diff DEPENDENCIES/mingw32/Python27/Lib/site-packages/numpy/polynomial/laguerre.py @ 87:2a2c65a20a8b

Add Python libs and headers
author Chris Cannam
date Wed, 25 Feb 2015 14:05:22 +0000
parents
children
line wrap: on
line diff
--- /dev/null	Thu Jan 01 00:00:00 1970 +0000
+++ b/DEPENDENCIES/mingw32/Python27/Lib/site-packages/numpy/polynomial/laguerre.py	Wed Feb 25 14:05:22 2015 +0000
@@ -0,0 +1,1781 @@
+"""
+Objects for dealing with Laguerre series.
+
+This module provides a number of objects (mostly functions) useful for
+dealing with Laguerre series, including a `Laguerre` class that
+encapsulates the usual arithmetic operations.  (General information
+on how this module represents and works with such polynomials is in the
+docstring for its "parent" sub-package, `numpy.polynomial`).
+
+Constants
+---------
+- `lagdomain` -- Laguerre series default domain, [-1,1].
+- `lagzero` -- Laguerre series that evaluates identically to 0.
+- `lagone` -- Laguerre series that evaluates identically to 1.
+- `lagx` -- Laguerre series for the identity map, ``f(x) = x``.
+
+Arithmetic
+----------
+- `lagmulx` -- multiply a Laguerre series in ``P_i(x)`` by ``x``.
+- `lagadd` -- add two Laguerre series.
+- `lagsub` -- subtract one Laguerre series from another.
+- `lagmul` -- multiply two Laguerre series.
+- `lagdiv` -- divide one Laguerre series by another.
+- `lagval` -- evaluate a Laguerre series at given points.
+- `lagval2d` -- evaluate a 2D Laguerre series at given points.
+- `lagval3d` -- evaluate a 3D Laguerre series at given points.
+- `laggrid2d` -- evaluate a 2D Laguerre series on a Cartesian product.
+- `laggrid3d` -- evaluate a 3D Laguerre series on a Cartesian product.
+
+Calculus
+--------
+- `lagder` -- differentiate a Laguerre series.
+- `lagint` -- integrate a Laguerre series.
+
+Misc Functions
+--------------
+- `lagfromroots` -- create a Laguerre series with specified roots.
+- `lagroots` -- find the roots of a Laguerre series.
+- `lagvander` -- Vandermonde-like matrix for Laguerre polynomials.
+- `lagvander2d` -- Vandermonde-like matrix for 2D power series.
+- `lagvander3d` -- Vandermonde-like matrix for 3D power series.
+- `laggauss` -- Gauss-Laguerre quadrature, points and weights.
+- `lagweight` -- Laguerre weight function.
+- `lagcompanion` -- symmetrized companion matrix in Laguerre form.
+- `lagfit` -- least-squares fit returning a Laguerre series.
+- `lagtrim` -- trim leading coefficients from a Laguerre series.
+- `lagline` -- Laguerre series of given straight line.
+- `lag2poly` -- convert a Laguerre series to a polynomial.
+- `poly2lag` -- convert a polynomial to a Laguerre series.
+
+Classes
+-------
+- `Laguerre` -- A Laguerre series class.
+
+See also
+--------
+`numpy.polynomial`
+
+"""
+from __future__ import division, absolute_import, print_function
+
+import warnings
+import numpy as np
+import numpy.linalg as la
+
+from . import polyutils as pu
+from ._polybase import ABCPolyBase
+
+__all__ = [
+    'lagzero', 'lagone', 'lagx', 'lagdomain', 'lagline', 'lagadd',
+    'lagsub', 'lagmulx', 'lagmul', 'lagdiv', 'lagpow', 'lagval', 'lagder',
+    'lagint', 'lag2poly', 'poly2lag', 'lagfromroots', 'lagvander',
+    'lagfit', 'lagtrim', 'lagroots', 'Laguerre', 'lagval2d', 'lagval3d',
+    'laggrid2d', 'laggrid3d', 'lagvander2d', 'lagvander3d', 'lagcompanion',
+    'laggauss', 'lagweight']
+
+lagtrim = pu.trimcoef
+
+
+def poly2lag(pol):
+    """
+    poly2lag(pol)
+
+    Convert a polynomial to a Laguerre series.
+
+    Convert an array representing the coefficients of a polynomial (relative
+    to the "standard" basis) ordered from lowest degree to highest, to an
+    array of the coefficients of the equivalent Laguerre series, ordered
+    from lowest to highest degree.
+
+    Parameters
+    ----------
+    pol : array_like
+        1-D array containing the polynomial coefficients
+
+    Returns
+    -------
+    c : ndarray
+        1-D array containing the coefficients of the equivalent Laguerre
+        series.
+
+    See Also
+    --------
+    lag2poly
+
+    Notes
+    -----
+    The easy way to do conversions between polynomial basis sets
+    is to use the convert method of a class instance.
+
+    Examples
+    --------
+    >>> from numpy.polynomial.laguerre import poly2lag
+    >>> poly2lag(np.arange(4))
+    array([ 23., -63.,  58., -18.])
+
+    """
+    [pol] = pu.as_series([pol])
+    deg = len(pol) - 1
+    res = 0
+    for i in range(deg, -1, -1):
+        res = lagadd(lagmulx(res), pol[i])
+    return res
+
+
+def lag2poly(c):
+    """
+    Convert a Laguerre series to a polynomial.
+
+    Convert an array representing the coefficients of a Laguerre series,
+    ordered from lowest degree to highest, to an array of the coefficients
+    of the equivalent polynomial (relative to the "standard" basis) ordered
+    from lowest to highest degree.
+
+    Parameters
+    ----------
+    c : array_like
+        1-D array containing the Laguerre series coefficients, ordered
+        from lowest order term to highest.
