Mercurial > hg > vamp-build-and-test
view DEPENDENCIES/generic/include/boost/container/slist.hpp @ 16:2665513ce2d3
Add boost headers
author | Chris Cannam |
---|---|
date | Tue, 05 Aug 2014 11:11:38 +0100 |
parents | |
children | c530137014c0 |
line wrap: on
line source
////////////////////////////////////////////////////////////////////////////// // // (C) Copyright Ion Gaztanaga 2004-2012. Distributed under the Boost // Software License, Version 1.0. (See accompanying file // LICENSE_1_0.txt or copy at http://www.boost.org/LICENSE_1_0.txt) // // See http://www.boost.org/libs/container for documentation. // ////////////////////////////////////////////////////////////////////////////// #ifndef BOOST_CONTAINER_SLIST_HPP #define BOOST_CONTAINER_SLIST_HPP #if defined(_MSC_VER) # pragma once #endif #include <boost/container/detail/config_begin.hpp> #include <boost/container/detail/workaround.hpp> #include <boost/container/container_fwd.hpp> #include <boost/container/throw_exception.hpp> #include <boost/move/utility.hpp> #include <boost/move/detail/move_helpers.hpp> #include <boost/intrusive/pointer_traits.hpp> #include <boost/container/detail/utilities.hpp> #include <boost/container/detail/iterators.hpp> #include <boost/container/detail/mpl.hpp> #include <boost/container/detail/type_traits.hpp> #include <boost/type_traits/has_trivial_destructor.hpp> #include <boost/detail/no_exceptions_support.hpp> #include <boost/container/detail/node_alloc_holder.hpp> #include <boost/intrusive/slist.hpp> #if defined(BOOST_CONTAINER_PERFECT_FORWARDING) || defined(BOOST_CONTAINER_DOXYGEN_INVOKED) //Preprocessor library to emulate perfect forwarding #else #include <boost/container/detail/preprocessor.hpp> #endif #include <iterator> #include <utility> #include <memory> #include <functional> #include <algorithm> namespace boost { namespace container { /// @cond template <class T, class Allocator> class slist; namespace container_detail { template<class VoidPointer> struct slist_hook { typedef typename container_detail::bi::make_slist_base_hook <container_detail::bi::void_pointer<VoidPointer>, container_detail::bi::link_mode<container_detail::bi::normal_link> >::type type; }; template <class T, class VoidPointer> struct slist_node : public slist_hook<VoidPointer>::type { private: slist_node(); public: typedef T value_type; typedef typename slist_hook<VoidPointer>::type hook_type; T m_data; T &get_data() { return this->m_data; } const T &get_data() const { return this->m_data; } }; template<class Allocator> struct intrusive_slist_type { typedef boost::container::allocator_traits<Allocator> allocator_traits_type; typedef typename allocator_traits_type::value_type value_type; typedef typename boost::intrusive::pointer_traits <typename allocator_traits_type::pointer>::template rebind_pointer<void>::type void_pointer; typedef typename container_detail::slist_node <value_type, void_pointer> node_type; typedef typename container_detail::bi::make_slist <node_type ,container_detail::bi::base_hook<typename slist_hook<void_pointer>::type> ,container_detail::bi::constant_time_size<true> , container_detail::bi::size_type <typename allocator_traits_type::size_type> >::type container_type; typedef container_type type ; }; } //namespace container_detail { /// @endcond //! An slist is a singly linked list: a list where each element is linked to the next //! element, but not to the previous element. That is, it is a Sequence that //! supports forward but not backward traversal, and (amortized) constant time //! insertion and removal of elements. Slists, like lists, have the important //! property that insertion and splicing do not invalidate iterators to list elements, //! and that even removal invalidates only the iterators that point to the elements //! that are removed. The ordering of iterators may be changed (that is, //! slist<T>::iterator might have a different predecessor or successor after a list //! operation than it did before), but the iterators themselves will not be invalidated //! or made to point to different elements unless that invalidation or mutation is explicit. //! //! The main difference between slist and list is that list's iterators are bidirectional //! iterators, while slist's iterators are forward iterators. This means that slist is //! less versatile than list; frequently, however, bidirectional iterators are //! unnecessary. You should usually use slist unless you actually need the extra //! functionality of list, because singly linked lists are smaller and faster than double //! linked lists. //! //! Important performance note: like every other Sequence, slist defines the member //! functions insert and erase. Using these member functions carelessly, however, can //! result in disastrously slow programs. The problem is that insert's first argument is //! an iterator p, and that it inserts the new element(s) before p. This means that //! insert must find the iterator just before p; this is a constant-time operation //! for list, since list has bidirectional iterators, but for slist it must find that //! iterator by traversing the list from the beginning up to p. In other words: //! insert and erase are slow operations anywhere but near the beginning of the slist. //! //! Slist provides the member functions insert_after and erase_after, which are constant //! time operations: you should always use insert_after and erase_after whenever //! possible. If you find that insert_after and erase_after aren't adequate for your //! needs, and that you often need to use insert and erase in the middle of the list, //! then you should probably use list instead of slist. #ifdef BOOST_CONTAINER_DOXYGEN_INVOKED template <class T, class Allocator = std::allocator<T> > #else template <class T, class Allocator> #endif class slist : protected container_detail::node_alloc_holder <Allocator, typename container_detail::intrusive_slist_type<Allocator>::type> { /// @cond typedef typename container_detail::intrusive_slist_type<Allocator>::type Icont; typedef container_detail::node_alloc_holder<Allocator, Icont> AllocHolder; typedef typename AllocHolder::NodePtr NodePtr; typedef typename AllocHolder::NodeAlloc NodeAlloc; typedef typename AllocHolder::ValAlloc ValAlloc; typedef typename AllocHolder::Node Node; typedef container_detail::allocator_destroyer<NodeAlloc> Destroyer; typedef typename AllocHolder::allocator_v1 allocator_v1; typedef typename AllocHolder::allocator_v2 allocator_v2; typedef typename AllocHolder::alloc_version alloc_version; typedef boost::container::allocator_traits<Allocator> allocator_traits_type; class equal_to_value { typedef typename AllocHolder::value_type value_type; const value_type &t_; public: equal_to_value(const value_type &t) : t_(t) {} bool operator()(const value_type &t)const { return t_ == t; } }; template<class Pred> struct ValueCompareToNodeCompare : Pred { ValueCompareToNodeCompare(Pred pred) : Pred(pred) {} bool operator()(const Node &a, const Node &b) const { return static_cast<const Pred&>(*this)(a.m_data, b.m_data); } bool operator()(const Node &a) const { return static_cast<const Pred&>(*this)(a.m_data); } }; BOOST_COPYABLE_AND_MOVABLE(slist) typedef container_detail::iterator<typename Icont::iterator, false> iterator_impl; typedef container_detail::iterator<typename Icont::iterator, true > const_iterator_impl; /// @endcond public: ////////////////////////////////////////////// // // types // ////////////////////////////////////////////// typedef T value_type; typedef typename ::boost::container::allocator_traits<Allocator>::pointer pointer; typedef typename ::boost::container::allocator_traits<Allocator>::const_pointer const_pointer; typedef typename ::boost::container::allocator_traits<Allocator>::reference reference; typedef typename ::boost::container::allocator_traits<Allocator>::const_reference const_reference; typedef typename ::boost::container::allocator_traits<Allocator>::size_type size_type; typedef typename ::boost::container::allocator_traits<Allocator>::difference_type difference_type; typedef Allocator allocator_type; typedef BOOST_CONTAINER_IMPDEF(NodeAlloc) stored_allocator_type; typedef BOOST_CONTAINER_IMPDEF(iterator_impl) iterator; typedef BOOST_CONTAINER_IMPDEF(const_iterator_impl) const_iterator; public: ////////////////////////////////////////////// // // construct/copy/destroy // ////////////////////////////////////////////// //! <b>Effects</b>: Constructs a list taking the allocator as parameter. //! //! <b>Throws</b>: If allocator_type's copy constructor throws. //! //! <b>Complexity</b>: Constant. slist() : AllocHolder() {} //! <b>Effects</b>: Constructs a list taking the allocator as parameter. //! //! <b>Throws</b>: Nothing //! //! <b>Complexity</b>: Constant. explicit slist(const allocator_type& a) BOOST_CONTAINER_NOEXCEPT : AllocHolder(a) {} explicit slist(size_type n) : AllocHolder(allocator_type()) { this->resize(n); } //! <b>Effects</b>: Constructs a list that will use a copy of allocator a //! and inserts n copies of value. //! //! <b>Throws</b>: If allocator_type's default constructor or copy constructor //! throws or T's default or copy constructor throws. //! //! <b>Complexity</b>: Linear to n. explicit slist(size_type n, const value_type& x, const allocator_type& a = allocator_type()) : AllocHolder(a) { this->insert_after(this->cbefore_begin(), n, x); } //! <b>Effects</b>: Constructs a list that will use a copy of allocator a //! and inserts a copy of the range [first, last) in the list. //! //! <b>Throws</b>: If allocator_type's default constructor or copy constructor //! throws or T's constructor taking an dereferenced InIt throws. //! //! <b>Complexity</b>: Linear to the range [first, last). template <class InpIt> slist(InpIt first, InpIt last, const allocator_type& a = allocator_type()) : AllocHolder(a) { this->insert_after(this->cbefore_begin(), first, last); } //! <b>Effects</b>: Copy constructs a list. //! //! <b>Postcondition</b>: x == *this. //! //! <b>Throws</b>: If allocator_type's default constructor or copy constructor throws. //! //! <b>Complexity</b>: Linear to the elements x contains. slist(const slist& x) : AllocHolder(x) { this->insert_after(this->cbefore_begin(), x.begin(), x.end()); } //! <b>Effects</b>: Move constructor. Moves mx's resources to *this. //! //! <b>Throws</b>: If allocator_type's copy constructor throws. //! //! <b>Complexity</b>: Constant. slist(BOOST_RV_REF(slist) x) : AllocHolder(boost::move(static_cast<AllocHolder&>(x))) {} //! <b>Effects</b>: Copy constructs a list using the specified allocator. //! //! <b>Postcondition</b>: x == *this. //! //! <b>Throws</b>: If allocator_type's default constructor or copy constructor throws. //! //! <b>Complexity</b>: Linear to the elements x contains. slist(const slist& x, const allocator_type &a) : AllocHolder(a) { this->insert_after(this->cbefore_begin(), x.begin(), x.end()); } //! <b>Effects</b>: Move constructor using the specified allocator. //! Moves x's resources to *this. //! //! <b>Throws</b>: If allocation or value_type's copy constructor throws. //! //! <b>Complexity</b>: Constant if a == x.get_allocator(), linear otherwise. slist(BOOST_RV_REF(slist) x, const allocator_type &a) : AllocHolder(a) { if(this->node_alloc() == x.node_alloc()){ this->icont().swap(x.icont()); } else{ this->insert(this->cbegin(), x.begin(), x.end()); } } //! <b>Effects</b>: Destroys the list. All stored values are destroyed //! and used memory is deallocated. //! //! <b>Throws</b>: Nothing. //! //! <b>Complexity</b>: Linear to the number of elements. ~slist() BOOST_CONTAINER_NOEXCEPT {} //AllocHolder clears the slist //! <b>Effects</b>: Makes *this contain the same elements as x. //! //! <b>Postcondition</b>: this->size() == x.size(). *this contains a copy //! of each of x's elements. //! //! <b>Throws</b>: If memory allocation throws or T's copy constructor throws. //! //! <b>Complexity</b>: Linear to the number of elements in x. slist& operator= (BOOST_COPY_ASSIGN_REF(slist) x) { if (&x != this){ NodeAlloc &this_alloc = this->node_alloc(); const NodeAlloc &x_alloc = x.node_alloc(); container_detail::bool_<allocator_traits_type:: propagate_on_container_copy_assignment::value> flag; if(flag && this_alloc != x_alloc){ this->clear(); } this->AllocHolder::copy_assign_alloc(x); this->assign(x.begin(), x.end()); } return *this; } //! <b>Effects</b>: Makes *this contain the same elements as x. //! //! <b>Postcondition</b>: this->size() == x.size(). *this contains a copy //! of each of x's elements. //! //! <b>Throws</b>: If memory allocation throws or T's copy constructor throws. //! //! <b>Complexity</b>: Linear to the number of elements in x. slist& operator= (BOOST_RV_REF(slist) x) { if (&x != this){ NodeAlloc &this_alloc = this->node_alloc(); NodeAlloc &x_alloc = x.node_alloc(); //If allocators a re equal we can just swap pointers if(this_alloc == x_alloc){ //Destroy and swap pointers this->clear(); this->icont() = boost::move(x.icont()); //Move allocator if needed this->AllocHolder::move_assign_alloc(x); } //If unequal allocators, then do a one by one move else{ this->assign( boost::make_move_iterator(x.begin()) , boost::make_move_iterator(x.end())); } } return *this; } //! <b>Effects</b>: Assigns the n copies of val to *this. //! //! <b>Throws</b>: If memory allocation throws or T's copy constructor throws. //! //! <b>Complexity</b>: Linear to n. void assign(size_type n, const T& val) { typedef constant_iterator<value_type, difference_type> cvalue_iterator; return this->assign(cvalue_iterator(val, n), cvalue_iterator()); } //! <b>Effects</b>: Assigns the range [first, last) to *this. //! //! <b>Throws</b>: If memory allocation throws or //! T's constructor from dereferencing InpIt throws. //! //! <b>Complexity</b>: Linear to n. template <class InpIt> void assign(InpIt first, InpIt last #if !defined(BOOST_CONTAINER_DOXYGEN_INVOKED) , typename container_detail::enable_if_c < !container_detail::is_convertible<InpIt, size_type>::value >::type * = 0 #endif ) { iterator end_n(this->end()); iterator prev(this->before_begin()); iterator node(this->begin()); while (node != end_n && first != last){ *node = *first; prev = node; ++node; ++first; } if (first != last) this->insert_after(prev, first, last); else this->erase_after(prev, end_n); } //! <b>Effects</b>: Returns a copy of the internal allocator. //! //! <b>Throws</b>: If allocator's copy constructor throws. //! //! <b>Complexity</b>: Constant. allocator_type get_allocator() const BOOST_CONTAINER_NOEXCEPT { return allocator_type(this->node_alloc()); } //! <b>Effects</b>: Returns a reference to the internal allocator. //! //! <b>Throws</b>: Nothing //! //! <b>Complexity</b>: Constant. //! //! <b>Note</b>: Non-standard extension. stored_allocator_type &get_stored_allocator() BOOST_CONTAINER_NOEXCEPT { return this->node_alloc(); } //! <b>Effects</b>: Returns a reference to the internal allocator. //! //! <b>Throws</b>: Nothing //! //! <b>Complexity</b>: Constant. //! //! <b>Note</b>: Non-standard extension. const stored_allocator_type &get_stored_allocator() const BOOST_CONTAINER_NOEXCEPT { return this->node_alloc(); } ////////////////////////////////////////////// // // iterators // ////////////////////////////////////////////// //! <b>Effects</b>: Returns a non-dereferenceable iterator that, //! when incremented, yields begin(). This iterator may be used //! as the argument to insert_after, erase_after, etc. //! //! <b>Throws</b>: Nothing. //! //! <b>Complexity</b>: Constant. iterator before_begin() BOOST_CONTAINER_NOEXCEPT { return iterator(end()); } //! <b>Effects</b>: Returns a non-dereferenceable const_iterator //! that, when incremented, yields begin(). This iterator may be used //! as the argument to insert_after, erase_after, etc. //! //! <b>Throws</b>: Nothing. //! //! <b>Complexity</b>: Constant. const_iterator before_begin() const BOOST_CONTAINER_NOEXCEPT { return this->cbefore_begin(); } //! <b>Effects</b>: Returns an iterator to the first element contained in the list. //! //! <b>Throws</b>: Nothing. //! //! <b>Complexity</b>: Constant. iterator begin() BOOST_CONTAINER_NOEXCEPT { return iterator(this->icont().begin()); } //! <b>Effects</b>: Returns a const_iterator to the first element contained in the list. //! //! <b>Throws</b>: Nothing. //! //! <b>Complexity</b>: Constant. const_iterator begin() const BOOST_CONTAINER_NOEXCEPT { return this->cbegin(); } //! <b>Effects</b>: Returns an iterator to the end of the list. //! //! <b>Throws</b>: Nothing. //! //! <b>Complexity</b>: Constant. iterator end() BOOST_CONTAINER_NOEXCEPT { return iterator(this->icont().end()); } //! <b>Effects</b>: Returns a const_iterator to the end of the list. //! //! <b>Throws</b>: Nothing. //! //! <b>Complexity</b>: Constant. const_iterator end() const BOOST_CONTAINER_NOEXCEPT { return this->cend(); } //! <b>Effects</b>: Returns a non-dereferenceable const_iterator //! that, when incremented, yields begin(). This iterator may be used //! as the argument to insert_after, erase_after, etc. //! //! <b>Throws</b>: Nothing. //! //! <b>Complexity</b>: Constant. const_iterator cbefore_begin() const BOOST_CONTAINER_NOEXCEPT { return const_iterator(end()); } //! <b>Effects</b>: Returns a const_iterator to the first element contained in the list. //! //! <b>Throws</b>: Nothing. //! //! <b>Complexity</b>: Constant. const_iterator cbegin() const BOOST_CONTAINER_NOEXCEPT { return const_iterator(this->non_const_icont().begin()); } //! <b>Effects</b>: Returns a const_iterator to the end of the list. //! //! <b>Throws</b>: Nothing. //! //! <b>Complexity</b>: Constant. const_iterator cend() const BOOST_CONTAINER_NOEXCEPT { return const_iterator(this->non_const_icont().end()); } //! <b>Returns</b>: The iterator to the element before i in the sequence. //! Returns the end-iterator, if either i is the begin-iterator or the //! sequence is empty. //! //! <b>Throws</b>: Nothing. //! //! <b>Complexity</b>: Linear to the number of elements before i. //! //! <b>Note</b>: Non-standard extension. iterator previous(iterator p) BOOST_CONTAINER_NOEXCEPT { return iterator(this->icont().previous(p.get())); } //! <b>Returns</b>: The const_iterator to the element before i in the sequence. //! Returns the end-const_iterator, if either i is the begin-const_iterator or //! the sequence is empty. //! //! <b>Throws</b>: Nothing. //! //! <b>Complexity</b>: Linear to the number of elements before i. //! //! <b>Note</b>: Non-standard extension. const_iterator previous(const_iterator p) { return const_iterator(this->icont().previous(p.get())); } ////////////////////////////////////////////// // // capacity // ////////////////////////////////////////////// //! <b>Effects</b>: Returns true if the list contains no elements. //! //! <b>Throws</b>: Nothing. //! //! <b>Complexity</b>: Constant. bool empty() const { return !this->size(); } //! <b>Effects</b>: Returns the number of the elements contained in the list. //! //! <b>Throws</b>: Nothing. //! //! <b>Complexity</b>: Constant. size_type size() const { return this->icont().size(); } //! <b>Effects</b>: Returns the largest possible size of the list. //! //! <b>Throws</b>: Nothing. //! //! <b>Complexity</b>: Constant. size_type max_size() const { return AllocHolder::max_size(); } //! <b>Effects</b>: Inserts or erases elements at the end such that //! the size becomes n. New elements are value initialized. //! //! <b>Throws</b>: If memory allocation throws, or T's copy constructor throws. //! //! <b>Complexity</b>: Linear to the difference between size() and new_size. void resize(size_type new_size) { const_iterator last_pos; if(!priv_try_shrink(new_size, last_pos)){ typedef value_init_construct_iterator<value_type, difference_type> value_init_iterator; this->insert_after(last_pos, value_init_iterator(new_size - this->size()), value_init_iterator()); } } //! <b>Effects</b>: Inserts or erases elements at the end such that //! the size becomes n. New elements are copy constructed from x. //! //! <b>Throws</b>: If memory allocation throws, or T's copy constructor throws. //! //! <b>Complexity</b>: Linear to the difference between size() and new_size. void resize(size_type new_size, const T& x) { const_iterator last_pos; if(!priv_try_shrink(new_size, last_pos)){ this->insert_after(last_pos, new_size, x); } } ////////////////////////////////////////////// // // element access // ////////////////////////////////////////////// //! <b>Requires</b>: !empty() //! //! <b>Effects</b>: Returns a reference to the first element //! from the beginning of the container. //! //! <b>Throws</b>: Nothing. //! //! <b>Complexity</b>: Constant. reference front() { return *this->begin(); } //! <b>Requires</b>: !empty() //! //! <b>Effects</b>: Returns a const reference to the first element //! from the beginning of the container. //! //! <b>Throws</b>: Nothing. //! //! <b>Complexity</b>: Constant. const_reference front() const { return *this->begin(); } ////////////////////////////////////////////// // // modifiers // ////////////////////////////////////////////// #if defined(BOOST_CONTAINER_PERFECT_FORWARDING) || defined(BOOST_CONTAINER_DOXYGEN_INVOKED) //! <b>Effects</b>: Inserts an object of type T constructed with //! std::forward<Args>(args)... in the front of the list //! //! <b>Throws</b>: If memory allocation throws or //! T's copy constructor throws. //! //! <b>Complexity</b>: Amortized constant time. template <class... Args> void emplace_front(Args&&... args) { this->emplace_after(this->cbefore_begin(), boost::forward<Args>(args)...); } //! <b>Effects</b>: Inserts an object of type T constructed with //! std::forward<Args>(args)... after prev //! //! <b>Throws</b>: If memory allocation throws or //! T's in-place constructor throws. //! //! <b>Complexity</b>: Constant template <class... Args> iterator emplace_after(const_iterator prev, Args&&... args) { NodePtr pnode(AllocHolder::create_node(boost::forward<Args>(args)...)); return iterator(this->icont().insert_after(prev.get(), *pnode)); } #else //#ifdef BOOST_CONTAINER_PERFECT_FORWARDING #define BOOST_PP_LOCAL_MACRO(n) \ BOOST_PP_EXPR_IF(n, template<) BOOST_PP_ENUM_PARAMS(n, class P) BOOST_PP_EXPR_IF(n, >) \ void emplace_front(BOOST_PP_ENUM(n, BOOST_CONTAINER_PP_PARAM_LIST, _)) \ { \ this->emplace(this->cbegin() \ BOOST_PP_ENUM_TRAILING(n, BOOST_CONTAINER_PP_PARAM_FORWARD, _)); \ } \ \ BOOST_PP_EXPR_IF(n, template<) BOOST_PP_ENUM_PARAMS(n, class P) BOOST_PP_EXPR_IF(n, >) \ iterator emplace_after(const_iterator prev \ BOOST_PP_ENUM_TRAILING(n, BOOST_CONTAINER_PP_PARAM_LIST, _)) \ { \ NodePtr pnode (AllocHolder::create_node \ (BOOST_PP_ENUM(n, BOOST_CONTAINER_PP_PARAM_FORWARD, _))); \ return iterator(this->icont().insert_after(prev.get(), *pnode)); \ } \ //! #define BOOST_PP_LOCAL_LIMITS (0, BOOST_CONTAINER_MAX_CONSTRUCTOR_PARAMETERS) #include BOOST_PP_LOCAL_ITERATE() #endif //#ifdef BOOST_CONTAINER_PERFECT_FORWARDING #if defined(BOOST_CONTAINER_DOXYGEN_INVOKED) //! <b>Effects</b>: Inserts a copy of x at the beginning of the list. //! //! <b>Throws</b>: If memory allocation throws or //! T's copy constructor throws. //! //! <b>Complexity</b>: Amortized constant time. void push_front(const T &x); //! <b>Effects</b>: Constructs a new element in the beginning of the list //! and moves the resources of mx to this new element. //! //! <b>Throws</b>: If memory allocation throws. //! //! <b>Complexity</b>: Amortized constant time. void push_front(T &&x); #else BOOST_MOVE_CONVERSION_AWARE_CATCH(push_front, T, void, priv_push_front) #endif #if defined(BOOST_CONTAINER_DOXYGEN_INVOKED) //! <b>Requires</b>: p must be a valid iterator of *this. //! //! <b>Effects</b>: Inserts a copy of the value after the position pointed //! by prev_p. //! //! <b>Returns</b>: An iterator to the inserted element. //! //! <b>Throws</b>: If memory allocation throws or T's copy constructor throws. //! //! <b>Complexity</b>: Amortized constant time. //! //! <b>Note</b>: Does not affect the validity of iterators and references of //! previous values. iterator insert_after(const_iterator prev_pos, const T &x); //! <b>Requires</b>: prev_pos must be a valid iterator of *this. //! //! <b>Effects</b>: Inserts a move constructed copy object from the value after the //! p pointed by prev_pos. //! //! <b>Returns</b>: An iterator to the inserted element. //! //! <b>Throws</b>: If memory allocation throws. //! //! <b>Complexity</b>: Amortized constant time. //! //! <b>Note</b>: Does not affect the validity of iterators and references of //! previous values. iterator insert_after(const_iterator prev_pos, T &&x); #else BOOST_MOVE_CONVERSION_AWARE_CATCH_1ARG(insert_after, T, iterator, priv_insert_after, const_iterator, const_iterator) #endif //! <b>Requires</b>: prev_pos must be a valid iterator of *this. //! //! <b>Effects</b>: Inserts n copies of x after prev_pos. //! //! <b>Returns</b>: an iterator to the last inserted element or prev_pos if n is 0. //! //! <b>Throws</b>: If memory allocation throws or T's copy constructor throws. //! //! //! <b>Complexity</b>: Linear to n. //! //! <b>Note</b>: Does not affect the validity of iterators and references of //! previous values. iterator insert_after(const_iterator prev_pos, size_type n, const value_type& x) { typedef constant_iterator<value_type, difference_type> cvalue_iterator; return this->insert_after(prev_pos, cvalue_iterator(x, n), cvalue_iterator()); } //! <b>Requires</b>: prev_pos must be a valid iterator of *this. //! //! <b>Effects</b>: Inserts the range pointed by [first, last) //! after the position prev_pos. //! //! <b>Returns</b>: an iterator to the last inserted element or prev_pos if first == last. //! //! <b>Throws</b>: If memory allocation throws, T's constructor from a //! dereferenced InpIt throws. //! //! <b>Complexity</b>: Linear to the number of elements inserted. //! //! <b>Note</b>: Does not affect the validity of iterators and references of //! previous values. template <class InpIt> iterator insert_after(const_iterator prev_pos, InpIt first, InpIt last #if !defined(BOOST_CONTAINER_DOXYGEN_INVOKED) , typename container_detail::enable_if_c < !container_detail::is_convertible<InpIt, size_type>::value && (container_detail::is_input_iterator<InpIt>::value || container_detail::is_same<alloc_version, allocator_v1>::value ) >::type * = 0 #endif ) { iterator ret_it(prev_pos.get()); for (; first != last; ++first){ ret_it = iterator(this->icont().insert_after(ret_it.get(), *this->create_node_from_it(first))); } return ret_it; } #if !defined(BOOST_CONTAINER_DOXYGEN_INVOKED) template <class FwdIt> iterator insert_after(const_iterator prev, FwdIt first, FwdIt last , typename container_detail::enable_if_c < !container_detail::is_convertible<FwdIt, size_type>::value && !(container_detail::is_input_iterator<FwdIt>::value || container_detail::is_same<alloc_version, allocator_v1>::value ) >::type * = 0 ) { //Optimized allocation and construction insertion_functor func(this->icont(), prev.get()); this->allocate_many_and_construct(first, std::distance(first, last), func); return iterator(func.inserted_first()); } #endif //! <b>Effects</b>: Removes the first element from the list. //! //! <b>Throws</b>: Nothing. //! //! <b>Complexity</b>: Amortized constant time. void pop_front() { this->icont().pop_front_and_dispose(Destroyer(this->node_alloc())); } //! <b>Effects</b>: Erases the element after the element pointed by prev_pos //! of the list. //! //! <b>Returns</b>: the first element remaining beyond the removed elements, //! or end() if no such element exists. //! //! <b>Throws</b>: Nothing. //! //! <b>Complexity</b>: Constant. //! //! <b>Note</b>: Does not invalidate iterators or references to non erased elements. iterator erase_after(const_iterator prev_pos) { return iterator(this->icont().erase_after_and_dispose(prev_pos.get(), Destroyer(this->node_alloc()))); } //! <b>Effects</b>: Erases the range (before_first, last) from //! the list. //! //! <b>Returns</b>: the first element remaining beyond the removed elements, //! or end() if no such element exists. //! //! <b>Throws</b>: Nothing. //! //! <b>Complexity</b>: Linear to the number of erased elements. //! //! <b>Note</b>: Does not invalidate iterators or references to non erased elements. iterator erase_after(const_iterator before_first, const_iterator last) { return iterator(this->icont().erase_after_and_dispose(before_first.get(), last.get(), Destroyer(this->node_alloc()))); } //! <b>Effects</b>: Swaps the contents of *this and x. //! //! <b>Throws</b>: Nothing. //! //! <b>Complexity</b>: Linear to the number of elements on *this and x. void swap(slist& x) { AllocHolder::swap(x); } //! <b>Effects</b>: Erases all the elements of the list. //! //! <b>Throws</b>: Nothing. //! //! <b>Complexity</b>: Linear to the number of elements in the list. void clear() { this->icont().clear_and_dispose(Destroyer(this->node_alloc())); } ////////////////////////////////////////////// // // slist operations // ////////////////////////////////////////////// //! <b>Requires</b>: p must point to an element contained //! by the list. x != *this //! //! <b>Effects</b>: Transfers all the elements of list x to this list, after the //! the element pointed by p. No destructors or copy constructors are called. //! //! <b>Throws</b>: std::runtime_error if this' allocator and x's allocator //! are not equal. //! //! <b>Complexity</b>: Linear to the elements in x. //! //! <b>Note</b>: Iterators of values obtained from list x now point to elements of //! this list. Iterators of this list and all the references are not invalidated. void splice_after(const_iterator prev_pos, slist& x) BOOST_CONTAINER_NOEXCEPT { BOOST_ASSERT(this != &x); BOOST_ASSERT(this->node_alloc() == x.node_alloc()); this->icont().splice_after(prev_pos.get(), x.icont()); } //! <b>Requires</b>: p must point to an element contained //! by the list. x != *this //! //! <b>Effects</b>: Transfers all the elements of list x to this list, after the //! the element pointed by p. No destructors or copy constructors are called. //! //! <b>Throws</b>: std::runtime_error if this' allocator and x's allocator //! are not equal. //! //! <b>Complexity</b>: Linear to the elements in x. //! //! <b>Note</b>: Iterators of values obtained from list x now point to elements of //! this list. Iterators of this list and all the references are not invalidated. void splice_after(const_iterator prev_pos, BOOST_RV_REF(slist) x) BOOST_CONTAINER_NOEXCEPT { this->splice_after(prev_pos, static_cast<slist&>(x)); } //! <b>Requires</b>: prev_pos must be a valid iterator of this. //! i must point to an element contained in list x. //! this' allocator and x's allocator shall compare equal. //! //! <b>Effects</b>: Transfers the value pointed by i, from list x to this list, //! after the element pointed by prev_pos. //! If prev_pos == prev or prev_pos == ++prev, this function is a null operation. //! //! <b>Throws</b>: Nothing //! //! <b>Complexity</b>: Constant. //! //! <b>Note</b>: Iterators of values obtained from list x now point to elements of this //! list. Iterators of this list and all the references are not invalidated. void splice_after(const_iterator prev_pos, slist& x, const_iterator prev) BOOST_CONTAINER_NOEXCEPT { BOOST_ASSERT(this->node_alloc() == x.node_alloc()); this->icont().splice_after(prev_pos.get(), x.icont(), prev.get()); } //! <b>Requires</b>: prev_pos must be a valid iterator of this. //! i must point to an element contained in list x. //! this' allocator and x's allocator shall compare equal. //! //! <b>Effects</b>: Transfers the value pointed by i, from list x to this list, //! after the element pointed by prev_pos. //! If prev_pos == prev or prev_pos == ++prev, this function is a null operation. //! //! <b>Throws</b>: Nothing //! //! <b>Complexity</b>: Constant. //! //! <b>Note</b>: Iterators of values obtained from list x now point to elements of this //! list. Iterators of this list and all the references are not invalidated. void splice_after(const_iterator prev_pos, BOOST_RV_REF(slist) x, const_iterator prev) BOOST_CONTAINER_NOEXCEPT { this->splice_after(prev_pos, static_cast<slist&>(x), prev); } //! <b>Requires</b>: prev_pos must be a valid iterator of this. //! before_first and before_last must be valid iterators of x. //! prev_pos must not be contained in [before_first, before_last) range. //! this' allocator and x's allocator shall compare equal. //! //! <b>Effects</b>: Transfers the range [before_first + 1, before_last + 1) //! from list x to this list, after the element pointed by prev_pos. //! //! <b>Throws</b>: Nothing //! //! <b>Complexity</b>: Linear to the number of transferred elements. //! //! <b>Note</b>: Iterators of values obtained from list x now point to elements of this //! list. Iterators of this list and all the references are not invalidated. void splice_after(const_iterator prev_pos, slist& x, const_iterator before_first, const_iterator before_last) BOOST_CONTAINER_NOEXCEPT { BOOST_ASSERT(this->node_alloc() == x.node_alloc()); this->icont().splice_after (prev_pos.get(), x.icont(), before_first.get(), before_last.get()); } //! <b>Requires</b>: prev_pos must be a valid iterator of this. //! before_first and before_last must be valid iterators of x. //! prev_pos must not be contained in [before_first, before_last) range. //! this' allocator and x's allocator shall compare equal. //! //! <b>Effects</b>: Transfers the range [before_first + 1, before_last + 1) //! from list x to this list, after the element pointed by prev_pos. //! //! <b>Throws</b>: Nothing //! //! <b>Complexity</b>: Linear to the number of transferred elements. //! //! <b>Note</b>: Iterators of values obtained from list x now point to elements of this //! list. Iterators of this list and all the references are not invalidated. void splice_after(const_iterator prev_pos, BOOST_RV_REF(slist) x, const_iterator before_first, const_iterator before_last) BOOST_CONTAINER_NOEXCEPT { this->splice_after(prev_pos, static_cast<slist&>(x), before_first, before_last); } //! <b>Requires</b>: prev_pos must be a valid iterator of this. //! before_first and before_last must be valid iterators of x. //! prev_pos must not be contained in [before_first, before_last) range. //! n == std::distance(before_first, before_last). //! this' allocator and x's allocator shall compare equal. //! //! <b>Effects</b>: Transfers the range [before_first + 1, before_last + 1) //! from list x to this list, after the element pointed by prev_pos. //! //! <b>Throws</b>: Nothing //! //! <b>Complexity</b>: Constant. //! //! <b>Note</b>: Iterators of values obtained from list x now point to elements of this //! list. Iterators of this list and all the references are not invalidated. void splice_after(const_iterator prev_pos, slist& x, const_iterator before_first, const_iterator before_last, size_type n) BOOST_CONTAINER_NOEXCEPT { BOOST_ASSERT(this->node_alloc() == x.node_alloc()); this->icont().splice_after (prev_pos.get(), x.icont(), before_first.get(), before_last.get(), n); } //! <b>Requires</b>: prev_pos must be a valid iterator of this. //! before_first and before_last must be valid iterators of x. //! prev_pos must not be contained in [before_first, before_last) range. //! n == std::distance(before_first, before_last). //! this' allocator and x's allocator shall compare equal. //! //! <b>Effects</b>: Transfers the range [before_first + 1, before_last + 1) //! from list x to this list, after the element pointed by prev_pos. //! //! <b>Throws</b>: Nothing //! //! <b>Complexity</b>: Constant. //! //! <b>Note</b>: Iterators of values obtained from list x now point to elements of this //! list. Iterators of this list and all the references are not invalidated. void splice_after(const_iterator prev_pos, BOOST_RV_REF(slist) x, const_iterator before_first, const_iterator before_last, size_type n) BOOST_CONTAINER_NOEXCEPT { this->splice_after(prev_pos, static_cast<slist&>(x), before_first, before_last, n); } //! <b>Effects</b>: Removes all the elements that compare equal to value. //! //! <b>Throws</b>: Nothing. //! //! <b>Complexity</b>: Linear time. It performs exactly size() comparisons for equality. //! //! <b>Note</b>: The relative order of elements that are not removed is unchanged, //! and iterators to elements that are not removed remain valid. void remove(const T& value) { this->remove_if(equal_to_value(value)); } //! <b>Effects</b>: Removes all the elements for which a specified //! predicate is satisfied. //! //! <b>Throws</b>: If pred throws. //! //! <b>Complexity</b>: Linear time. It performs exactly size() calls to the predicate. //! //! <b>Note</b>: The relative order of elements that are not removed is unchanged, //! and iterators to elements that are not removed remain valid. template <class Pred> void remove_if(Pred pred) { typedef ValueCompareToNodeCompare<Pred> Predicate; this->icont().remove_and_dispose_if(Predicate(pred), Destroyer(this->node_alloc())); } //! <b>Effects</b>: Removes adjacent duplicate elements or adjacent //! elements that are equal from the list. //! //! <b>Throws</b>: If comparison throws. //! //! <b>Complexity</b>: Linear time (size()-1 comparisons equality comparisons). //! //! <b>Note</b>: The relative order of elements that are not removed is unchanged, //! and iterators to elements that are not removed remain valid. void unique() { this->unique(value_equal()); } //! <b>Effects</b>: Removes adjacent duplicate elements or adjacent //! elements that satisfy some binary predicate from the list. //! //! <b>Throws</b>: If pred throws. //! //! <b>Complexity</b>: Linear time (size()-1 comparisons calls to pred()). //! //! <b>Note</b>: The relative order of elements that are not removed is unchanged, //! and iterators to elements that are not removed remain valid. template <class Pred> void unique(Pred pred) { typedef ValueCompareToNodeCompare<Pred> Predicate; this->icont().unique_and_dispose(Predicate(pred), Destroyer(this->node_alloc())); } //! <b>Requires</b>: The lists x and *this must be distinct. //! //! <b>Effects</b>: This function removes all of x's elements and inserts them //! in order into *this according to std::less<value_type>. The merge is stable; //! that is, if an element from *this is equivalent to one from x, then the element //! from *this will precede the one from x. //! //! <b>Throws</b>: If comparison throws. //! //! <b>Complexity</b>: This function is linear time: it performs at most //! size() + x.size() - 1 comparisons. void merge(slist & x) { this->merge(x, value_less()); } //! <b>Requires</b>: The lists x and *this must be distinct. //! //! <b>Effects</b>: This function removes all of x's elements and inserts them //! in order into *this according to std::less<value_type>. The merge is stable; //! that is, if an element from *this is equivalent to one from x, then the element //! from *this will precede the one from x. //! //! <b>Throws</b>: If comparison throws. //! //! <b>Complexity</b>: This function is linear time: it performs at most //! size() + x.size() - 1 comparisons. void merge(BOOST_RV_REF(slist) x) { this->merge(static_cast<slist&>(x)); } //! <b>Requires</b>: p must be a comparison function that induces a strict weak //! ordering and both *this and x must be sorted according to that ordering //! The lists x and *this must be distinct. //! //! <b>Effects</b>: This function removes all of x's elements and inserts them //! in order into *this. The merge is stable; that is, if an element from *this is //! equivalent to one from x, then the element from *this will precede the one from x. //! //! <b>Throws</b>: If comp throws. //! //! <b>Complexity</b>: This function is linear time: it performs at most //! size() + x.size() - 1 comparisons. //! //! <b>Note</b>: Iterators and references to *this are not invalidated. template <class StrictWeakOrdering> void merge(slist& x, StrictWeakOrdering comp) { BOOST_ASSERT(this->node_alloc() == x.node_alloc()); this->icont().merge(x.icont(), ValueCompareToNodeCompare<StrictWeakOrdering>(comp)); } //! <b>Requires</b>: p must be a comparison function that induces a strict weak //! ordering and both *this and x must be sorted according to that ordering //! The lists x and *this must be distinct. //! //! <b>Effects</b>: This function removes all of x's elements and inserts them //! in order into *this. The merge is stable; that is, if an element from *this is //! equivalent to one from x, then the element from *this will precede the one from x. //! //! <b>Throws</b>: If comp throws. //! //! <b>Complexity</b>: This function is linear time: it performs at most //! size() + x.size() - 1 comparisons. //! //! <b>Note</b>: Iterators and references to *this are not invalidated. template <class StrictWeakOrdering> void merge(BOOST_RV_REF(slist) x, StrictWeakOrdering comp) { this->merge(static_cast<slist&>(x), comp); } //! <b>Effects</b>: This function sorts the list *this according to std::less<value_type>. //! The sort is stable, that is, the relative order of equivalent elements is preserved. //! //! <b>Throws</b>: If comparison throws. //! //! <b>Notes</b>: Iterators and references are not invalidated. //! //! <b>Complexity</b>: The number of comparisons is approximately N log N, where N //! is the list's size. void sort() { this->sort(value_less()); } //! <b>Effects</b>: This function sorts the list *this according to std::less<value_type>. //! The sort is stable, that is, the relative order of equivalent elements is preserved. //! //! <b>Throws</b>: If comp throws. //! //! <b>Notes</b>: Iterators and references are not invalidated. //! //! <b>Complexity</b>: The number of comparisons is approximately N log N, where N //! is the list's size. template <class StrictWeakOrdering> void sort(StrictWeakOrdering comp) { // nothing if the slist has length 0 or 1. if (this->size() < 2) return; this->icont().sort(ValueCompareToNodeCompare<StrictWeakOrdering>(comp)); } //! <b>Effects</b>: Reverses the order of elements in the list. //! //! <b>Throws</b>: Nothing. //! //! <b>Complexity</b>: This function is linear time. //! //! <b>Note</b>: Iterators and references are not invalidated void reverse() BOOST_CONTAINER_NOEXCEPT { this->icont().reverse(); } ////////////////////////////////////////////// // // list compatibility interface // ////////////////////////////////////////////// #if defined(BOOST_CONTAINER_PERFECT_FORWARDING) || defined(BOOST_CONTAINER_DOXYGEN_INVOKED) //! <b>Effects</b>: Inserts an object of type T constructed with //! std::forward<Args>(args)... before p //! //! <b>Throws</b>: If memory allocation throws or //! T's in-place constructor throws. //! //! <b>Complexity</b>: Linear to the elements before p template <class... Args> iterator emplace(const_iterator p, Args&&... args) { return this->emplace_after(this->previous(p), boost::forward<Args>(args)...); } #else //#ifdef BOOST_CONTAINER_PERFECT_FORWARDING #define BOOST_PP_LOCAL_MACRO(n) \ BOOST_PP_EXPR_IF(n, template<) BOOST_PP_ENUM_PARAMS(n, class P) BOOST_PP_EXPR_IF(n, >) \ iterator emplace (const_iterator p \ BOOST_PP_ENUM_TRAILING(n, BOOST_CONTAINER_PP_PARAM_LIST, _)) \ { \ return this->emplace_after \ (this->previous(p) \ BOOST_PP_ENUM_TRAILING(n, BOOST_CONTAINER_PP_PARAM_FORWARD, _)); \ } \ //! #define BOOST_PP_LOCAL_LIMITS (0, BOOST_CONTAINER_MAX_CONSTRUCTOR_PARAMETERS) #include BOOST_PP_LOCAL_ITERATE() #endif //#ifdef BOOST_CONTAINER_PERFECT_FORWARDING #if defined(BOOST_CONTAINER_DOXYGEN_INVOKED) //! <b>Requires</b>: p must be a valid iterator of *this. //! //! <b>Effects</b>: Insert a copy of x before p. //! //! <b>Returns</b>: an iterator to the inserted element. //! //! <b>Throws</b>: If memory allocation throws or x's copy constructor throws. //! //! <b>Complexity</b>: Linear to the elements before p. iterator insert(const_iterator position, const T &x); //! <b>Requires</b>: p must be a valid iterator of *this. //! //! <b>Effects</b>: Insert a new element before p with mx's resources. //! //! <b>Returns</b>: an iterator to the inserted element. //! //! <b>Throws</b>: If memory allocation throws. //! //! <b>Complexity</b>: Linear to the elements before p. iterator insert(const_iterator prev_pos, T &&x); #else BOOST_MOVE_CONVERSION_AWARE_CATCH_1ARG(insert, T, iterator, priv_insert, const_iterator, const_iterator) #endif //! <b>Requires</b>: p must be a valid iterator of *this. //! //! <b>Effects</b>: Inserts n copies of x before p. //! //! <b>Returns</b>: an iterator to the first inserted element or p if n == 0. //! //! <b>Throws</b>: If memory allocation throws or T's copy constructor throws. //! //! <b>Complexity</b>: Linear to n plus linear to the elements before p. iterator insert(const_iterator p, size_type n, const value_type& x) { const_iterator prev(this->previous(p)); this->insert_after(prev, n, x); return ++iterator(prev.get()); } //! <b>Requires</b>: p must be a valid iterator of *this. //! //! <b>Effects</b>: Insert a copy of the [first, last) range before p. //! //! <b>Returns</b>: an iterator to the first inserted element or p if first == last. //! //! <b>Throws</b>: If memory allocation throws, T's constructor from a //! dereferenced InpIt throws. //! //! <b>Complexity</b>: Linear to std::distance [first, last) plus //! linear to the elements before p. template <class InIter> iterator insert(const_iterator p, InIter first, InIter last) { const_iterator prev(this->previous(p)); this->insert_after(prev, first, last); return ++iterator(prev.get()); } //! <b>Requires</b>: p must be a valid iterator of *this. //! //! <b>Effects</b>: Erases the element at p p. //! //! <b>Throws</b>: Nothing. //! //! <b>Complexity</b>: Linear to the number of elements before p. iterator erase(const_iterator p) BOOST_CONTAINER_NOEXCEPT { return iterator(this->erase_after(previous(p))); } //! <b>Requires</b>: first and last must be valid iterator to elements in *this. //! //! <b>Effects</b>: Erases the elements pointed by [first, last). //! //! <b>Throws</b>: Nothing. //! //! <b>Complexity</b>: Linear to the distance between first and last plus //! linear to the elements before first. iterator erase(const_iterator first, const_iterator last) BOOST_CONTAINER_NOEXCEPT { return iterator(this->erase_after(previous(first), last)); } //! <b>Requires</b>: p must point to an element contained //! by the list. x != *this. this' allocator and x's allocator shall compare equal //! //! <b>Effects</b>: Transfers all the elements of list x to this list, before the //! the element pointed by p. No destructors or copy constructors are called. //! //! <b>Throws</b>: Nothing //! //! <b>Complexity</b>: Linear in distance(begin(), p), and linear in x.size(). //! //! <b>Note</b>: Iterators of values obtained from list x now point to elements of //! this list. Iterators of this list and all the references are not invalidated. void splice(const_iterator p, slist& x) BOOST_CONTAINER_NOEXCEPT { this->splice_after(this->previous(p), x); } //! <b>Requires</b>: p must point to an element contained //! by the list. x != *this. this' allocator and x's allocator shall compare equal //! //! <b>Effects</b>: Transfers all the elements of list x to this list, before the //! the element pointed by p. No destructors or copy constructors are called. //! //! <b>Throws</b>: Nothing //! //! <b>Complexity</b>: Linear in distance(begin(), p), and linear in x.size(). //! //! <b>Note</b>: Iterators of values obtained from list x now point to elements of //! this list. Iterators of this list and all the references are not invalidated. void splice(const_iterator p, BOOST_RV_REF(slist) x) BOOST_CONTAINER_NOEXCEPT { this->splice(p, static_cast<slist&>(x)); } //! <b>Requires</b>: p must point to an element contained //! by this list. i must point to an element contained in list x. //! this' allocator and x's allocator shall compare equal //! //! <b>Effects</b>: Transfers the value pointed by i, from list x to this list, //! before the the element pointed by p. No destructors or copy constructors are called. //! If p == i or p == ++i, this function is a null operation. //! //! <b>Throws</b>: Nothing //! //! <b>Complexity</b>: Linear in distance(begin(), p), and in distance(x.begin(), i). //! //! <b>Note</b>: Iterators of values obtained from list x now point to elements of this //! list. Iterators of this list and all the references are not invalidated. void splice(const_iterator p, slist& x, const_iterator i) BOOST_CONTAINER_NOEXCEPT { this->splice_after(this->previous(p), x, this->previous(i)); } //! <b>Requires</b>: p must point to an element contained //! by this list. i must point to an element contained in list x. //! this' allocator and x's allocator shall compare equal. //! //! <b>Effects</b>: Transfers the value pointed by i, from list x to this list, //! before the the element pointed by p. No destructors or copy constructors are called. //! If p == i or p == ++i, this function is a null