diff DEPENDENCIES/generic/include/boost/geometry/strategies/spherical/ssf.hpp @ 101:c530137014c0

Update Boost headers (1.58.0)
author Chris Cannam
date Mon, 07 Sep 2015 11:12:49 +0100
parents 2665513ce2d3
children
line wrap: on
line diff
--- a/DEPENDENCIES/generic/include/boost/geometry/strategies/spherical/ssf.hpp	Fri Sep 04 12:01:02 2015 +0100
+++ b/DEPENDENCIES/generic/include/boost/geometry/strategies/spherical/ssf.hpp	Mon Sep 07 11:12:49 2015 +0100
@@ -16,8 +16,9 @@
 #include <boost/geometry/core/access.hpp>
 #include <boost/geometry/core/radian_access.hpp>
 
-#include <boost/geometry/util/select_coordinate_type.hpp>
 #include <boost/geometry/util/math.hpp>
+#include <boost/geometry/util/promote_floating_point.hpp>
+#include <boost/geometry/util/select_calculation_type.hpp>
 
 #include <boost/geometry/strategies/side.hpp>
 //#include <boost/geometry/strategies/concepts/side_concept.hpp>
@@ -30,6 +31,43 @@
 namespace strategy { namespace side
 {
 
+#ifndef DOXYGEN_NO_DETAIL
+namespace detail
+{
+
+template <typename T>
+int spherical_side_formula(T const& lambda1, T const& delta1,
+                           T const& lambda2, T const& delta2,
+                           T const& lambda, T const& delta)
+{
+    // Create temporary points (vectors) on unit a sphere
+    T const cos_delta1 = cos(delta1);
+    T const c1x = cos_delta1 * cos(lambda1);
+    T const c1y = cos_delta1 * sin(lambda1);
+    T const c1z = sin(delta1);
+
+    T const cos_delta2 = cos(delta2);
+    T const c2x = cos_delta2 * cos(lambda2);
+    T const c2y = cos_delta2 * sin(lambda2);
+    T const c2z = sin(delta2);
+
+    // (Third point is converted directly)
+    T const cos_delta = cos(delta);
+
+    // Apply the "Spherical Side Formula" as presented on my blog
+    T const dist
+        = (c1y * c2z - c1z * c2y) * cos_delta * cos(lambda)
+        + (c1z * c2x - c1x * c2z) * cos_delta * sin(lambda)
+        + (c1x * c2y - c1y * c2x) * sin(delta);
+
+    T zero = T();
+    return dist > zero ? 1
+        : dist < zero ? -1
+        : 0;
+}
+
+}
+#endif // DOXYGEN_NO_DETAIL
 
 /*!
 \brief Check at which side of a Great Circle segment a point lies
@@ -45,60 +83,25 @@
     template <typename P1, typename P2, typename P>
     static inline int apply(P1 const& p1, P2 const& p2, P const& p)
     {
-        typedef typename boost::mpl::if_c
+        typedef typename promote_floating_point
             <
-                boost::is_void<CalculationType>::type::value,
+                typename select_calculation_type_alt
+                    <
+                        CalculationType,
+                        P1, P2, P
+                    >::type
+            >::type calculation_type;
 
-                // Select at least a double...
-                typename select_most_precise
-                    <
-                        typename select_most_precise
-                            <
-                                typename select_most_precise
-                                    <
-                                        typename coordinate_type<P1>::type,
-                                        typename coordinate_type<P2>::type
-                                    >::type,
-                                typename coordinate_type<P>::type
-                            >::type,
-                        double
-                    >::type,
-                CalculationType
-            >::type coordinate_type;
+        calculation_type const lambda1 = get_as_radian<0>(p1);
+        calculation_type const delta1 = get_as_radian<1>(p1);
+        calculation_type const lambda2 = get_as_radian<0>(p2);
+        calculation_type const delta2 = get_as_radian<1>(p2);
+        calculation_type const lambda = get_as_radian<0>(p);
+        calculation_type const delta = get_as_radian<1>(p);
 
-        // Convenient shortcuts
-        typedef coordinate_type ct;
-        ct const lambda1 = get_as_radian<0>(p1);
-        ct const delta1 = get_as_radian<1>(p1);
-        ct const lambda2 = get_as_radian<0>(p2);
-        ct const delta2 = get_as_radian<1>(p2);
-        ct const lambda = get_as_radian<0>(p);
-        ct const delta = get_as_radian<1>(p);
-
-        // Create temporary points (vectors) on unit a sphere
-        ct const cos_delta1 = cos(delta1);
-        ct const c1x = cos_delta1 * cos(lambda1);
-        ct const c1y = cos_delta1 * sin(lambda1);
-        ct const c1z = sin(delta1);
-
-        ct const cos_delta2 = cos(delta2);
-        ct const c2x = cos_delta2 * cos(lambda2);
-        ct const c2y = cos_delta2 * sin(lambda2);
-        ct const c2z = sin(delta2);
-
-        // (Third point is converted directly)
-        ct const cos_delta = cos(delta);
-        
-        // Apply the "Spherical Side Formula" as presented on my blog
-        ct const dist 
-            = (c1y * c2z - c1z * c2y) * cos_delta * cos(lambda) 
-            + (c1z * c2x - c1x * c2z) * cos_delta * sin(lambda)
-            + (c1x * c2y - c1y * c2x) * sin(delta);
-        
-        ct zero = ct();
-        return dist > zero ? 1
-            : dist < zero ? -1
-            : 0;
+        return detail::spherical_side_formula(lambda1, delta1,
+                                              lambda2, delta2,
+                                              lambda, delta);
     }
 };