+
+    Returns
+    -------
+    pol : ndarray
+        1-D array containing the coefficients of the equivalent polynomial
+        (relative to the "standard" basis) ordered from lowest order term
+        to highest.
+
+    See Also
+    --------
+    poly2lag
+
+    Notes
+    -----
+    The easy way to do conversions between polynomial basis sets
+    is to use the convert method of a class instance.
+
+    Examples
+    --------
+    >>> from numpy.polynomial.laguerre import lag2poly
+    >>> lag2poly([ 23., -63.,  58., -18.])
+    array([ 0.,  1.,  2.,  3.])
+
+    """
+    from .polynomial import polyadd, polysub, polymulx
+
+    [c] = pu.as_series([c])
+    n = len(c)
+    if n == 1:
+        return c
+    else:
+        c0 = c[-2]
+        c1 = c[-1]
+        # i is the current degree of c1
+        for i in range(n - 1, 1, -1):
+            tmp = c0
+            c0 = polysub(c[i - 2], (c1*(i - 1))/i)
+            c1 = polyadd(tmp, polysub((2*i - 1)*c1, polymulx(c1))/i)
+        return polyadd(c0, polysub(c1, polymulx(c1)))
+
+#
+# These are constant arrays are of integer type so as to be compatible
+# with the widest range of other types, such as Decimal.
+#
+
+# Laguerre
+lagdomain = np.array([0, 1])
+
+# Laguerre coefficients representing zero.
+lagzero = np.array([0])
+
+# Laguerre coefficients representing one.
+lagone = np.array([1])
+
+# Laguerre coefficients representing the identity x.
+lagx = np.array([1, -1])
+
+
+def lagline(off, scl):
+    """
+    Laguerre series whose graph is a straight line.
+
+
+
+    Parameters
+    ----------
+    off, scl : scalars
+        The specified line is given by ``off + scl*x``.
+
+    Returns
+    -------
+    y : ndarray
+        This module's representation of the Laguerre series for
+        ``off + scl*x``.
+
+    See Also
+    --------
+    polyline, chebline
+
+    Examples
+    --------
+    >>> from numpy.polynomial.laguerre import lagline, lagval
+    >>> lagval(0,lagline(3, 2))
+    3.0
+    >>> lagval(1,lagline(3, 2))
+    5.0
+
+    """
+    if scl != 0:
+        return np.array([off + scl, -scl])
+    else:
+        return np.array([off])
+
+
+def lagfromroots(roots):
+    """
+    Generate a Laguerre series with given roots.
+
+    The function returns the coefficients of the polynomial
+
+    .. math:: p(x) = (x - r_0) * (x - r_1) * ... * (x - r_n),
+
+    in Laguerre form, where the `r_n` are the roots specified in `roots`.
+    If a zero has multiplicity n, then it must appear in `roots` n times.
+    For instance, if 2 is a root of multiplicity three and 3 is a root of
+    multiplicity 2, then `roots` looks something like [2, 2, 2, 3, 3]. The
+    roots can appear in any order.
+
+    If the returned coefficients are `c`, then
+
+    .. math:: p(x) = c_0 + c_1 * L_1(x) + ... +  c_n * L_n(x)
+
+    The coefficient of the last term is not generally 1 for monic
+    polynomials in Laguerre form.
+
+    Parameters
+    ----------
+    roots : array_like
+        Sequence containing the roots.
+
+    Returns
+    -------
+    out : ndarray
+        1-D array of coefficients.  If all roots are real then `out` is a
+        real array, if some of the roots are complex, then `out` is complex
+        even if all the coefficients in the result are real (see Examples
+        below).
+
+    See Also
+    --------
+    polyfromroots, legfromroots, chebfromroots, hermfromroots,
+    hermefromroots.
+
+    Examples
+    --------
+    >>> from numpy.polynomial.laguerre import lagfromroots, lagval
+    >>> coef = lagfromroots((-1, 0, 1))
+    >>> lagval((-1, 0, 1), coef)
+    array([ 0.,  0.,  0.])
+    >>> coef = lagfromroots((-1j, 1j))
+    >>> lagval((-1j, 1j), coef)
+    array([ 0.+0.j,  0.+0.j])
+
+    """
+    if len(roots) == 0:
+        return np.ones(1)
+    else:
+        [roots] = pu.as_series([roots], trim=False)
+        roots.sort()
+        p = [lagline(-r, 1) for r in roots]
+        n = len(p)
+        while n > 1:
+            m, r = divmod(n, 2)
+            tmp = [lagmul(p[i], p[i+m]) for i in range(m)]
+            if r:
+                tmp[0] = lagmul(tmp[0], p[-1])
+            p = tmp
+            n = m
+        return p[0]
+
+
+def lagadd(c1, c2):
+    """
+    Add one Laguerre series to another.
+
+    Returns the sum of two Laguerre series `c1` + `c2`.  The arguments
+    are sequences of coefficients ordered from lowest order term to
+    highest, i.e., [1,2,3] represents the series ``P_0 + 2*P_1 + 3*P_2``.
+
+    Parameters
+    ----------
+    c1, c2 : array_like
+        1-D arrays of Laguerre series coefficients ordered from low to
+        high.
+
+    Returns
+    -------
+    out : ndarray
+        Array representing the Laguerre series of their sum.
+
+    See Also
+    --------
+    lagsub, lagmul, lagdiv, lagpow
+
+    Notes
+    -----
+    Unlike multiplication, division, etc., the sum of two Laguerre series
+    is a Laguerre series (without having to "reproject" the result onto
+    the basis set) so addition, just like that of "standard" polynomials,
+    is simply "component-wise."