operation. //! //! <b>Throws</b>: Nothing //! //! <b>Complexity</b>: Linear in distance(begin(), p), and in distance(x.begin(), i). //! //! <b>Note</b>: Iterators of values obtained from list x now point to elements of this //! list. Iterators of this list and all the references are not invalidated. void splice(const_iterator p, BOOST_RV_REF(slist) x, const_iterator i) BOOST_CONTAINER_NOEXCEPT { this->splice(p, static_cast<slist&>(x), i); } //! <b>Requires</b>: p must point to an element contained //! by this list. first and last must point to elements contained in list x. //! //! <b>Effects</b>: Transfers the range pointed by first and last from list x to this list, //! before the the element pointed by p. No destructors or copy constructors are called. //! this' allocator and x's allocator shall compare equal. //! //! <b>Throws</b>: Nothing //! //! <b>Complexity</b>: Linear in distance(begin(), p), in distance(x.begin(), first), //! and in distance(first, last). //! //! <b>Note</b>: Iterators of values obtained from list x now point to elements of this //! list. Iterators of this list and all the references are not invalidated. void splice(const_iterator p, slist& x, const_iterator first, const_iterator last) BOOST_CONTAINER_NOEXCEPT { this->splice_after(this->previous(p), x, this->previous(first), this->previous(last)); } //! <b>Requires</b>: p must point to an element contained //! by this list. first and last must point to elements contained in list x. //! this' allocator and x's allocator shall compare equal //! //! <b>Effects</b>: Transfers the range pointed by first and last from list x to this list, //! before the the element pointed by p. No destructors or copy constructors are called. //! //! <b>Throws</b>: Nothing //! //! <b>Complexity</b>: Linear in distance(begin(), p), in distance(x.begin(), first), //! and in distance(first, last). //! //! <b>Note</b>: Iterators of values obtained from list x now point to elements of this //! list. Iterators of this list and all the references are not invalidated. void splice(const_iterator p, BOOST_RV_REF(slist) x, const_iterator first, const_iterator last) BOOST_CONTAINER_NOEXCEPT { this->splice(p, static_cast<slist&>(x), first, last); } /// @cond private: void priv_push_front (const T &x) { this->insert(this->cbegin(), x); } void priv_push_front (BOOST_RV_REF(T) x) { this->insert(this->cbegin(), ::boost::move(x)); } bool priv_try_shrink(size_type new_size, const_iterator &last_pos) { typename Icont::iterator end_n(this->icont().end()), cur(this->icont().before_begin()), cur_next; while (++(cur_next = cur) != end_n && new_size > 0){ --new_size; cur = cur_next; } last_pos = const_iterator(cur); if (cur_next != end_n){ this->erase_after(last_pos, const_iterator(end_n)); return true; } else{ return false; } } template<class U> iterator priv_insert(const_iterator p, BOOST_FWD_REF(U) x) { return this->insert_after(previous(p), ::boost::forward<U>(x)); } template<class U> iterator priv_insert_after(const_iterator prev_pos, BOOST_FWD_REF(U) x) { return iterator(this->icont().insert_after(prev_pos.get(), *this->create_node(::boost::forward<U>(x)))); } class insertion_functor; friend class insertion_functor; class insertion_functor { Icont &icont_; typedef typename Icont::iterator iiterator; typedef typename Icont::const_iterator iconst_iterator; const iconst_iterator prev_; iiterator ret_; public: insertion_functor(Icont &icont, typename Icont::const_iterator prev) : icont_(icont), prev_(prev), ret_(prev.unconst()) {} void operator()(Node &n) { ret_ = this->icont_.insert_after(prev_, n); } iiterator inserted_first() const { return ret_; } }; //Functors for member algorithm defaults struct value_less { bool operator()(const value_type &a, const value_type &b) const { return a < b; } }; struct value_equal { bool operator()(const value_type &a, const value_type &b) const { return a == b; } }; struct value_equal_to_this { explicit value_equal_to_this(const value_type &ref) : m_ref(ref){} bool operator()(const value_type &val) const { return m_ref == val; } const value_type &m_ref; }; /// @endcond }; template <class T, class Allocator> inline bool operator==(const slist<T,Allocator>& x, const slist<T,Allocator>& y) { if(x.size() != y.size()){ return false; } typedef typename slist<T,Allocator>::const_iterator const_iterator; const_iterator end1 = x.end(); const_iterator i1 = x.begin(); const_iterator i2 = y.begin(); while (i1 != end1 && *i1 == *i2){ ++i1; ++i2; } return i1 == end1; } template <class T, class Allocator> inline bool operator<(const slist<T,Allocator>& sL1, const slist<T,Allocator>& sL2) { return std::lexicographical_compare (sL1.begin(), sL1.end(), sL2.begin(), sL2.end()); } template <class T, class Allocator> inline bool operator!=(const slist<T,Allocator>& sL1, const slist<T,Allocator>& sL2) { return !(sL1 == sL2); } template <class T, class Allocator> inline bool operator>(const slist<T,Allocator>& sL1, const slist<T,Allocator>& sL2) { return sL2 < sL1; } template <class T, class Allocator> inline bool operator<=(const slist<T,Allocator>& sL1, const slist<T,Allocator>& sL2) { return !(sL2 < sL1); } template <class T, class Allocator> inline bool operator>=(const slist<T,Allocator>& sL1, const slist<T,Allocator>& sL2) { return !(sL1 < sL2); } template <class T, class Allocator> inline void swap(slist<T,Allocator>& x, slist<T,Allocator>& y) { x.swap(y); } }} /// @cond namespace boost { //!has_trivial_destructor_after_move<> == true_type //!specialization for optimizations template <class T, class Allocator> struct has_trivial_destructor_after_move<boost::container::slist<T, Allocator> > : public ::boost::has_trivial_destructor_after_move<Allocator> {}; namespace container { /// @endcond }} //namespace boost{ namespace container { // Specialization of insert_iterator so that insertions will be constant // time rather than linear time. ///@cond //Ummm, I don't like to define things in namespace std, but //there is no other way namespace std { template <class T, class Allocator> class insert_iterator<boost::container::slist<T, Allocator> > { protected: typedef boost::container::slist<T, Allocator> Container; Container* container; typename Container::iterator iter; public: typedef Container container_type; typedef output_iterator_tag iterator_category; typedef void value_type; typedef void difference_type; typedef void pointer; typedef void reference; insert_iterator(Container& x, typename Container::iterator i, bool is_previous = false) : container(&x), iter(is_previous ? i : x.previous(i)){ } insert_iterator<Container>& operator=(const typename Container::value_type& value) { iter = container->insert_after(iter, value); return *this; } insert_iterator<Container>& operator*(){ return *this; } insert_iterator<Container>& operator++(){ return *this; } insert_iterator<Container>& operator++(int){ return *this; } }; } //namespace std; ///@endcond #include <boost/container/detail/config_end.hpp> #endif // BOOST_CONTAINER_SLIST_HPP