erase(a.begin(),a.end()). //! //! <b>Postcondition</b>: size() == 0. //! //! <b>Complexity</b>: linear in size(). void clear() BOOST_CONTAINER_NOEXCEPT { m_flat_tree.clear(); } ////////////////////////////////////////////// // // observers // ////////////////////////////////////////////// //! <b>Effects</b>: Returns the comparison object out //! of which a was constructed. //! //! <b>Complexity</b>: Constant. key_compare key_comp() const { return m_flat_tree.key_comp(); } //! <b>Effects</b>: Returns an object of value_compare constructed out //! of the comparison object. //! //! <b>Complexity</b>: Constant. value_compare value_comp() const { return m_flat_tree.key_comp(); } ////////////////////////////////////////////// // // set operations // ////////////////////////////////////////////// //! <b>Returns</b>: An iterator pointing to an element with the key //! equivalent to x, or end() if such an element is not found. //! //! <b>Complexity</b>: Logarithmic. iterator find(const key_type& x) { return m_flat_tree.find(x); } //! <b>Returns</b>: Allocator const_iterator pointing to an element with the key //! equivalent to x, or end() if such an element is not found. //! //! <b>Complexity</b>: Logarithmic.s const_iterator find(const key_type& x) const { return m_flat_tree.find(x); } //! <b>Returns</b>: The number of elements with key equivalent to x. //! //! <b>Complexity</b>: log(size())+count(k) size_type count(const key_type& x) const { return m_flat_tree.count(x); } //! <b>Returns</b>: An iterator pointing to the first element with key not less //! than k, or a.end() if such an element is not found. //! //! <b>Complexity</b>: Logarithmic iterator lower_bound(const key_type& x) { return m_flat_tree.lower_bound(x); } //! <b>Returns</b>: Allocator const iterator pointing to the first element with key not //! less than k, or a.end() if such an element is not found. //! //! <b>Complexity</b>: Logarithmic const_iterator lower_bound(const key_type& x) const { return m_flat_tree.lower_bound(x); } //! <b>Returns</b>: An iterator pointing to the first element with key not less //! than x, or end() if such an element is not found. //! //! <b>Complexity</b>: Logarithmic iterator upper_bound(const key_type& x) { return m_flat_tree.upper_bound(x); } //! <b>Returns</b>: Allocator const iterator pointing to the first element with key not //! less than x, or end() if such an element is not found. //! //! <b>Complexity</b>: Logarithmic const_iterator upper_bound(const key_type& x) const { return m_flat_tree.upper_bound(x); } //! <b>Effects</b>: Equivalent to std::make_pair(this->lower_bound(k), this->upper_bound(k)). //! //! <b>Complexity</b>: Logarithmic std::pair<const_iterator, const_iterator> equal_range(const key_type& x) const { return m_flat_tree.equal_range(x); } //! <b>Effects</b>: Equivalent to std::make_pair(this->lower_bound(k), this->upper_bound(k)). //! //! <b>Complexity</b>: Logarithmic std::pair<iterator,iterator> equal_range(const key_type& x) { return m_flat_tree.equal_range(x); } /// @cond template <class K1, class C1, class A1> friend bool operator== (const flat_multiset<K1,C1,A1>&, const flat_multiset<K1,C1,A1>&); template <class K1, class C1, class A1> friend bool operator< (const flat_multiset<K1,C1,A1>&, const flat_multiset<K1,C1,A1>&); private: template <class KeyType> iterator priv_insert(BOOST_FWD_REF(KeyType) x) { return m_flat_tree.insert_equal(::boost::forward<KeyType>(x)); } template <class KeyType> iterator priv_insert(const_iterator p, BOOST_FWD_REF(KeyType) x) { return m_flat_tree.insert_equal(p, ::boost::forward<KeyType>(x)); } /// @endcond }; template <class Key, class Compare, class Allocator> inline bool operator==(const flat_multiset<Key,Compare,Allocator>& x, const flat_multiset<Key,Compare,Allocator>& y) { return x.m_flat_tree == y.m_flat_tree; } template <class Key, class Compare, class Allocator> inline bool operator<(const flat_multiset<Key,Compare,Allocator>& x, const flat_multiset<Key,Compare,Allocator>& y) { return x.m_flat_tree < y.m_flat_tree; } template <class Key, class Compare, class Allocator> inline bool operator!=(const flat_multiset<Key,Compare,Allocator>& x, const flat_multiset<Key,Compare,Allocator>& y) { return !(x == y); } template <class Key, class Compare, class Allocator> inline bool operator>(const flat_multiset<Key,Compare,Allocator>& x, const flat_multiset<Key,Compare,Allocator>& y) { return y < x; } template <class Key, class Compare, class Allocator> inline bool operator<=(const flat_multiset<Key,Compare,Allocator>& x, const flat_multiset<Key,Compare,Allocator>& y) { return !(y < x); } template <class Key, class Compare, class Allocator> inline bool operator>=(const flat_multiset<Key,Compare,Allocator>& x, const flat_multiset<Key,Compare,Allocator>& y) { return !(x < y); } template <class Key, class Compare, class Allocator> inline void swap(flat_multiset<Key,Compare,Allocator>& x, flat_multiset<Key,Compare,Allocator>& y) { x.swap(y); } /// @cond } //namespace container { //!has_trivial_destructor_after_move<> == true_type //!specialization for optimizations template <class Key, class C, class Allocator> struct has_trivial_destructor_after_move<boost::container::flat_multiset<Key, C, Allocator> > { static const bool value = has_trivial_destructor_after_move<Allocator>::value && has_trivial_destructor_after_move<C>::value; }; namespace container { /// @endcond }} #include <boost/container/detail/config_end.hpp> #endif /* BOOST_CONTAINER_FLAT_SET_HPP */