+
+    Examples
+    --------
+    >>> from numpy.polynomial.laguerre import lagadd
+    >>> lagadd([1, 2, 3], [1, 2, 3, 4])
+    array([ 2.,  4.,  6.,  4.])
+
+
+    """
+    # c1, c2 are trimmed copies
+    [c1, c2] = pu.as_series([c1, c2])
+    if len(c1) > len(c2):
+        c1[:c2.size] += c2
+        ret = c1
+    else:
+        c2[:c1.size] += c1
+        ret = c2
+    return pu.trimseq(ret)
+
+
+def lagsub(c1, c2):
+    """
+    Subtract one Laguerre series from another.
+
+    Returns the difference of two Laguerre series `c1` - `c2`.  The
+    sequences of coefficients are from lowest order term to highest, i.e.,
+    [1,2,3] represents the series ``P_0 + 2*P_1 + 3*P_2``.
+
+    Parameters
+    ----------
+    c1, c2 : array_like
+        1-D arrays of Laguerre series coefficients ordered from low to
+        high.
+
+    Returns
+    -------
+    out : ndarray
+        Of Laguerre series coefficients representing their difference.
+
+    See Also
+    --------
+    lagadd, lagmul, lagdiv, lagpow
+
+    Notes
+    -----
+    Unlike multiplication, division, etc., the difference of two Laguerre
+    series is a Laguerre series (without having to "reproject" the result
+    onto the basis set) so subtraction, just like that of "standard"
+    polynomials, is simply "component-wise."
+
+    Examples
+    --------
+    >>> from numpy.polynomial.laguerre import lagsub
+    >>> lagsub([1, 2, 3, 4], [1, 2, 3])
+    array([ 0.,  0.,  0.,  4.])
+
+    """
+    # c1, c2 are trimmed copies
+    [c1, c2] = pu.as_series([c1, c2])
+    if len(c1) > len(c2):
+        c1[:c2.size] -= c2
+        ret = c1
+    else:
+        c2 = -c2
+        c2[:c1.size] += c1
+        ret = c2
+    return pu.trimseq(ret)
+
+
+def lagmulx(c):
+    """Multiply a Laguerre series by x.
+
+    Multiply the Laguerre series `c` by x, where x is the independent
+    variable.
+
+
+    Parameters
+    ----------
+    c : array_like
+        1-D array of Laguerre series coefficients ordered from low to
+        high.
+
+    Returns
+    -------
+    out : ndarray
+        Array representing the result of the multiplication.
+
+    Notes
+    -----
+    The multiplication uses the recursion relationship for Laguerre
+    polynomials in the form
+
+    .. math::
+
+    xP_i(x) = (-(i + 1)*P_{i + 1}(x) + (2i + 1)P_{i}(x) - iP_{i - 1}(x))
+
+    Examples
+    --------
+    >>> from numpy.polynomial.laguerre import lagmulx
+    >>> lagmulx([1, 2, 3])
+    array([ -1.,  -1.,  11.,  -9.])
+
+    """
+    # c is a trimmed copy
+    [c] = pu.as_series([c])
+    # The zero series needs special treatment
+    if len(c) == 1 and c[0] == 0:
+        return c
+
+    prd = np.empty(len(c) + 1, dtype=c.dtype)
+    prd[0] = c[0]
+    prd[1] = -c[0]
+    for i in range(1, len(c)):
+        prd[i + 1] = -c[i]*(i + 1)
+        prd[i] += c[i]*(2*i + 1)
+        prd[i - 1] -= c[i]*i
+    return prd
+
+
+def lagmul(c1, c2):
+    """
+    Multiply one Laguerre series by another.
+
+    Returns the product of two Laguerre series `c1` * `c2`.  The arguments
+    are sequences of coefficients, from lowest order "term" to highest,
+    e.g., [1,2,3] represents the series ``P_0 + 2*P_1 + 3*P_2``.
+
+    Parameters
+    ----------
+    c1, c2 : array_like
+        1-D arrays of Laguerre series coefficients ordered from low to
+        high.
+
+    Returns
+    -------
+    out : ndarray
+        Of Laguerre series coefficients representing their product.
+
+    See Also
+    --------
+    lagadd, lagsub, lagdiv, lagpow
+
+    Notes
+    -----
+    In general, the (polynomial) product of two C-series results in terms
+    that are not in the Laguerre polynomial basis set.  Thus, to express
+    the product as a Laguerre series, it is necessary to "reproject" the
+    product onto said basis set, which may produce "unintuitive" (but
+    correct) results; see Examples section below.
+
+    Examples
+    --------
+    >>> from numpy.polynomial.laguerre import lagmul
+    >>> lagmul([1, 2, 3], [0, 1, 2])
+    array([  8., -13.,  38., -51.,  36.])
+
+    """
+    # s1, s2 are trimmed copies
+    [c1, c2] = pu.as_series([c1, c2])
+
+    if len(c1) > len(c2):
+        c = c2
+        xs = c1
+    else:
+        c = c1
+        xs = c2
+
+    if len(c) == 1:
+        c0 = c[0]*xs
+        c1 = 0
+    elif len(c) == 2:
+        c0 = c[0]*xs
+        c1 = c[1]*xs
+    else:
+        nd = len(c)
+        c0 = c[-2]*xs
+        c1 = c[-1]*xs
+        for i in range(3, len(c) + 1):
+            tmp = c0
+            nd = nd - 1
+            c0 = lagsub(c[-i]*xs, (c1*(nd - 1))/nd)
+            c1 = lagadd(tmp, lagsub((2*nd - 1)*c1, lagmulx(c1))/nd)
+    return lagadd(c0, lagsub(c1, lagmulx(c1)))
+
+
+def lagdiv(c1, c2):
+    """
+    Divide one Laguerre series by another.
+
+    Returns the quotient-with-remainder of two Laguerre series
+    `c1` / `c2`.  The arguments are sequences of coefficients from lowest
+    order "term" to highest, e.g., [1,2,3] represents the series
+    ``P_0 + 2*P_1 + 3*P_2``.
+
+    Parameters
+    ----------
+    c1, c2 : array_like
+        1-D arrays of Laguerre series coefficients ordered from low to
+        high.
+
+    Returns
+    -------
+    [quo, rem] : ndarrays
+        Of Laguerre series coefficients representing the quotient and
+        remainder.
+
+    See Also
+    --------
+    lagadd, lagsub, lagmul, lagpow
+
+    Notes
+    -----
+    In general, the (polynomial) division of one Laguerre series by another
+    results in quotient and remainder terms that are not in the Laguerre
+    polynomial basis set.  Thus, to express these results as a Laguerre
+    series, it is necessary to "reproject" the results onto the Laguerre
+    basis set, which may produce "unintuitive" (but correct) results; see
+    Examples section below.
+
+    Examples
+    --------
+    >>> from numpy.polynomial.laguerre import lagdiv
+    >>> lagdiv([  8., -13.,  38., -51.,  36.], [0, 1, 2])
+    (array([ 1.,  2.,  3.]), array([ 0.]))
+    >>> lagdiv([  9., -12.,  38., -51.,  36.], [0, 1, 2])
+    (array([ 1.,  2.,  3.]), array([ 1.,  1.]))
+
+    """
+    # c1, c2 are trimmed copies
+    [c1, c2] = pu.as_series([c1, c2])
+    if c2[-1] == 0:
+        raise ZeroDivisionError()
+
+    lc1 = len(c1)
+    lc2 = len(c2)
+    if lc1 < lc2:
+        return c1[:1]*0, c1
+    elif lc2 == 1:
+        return c1/c2[-1], c1[:1]*0
+    else:
+        quo = np.empty(lc1 - lc2 + 1, dtype=c1.dtype)
+        rem = c1
+        for i in range(lc1 - lc2, - 1, -1):
+            p = lagmul([0]*i + [1], c2)
+            q = rem[-1]/p[-1]
+            rem = rem[:-1] - q*p[:-1]
+            quo[i] = q
+        return quo, pu.trimseq(rem)
+
+
+def lagpow(c, pow, maxpower=16):
+    """Raise a Laguerre series to a power.
+
+    Returns the Laguerre series `c` raised to the power `pow`. The
+    argument `c` is a sequence of coefficients ordered from low to high.
+    i.e., [1,2,3] is the series  ``P_0 + 2*P_1 + 3*P_2.``
+
+    Parameters
+    ----------
+    c : array_like
+        1-D array of Laguerre series coefficients ordered from low to
+        high.
+    pow : integer
+        Power to which the series will be raised
+    maxpower : integer, optional
+        Maximum power allowed. This is mainly to limit growth of the series
+        to unmanageable size. Default is 16
+
+    Returns
+    -------
+    coef : ndarray
+        Laguerre series of power.
+
+    See Also
+    --------
+    lagadd, lagsub, lagmul, lagdiv
+
+    Examples
+    --------
+    >>> from numpy.polynomial.laguerre import lagpow
+    >>> lagpow([1, 2, 3], 2)
+    array([ 14., -16.,  56., -72.,  54.])
+
+    """
+    # c is a trimmed copy
+    [c] = pu.as_series([c])
+    power = int(pow)
+    if power != pow or power < 0:
+        raise ValueError("Power must be a non-negative integer.")
+    elif maxpower is not None and power > maxpower:
+        raise ValueError("Power is too large")
+    elif power == 0:
+        return np.array([1], dtype=c.dtype)
+    elif power == 1:
+        return c
+    else:
+        # This can be made more efficient by using powers of two
+        # in the usual way.
+        prd = c
+        for i in range(2, power + 1):
+            prd = lagmul(prd, c)
+        return prd
+
+
+def lagder(c, m=1, scl=1, axis=0):
+    """
+    Differentiate a Laguerre series.
+
+    Returns the Laguerre series coefficients `c` differentiated `m` times
+    along `axis`.  At each iteration the result is multiplied by `scl` (the
+    scaling factor is for use in a linear change of variable). The argument
+    `c` is an array of coefficients from low to high degree along each
+    axis, e.g., [1,2,3] represents the series ``1*L_0 + 2*L_1 + 3*L_2``
+    while [[1,2],[1,2]] represents ``1*L_0(x)*L_0(y) + 1*L_1(x)*L_0(y) +
+    2*L_0(x)*L_1(y) + 2*L_1(x)*L_1(y)`` if axis=0 is ``x`` and axis=1 is
+    ``y``.
+
+    Parameters
+    ----------
+    c : array_like
+        Array of Laguerre series coefficients. If `c` is multidimensional
+        the different axis correspond to different variables with the
+        degree in each axis given by the corresponding index.
+    m : int, optional
+        Number of derivatives taken, must be non-negative. (Default: 1)
+    scl : scalar, optional
+        Each differentiation is multiplied by `scl`.  The end result is
+        multiplication by ``scl**m``.  This is for use in a linear change of
+        variable. (Default: 1)
+    axis : int, optional
+        Axis over which the derivative is taken. (Default: 0).
+
+        .. versionadded:: 1.7.0
+
+    Returns
+    -------
+    der : ndarray
+        Laguerre series of the derivative.
+
+    See Also
+    --------
+    lagint
+
+    Notes
+    -----
+    In general, the result of differentiating a Laguerre series does not
+    resemble the same operation on a power series. Thus the result of this
+    function may be "unintuitive," albeit correct; see Examples section
+    below.
+
+    Examples
+    --------
+    >>> from numpy.polynomial.laguerre import lagder
+    >>> lagder([ 1.,  1.,  1., -3.])
+    array([ 1.,  2.,  3.])
+    >>> lagder([ 1.,  0.,  0., -4.,  3.], m=2)
+    array([ 1.,  2.,  3.])
+
+    """
+    c = np.array(c, ndmin=1, copy=1)
+    if c.dtype.char in '?bBhHiIlLqQpP':
+        c = c.astype(np.double)
+    cnt, iaxis = [int(t) for t in [m, axis]]
+
+    if cnt != m:
+        raise ValueError("The order of derivation must be integer")
+    if cnt < 0:
+        raise ValueError("The order of derivation must be non-negative")
+    if iaxis != axis:
+        raise ValueError("The axis must be integer")
+    if not -c.ndim <= iaxis < c.ndim:
+        raise ValueError("The axis is out of range")
+    if iaxis < 0:
+        iaxis += c.ndim
+
+    if cnt == 0:
+        return c
+
+    c = np.rollaxis(c, iaxis)
+    n = len(c)
+    if cnt >= n:
+        c = c[:1]*0
+    else:
+        for i in range(cnt):
+            n = n - 1
+            c *= scl
+            der = np.empty((n,) + c.shape[1:], dtype=c.dtype)
+            for j in range(n, 1, -1):
+                der[j - 1] = -c[j]
+                c[j - 1] += c[j]
+            der[0] = -c[1]
+            c = der
+    c = np.rollaxis(c, 0, iaxis + 1)
+    return c
+
+
+def lagint(c, m=1, k=[], lbnd=0, scl=1, axis=0):
+    """
+    Integrate a Laguerre series.
+
+    Returns the Laguerre series coefficients `c` integrated `m` times from
+    `lbnd` along `axis`. At each iteration the resulting series is
+    **multiplied** by `scl` and an integration constant, `k`, is added.
+    The scaling factor is for use in a linear change of variable.  ("Buyer
+    beware": note that, depending on what one is doing, one may want `scl`
+    to be the reciprocal of what one might expect; for more information,
+    see the Notes section below.)  The argument `c` is an array of
+    coefficients from low to high degree along each axis, e.g., [1,2,3]
+    represents the series ``L_0 + 2*L_1 + 3*L_2`` while [[1,2],[1,2]]
+    represents ``1*L_0(x)*L_0(y) + 1*L_1(x)*L_0(y) + 2*L_0(x)*L_1(y) +
+    2*L_1(x)*L_1(y)`` if axis=0 is ``x`` and axis=1 is ``y``.
+
+
+    Parameters
+    ----------
+    c : array_like
+        Array of Laguerre series coefficients. If `c` is multidimensional
+        the different axis correspond to different variables with the
+        degree in each axis given by the corresponding index.
+    m : int, optional
+        Order of integration, must be positive. (Default: 1)
+    k : {[], list, scalar}, optional
+        Integration constant(s).  The value of the first integral at
+        ``lbnd`` is the first value in the list, the value of the second
+        integral at ``lbnd`` is the second value, etc.  If ``k == []`` (the
+        default), all constants are set to zero.  If ``m == 1``, a single
+        scalar can be given instead of a list.
+    lbnd : scalar, optional
+        The lower bound of the integral. (Default: 0)
+    scl : scalar, optional
+        Following each integration the result is *multiplied* by `scl`
+        before the integration constant is added. (Default: 1)
+    axis : int, optional
+        Axis over which the integral is taken. (Default: 0).
+
+        .. versionadded:: 1.7.0
+
+    Returns
+    -------
+    S : ndarray
+        Laguerre series coefficients of the integral.
+
+    Raises
+    ------
+    ValueError
+        If ``m < 0``, ``len(k) > m``, ``np.isscalar(lbnd) == False``, or
+        ``np.isscalar(scl) == False``.
+
+    See Also
+    --------
+    lagder
+
+    Notes
+    -----
+    Note that the result of each integration is *multiplied* by `scl`.
+    Why is this important to note?  Say one is making a linear change of
+    variable :math:`u = ax + b` in an integral relative to `x`.  Then
+    .. math::`dx = du/a`, so one will need to set `scl` equal to
+    :math:`1/a` - perhaps not what one would have first thought.
+
+    Also note that, in general, the result of integrating a C-series needs
+    to be "reprojected" onto the C-series basis set.  Thus, typically,
+    the result of this function is "unintuitive," albeit correct; see
+    Examples section below.
+
+    Examples
+    --------
+    >>> from numpy.polynomial.laguerre import lagint
+    >>> lagint([1,2,3])
+    array([ 1.,  1.,  1., -3.])
+    >>> lagint([1,2,3], m=2)
+    array([ 1.,  0.,  0., -4.,  3.])
+    >>> lagint([1,2,3], k=1)
+    array([ 2.,  1.,  1., -3.])
+    >>> lagint([1,2,3], lbnd=-1)
+    array([ 11.5,   1. ,   1. ,  -3. ])
+    >>> lagint([1,2], m=2, k=[1,2], lbnd=-1)
+    array([ 11.16666667,  -5.        ,  -3.        ,   2.        ])
+
+    """
+    c = np.array(c, ndmin=1, copy=1)
+    if c.dtype.char in '?bBhHiIlLqQpP':
+        c = c.astype(np.double)
+    if not np.iterable(k):
+        k = [k]
+    cnt, iaxis = [int(t) for t in [m, axis]]
+
+    if cnt != m:
+        raise ValueError("The order of integration must be integer")
+    if cnt < 0:
+        raise ValueError("The order of integration must be non-negative")
+    if len(k) > cnt:
+        raise ValueError("Too many integration constants")
+    if iaxis != axis:
+        raise ValueError("The axis must be integer")
+    if not -c.ndim <= iaxis < c.ndim:
+        raise ValueError("The axis is out of range")
+    if iaxis < 0:
+        iaxis += c.ndim
+
+    if cnt == 0:
+        return c
+
+    c = np.rollaxis(c, iaxis)
+    k = list(k) + [0]*(cnt - len(k))
+    for i in range(cnt):
+        n = len(c)
+        c *= scl
+        if n == 1 and np.all(c[0] == 0):
+            c[0] += k[i]
+        else:
+            tmp = np.empty((n + 1,) + c.shape[1:], dtype=c.dtype)
+            tmp[0] = c[0]
+            tmp[1] = -c[0]
+            for j in range(1, n):
+                tmp[j] += c[j]
+                tmp[j + 1] = -c[j]
+            tmp[0] += k[i] - lagval(lbnd, tmp)
+            c = tmp
+    c = np.rollaxis(c, 0, iaxis + 1)
+    return c
+
+
+def lagval(x, c, tensor=True):
+    """
+    Evaluate a Laguerre series at points x.
+
+    If `c` is of length `n + 1`, this function returns the value:
+
+    .. math:: p(x) = c_0 * L_0(x) + c_1 * L_1(x) + ... + c_n * L_n(x)
+
+    The parameter `x` is converted to an array only if it is a tuple or a
+    list, otherwise it is treated as a scalar. In either case, either `x`
+    or its elements must support multiplication and addition both with
+    themselves and with the elements of `c`.
+
+    If `c` is a 1-D array, then `p(x)` will have the same shape as `x`.  If
+    `c` is multidimensional, then the shape of the result depends on the
+    value of `tensor`. If `tensor` is true the shape will be c.shape[1:] +
+    x.shape. If `tensor` is false the shape will be c.shape[1:]. Note that
+    scalars have shape (,).
+
+    Trailing zeros in the coefficients will be used in the evaluation, so
+    they should be avoided if efficiency is a concern.
+
+    Parameters
+    ----------
+    x : array_like, compatible object
+        If `x` is a list or tuple, it is converted to an ndarray, otherwise
+        it is left unchanged and treated as a scalar. In either case, `x`
+        or its elements must support addition and multiplication with
+        with themselves and with the elements of `c`.
+    c : array_like
+        Array of coefficients ordered so that the coefficients for terms of
+        degree n are contained in c[n]. If `c` is multidimensional the
+        remaining indices enumerate multiple polynomials. In the two
+        dimensional case the coefficients may be thought of as stored in
+        the columns of `c`.
+    tensor : boolean, optional
+        If True, the shape of the coefficient array is extended with ones
+        on the right, one for each dimension of `x`. Scalars have dimension 0
+        for this action. The result is that every column of coefficients in
+        `c` is evaluated for every element of `x`. If False, `x` is broadcast
+        over the columns of `c` for the evaluation.  This keyword is useful
+        when `c` is multidimensional. The default value is True.
+
+        .. versionadded:: 1.7.0
+
+    Returns
+    -------
+    values : ndarray, algebra_like
+        The shape of the return value is described above.
+
+    See Also
+    --------
+    lagval2d, laggrid2d, lagval3d, laggrid3d
+
+    Notes
+    -----
+    The evaluation uses Clenshaw recursion, aka synthetic division.
+
+    Examples
+    --------
+    >>> from numpy.polynomial.laguerre import lagval
+    >>> coef = [1,2,3]
+    >>> lagval(1, coef)
+    -0.5
+    >>> lagval([[1,2],[3,4]], coef)
+    array([[-0.5, -4. ],
+           [-4.5, -2. ]])
+
+    """
+    c = np.array(c, ndmin=1, copy=0)
+    if c.dtype.char in '?bBhHiIlLqQpP':
+        c = c.astype(np.double)
+    if isinstance(x, (tuple, list)):
+        x = np.asarray(x)
+    if isinstance(x, np.ndarray) and tensor:
+        c = c.reshape(c.shape + (1,)*x.ndim)
+
+    if len(c) == 1:
+        c0 = c[0]
+        c1 = 0
+    elif len(c) == 2:
+        c0 = c[0]
+        c1 = c[1]
+    else:
+        nd = len(c)
+        c0 = c[-2]
+        c1 = c[-1]
+        for i in range(3, len(c) + 1):
+            tmp = c0
+            nd = nd - 1
+            c0 = c[-i] - (c1*(nd - 1))/nd
+            c1 = tmp + (c1*((2*nd - 1) - x))/nd
+    return c0 + c1*(1 - x)
+
+
+def lagval2d(x, y, c):
+    """
+    Evaluate a 2-D Laguerre series at points (x, y).
+
+    This function returns the values:
+
+    .. math:: p(x,y) = \\sum_{i,j} c_{i,j} * L_i(x) * L_j(y)
+
+    The parameters `x` and `y` are converted to arrays only if they are
+    tuples or a lists, otherwise they are treated as a scalars and they
+    must have the same shape after conversion. In either case, either `x`
+    and `y` or their elements must support multiplication and addition both
+    with themselves and with the elements of `c`.
+
+    If `c` is a 1-D array a one is implicitly appended to its shape to make
+    it 2-D. The shape of the result will be c.shape[2:] + x.shape.
+
+    Parameters
+    ----------
+    x, y : array_like, compatible objects
+        The two dimensional series is evaluated at the points `(x, y)`,
+        where `x` and `y` must have the same shape. If `x` or `y` is a list
+        or tuple, it is first converted to an ndarray, otherwise it is left
+        unchanged and if it isn't an ndarray it is treated as a scalar.
+    c : array_like
+        Array of coefficients ordered so that the coefficient of the term
+        of multi-degree i,j is contained in ``c[i,j]``. If `c` has
+        dimension greater than two the remaining indices enumerate multiple
+        sets of coefficients.
+
+    Returns
+    -------
+    values : ndarray, compatible object
+        The values of the two dimensional polynomial at points formed with
+        pairs of corresponding values from `x` and `y`.
+
+    See Also
+    --------
+    lagval, laggrid2d, lagval3d, laggrid3d
+
+    Notes
+    -----
+
+    .. versionadded::1.7.0
+
+    """
+    try:
+        x, y = np.array((x, y), copy=0)
+    except:
+        raise ValueError('x, y are incompatible')
+
+    c = lagval(x, c)
+    c = lagval(y, c, tensor=False)
+    return c
+
+
+def laggrid2d(x, y, c):
+    """
+    Evaluate a 2-D Laguerre series on the Cartesian product of x and y.
+
+    This function returns the values:
+
+    .. math:: p(a,b) = \sum_{i,j} c_{i,j} * L_i(a) * L_j(b)
+
+    where the points `(a, b)` consist of all pairs formed by taking
+    `a` from `x` and `b` from `y`. The resulting points form a grid with
+    `x` in the first dimension and `y` in the second.
+
+    The parameters `x` and `y` are converted to arrays only if they are
+    tuples or a lists, otherwise they are treated as a scalars. In either
+    case, either `x` and `y` or their elements must support multiplication
+    and addition both with themselves and with the elements of `c`.
+
+    If `c` has fewer than two dimensions, ones are implicitly appended to
+    its shape to make it 2-D. The shape of the result will be c.shape[2:] +
+    x.shape + y.shape.
+
+    Parameters
+    ----------
+    x, y : array_like, compatible objects
+        The two dimensional series is evaluated at the points in the
+        Cartesian product of `x` and `y`.  If `x` or `y` is a list or
+        tuple, it is first converted to an ndarray, otherwise it is left
+        unchanged and, if it isn't an ndarray, it is treated as a scalar.
+    c : array_like
+        Array of coefficients ordered so that the coefficient of the term of
+        multi-degree i,j is contained in `c[i,j]`. If `c` has dimension
+        greater than two the remaining indices enumerate multiple sets of
+        coefficients.
+
+    Returns
+    -------
+    values : ndarray, compatible object
+        The values of the two dimensional Chebyshev series at points in the
+        Cartesian product of `x` and `y`.
+
+    See Also
+    --------
+    lagval, lagval2d, lagval3d, laggrid3d
+
+    Notes
+    -----
+
+    .. versionadded::1.7.0
+
+    """
+    c = lagval(x, c)
+    c = lagval(y, c)
+    return c
+
+
+def lagval3d(x, y, z, c):
+    """
+    Evaluate a 3-D Laguerre series at points (x, y, z).
+
+    This function returns the values:
+
+    .. math:: p(x,y,z) = \\sum_{i,j,k} c_{i,j,k} * L_i(x) * L_j(y) * L_k(z)
+
+    The parameters `x`, `y`, and `z` are converted to arrays only if
+    they are tuples or a lists, otherwise they are treated as a scalars and
+    they must have the same shape after conversion. In either case, either
+    `x`, `y`, and `z` or their elements must support multiplication and
+    addition both with themselves and with the elements of `c`.
+
+    If `c` has fewer than 3 dimensions, ones are implicitly appended to its
+    shape to make it 3-D. The shape of the result will be c.shape[3:] +
+    x.shape.
+
+    Parameters
+    ----------
+    x, y, z : array_like, compatible object
+        The three dimensional series is evaluated at the points
+        `(x, y, z)`, where `x`, `y`, and `z` must have the same shape.  If
+        any of `x`, `y`, or `z` is a list or tuple, it is first converted
+        to an ndarray, otherwise it is left unchanged and if it isn't an
+        ndarray it is  treated as a scalar.
+    c : array_like
+        Array of coefficients ordered so that the coefficient of the term of
+        multi-degree i,j,k is contained in ``c[i,j,k]``. If `c` has dimension
+        greater than 3 the remaining indices enumerate multiple sets of
+        coefficients.
+
+    Returns
+    -------
+    values : ndarray, compatible object
+        The values of the multidimension polynomial on points formed with
+        triples of corresponding values from `x`, `y`, and `z`.
+
+    See Also
+    --------
+    lagval, lagval2d, laggrid2d, laggrid3d
+
+    Notes
+    -----
+
+    .. versionadded::1.7.0
+
+    """
+    try:
+        x, y, z = np.array((x, y, z), copy=0)
+    except:
+        raise ValueError('x, y, z are incompatible')
+
+    c = lagval(x, c)
+    c = lagval(y, c, tensor=False)
+    c = lagval(z, c, tensor=False)
+    return c
+
+
+def laggrid3d(x, y, z, c):
+    """
+    Evaluate a 3-D Laguerre series on the Cartesian product of x, y, and z.
+
+    This function returns the values:
+
+    .. math:: p(a,b,c) = \\sum_{i,j,k} c_{i,j,k} * L_i(a) * L_j(b) * L_k(c)
+
+    where the points `(a, b, c)` consist of all triples formed by taking
+    `a` from `x`, `b` from `y`, and `c` from `z`. The resulting points form
+    a grid with `x` in the first dimension, `y` in the second, and `z` in
+    the third.
+
+    The parameters `x`, `y`, and `z` are converted to arrays only if they
+    are tuples or a lists, otherwise they are treated as a scalars. In
+    either case, either `x`, `y`, and `z` or their elements must support
+    multiplication and addition both with themselves and with the elements
+    of `c`.
+
+    If `c` has fewer than three dimensions, ones are implicitly appended to
+    its shape to make it 3-D. The shape of the result will be c.shape[3:] +
+    x.shape + y.shape + z.shape.
+
+    Parameters
+    ----------
+    x, y, z : array_like, compatible objects
+        The three dimensional series is evaluated at the points in the
+        Cartesian product of `x`, `y`, and `z`.  If `x`,`y`, or `z` is a
+        list or tuple, it is first converted to an ndarray, otherwise it is
+        left unchanged and, if it isn't an ndarray, it is treated as a
+        scalar.
+    c : array_like
+        Array of coefficients ordered so that the coefficients for terms of
+        degree i,j are contained in ``c[i,j]``. If `c` has dimension
+        greater than two the remaining indices enumerate multiple sets of
+        coefficients.
+
+    Returns
+    -------
+    values : ndarray, compatible object
+        The values of the two dimensional polynomial at points in the Cartesian
+        product of `x` and `y`.
+
+    See Also
+    --------
+    lagval, lagval2d, laggrid2d, lagval3d
+
+    Notes
+    -----
+
+    .. versionadded::1.7.0
+
+    """
+    c = lagval(x, c)
+    c = lagval(y, c)
+    c = lagval(z, c)
+    return c
+
+
+def lagvander(x, deg):
+    """Pseudo-Vandermonde matrix of given degree.
+
+    Returns the pseudo-Vandermonde matrix of degree `deg` and sample points
+    `x`. The pseudo-Vandermonde matrix is defined by
+
+    .. math:: V[..., i] = L_i(x)
+
+    where `0 <= i <= deg`. The leading indices of `V` index the elements of
+    `x` and the last index is the degree of the Laguerre polynomial.
+
+    If `c` is a 1-D array of coefficients of length `n + 1` and `V` is the
+    array ``V = lagvander(x, n)``, then ``np.dot(V, c)`` and
+    ``lagval(x, c)`` are the same up to roundoff. This equivalence is
+    useful both for least squares fitting and for the evaluation of a large
+    number of Laguerre series of the same degree and sample points.
+
+    Parameters
+    ----------
+    x : array_like
+        Array of points. The dtype is converted to float64 or complex128
+        depending on whether any of the elements are complex. If `x` is
+        scalar it is converted to a 1-D array.
+    deg : int
+        Degree of the resulting matrix.
+
+    Returns
+    -------
+    vander : ndarray
+        The pseudo-Vandermonde matrix. The shape of the returned matrix is
+        ``x.shape + (deg + 1,)``, where The last index is the degree of the
+        corresponding Laguerre polynomial.  The dtype will be the same as
+        the converted `x`.
+
+    Examples
+    --------
+    >>> from numpy.polynomial.laguerre import lagvander
+    >>> x = np.array([0, 1, 2])
+    >>> lagvander(x, 3)
+    array([[ 1.        ,  1.        ,  1.        ,  1.        ],
+           [ 1.        ,  0.        , -0.5       , -0.66666667],
+           [ 1.        , -1.        , -1.        , -0.33333333]])
+
+    """
+    ideg = int(deg)
+    if ideg != deg:
+        raise ValueError("deg must be integer")
+    if ideg < 0:
+        raise ValueError("deg must be non-negative")
+
+    x = np.array(x, copy=0, ndmin=1) + 0.0
+    dims = (ideg + 1,) + x.shape
+    dtyp = x.dtype
+    v = np.empty(dims, dtype=dtyp)
+    v[0] = x*0 + 1
+    if ideg > 0:
+        v[1] = 1 - x
+        for i in range(2, ideg + 1):
+            v[i] = (v[i-1]*(2*i - 1 - x) - v[i-2]*(i - 1))/i
+    return np.rollaxis(v, 0, v.ndim)
+
+
+def lagvander2d(x, y, deg):
+    """Pseudo-Vandermonde matrix of given degrees.
+
+    Returns the pseudo-Vandermonde matrix of degrees `deg` and sample
+    points `(x, y)`. The pseudo-Vandermonde matrix is defined by
+
+    .. math:: V[..., deg[1]*i + j] = L_i(x) * L_j(y),
+
+    where `0 <= i <= deg[0]` and `0 <= j <= deg[1]`. The leading indices of
+    `V` index the points `(x, y)` and the last index encodes the degrees of
+    the Laguerre polynomials.
+
+    If ``V = lagvander2d(x, y, [xdeg, ydeg])``, then the columns of `V`
+    correspond to the elements of a 2-D coefficient array `c` of shape
+    (xdeg + 1, ydeg + 1) in the order
+
+    .. math:: c_{00}, c_{01}, c_{02} ... , c_{10}, c_{11}, c_{12} ...
+
+    and ``np.dot(V, c.flat)`` and ``lagval2d(x, y, c)`` will be the same
+    up to roundoff. This equivalence is useful both for least squares
+    fitting and for the evaluation of a large number of 2-D Laguerre
+    series of the same degrees and sample points.
+
+    Parameters
+    ----------
+    x, y : array_like
+        Arrays of point coordinates, all of the same shape. The dtypes
+        will be converted to either float64 or complex128 depending on
+        whether any of the elements are complex. Scalars are converted to
+        1-D arrays.
+    deg : list of ints
+        List of maximum degrees of the form [x_deg, y_deg].
+
+    Returns
+    -------
+    vander2d : ndarray
+        The shape of the returned matrix is ``x.shape + (order,)``, where
+        :math:`order = (deg[0]+1)*(deg([1]+1)`.  The dtype will be the same
+        as the converted `x` and `y`.
+
+    See Also
+    --------
+    lagvander, lagvander3d. lagval2d, lagval3d
+
+    Notes
+    -----
+
+    .. versionadded::1.7.0
+
+    """
+    ideg = [int(d) for d in deg]
+    is_valid = [id == d and id >= 0 for id, d in zip(ideg, deg)]
+    if is_valid != [1, 1]:
+        raise ValueError("degrees must be non-negative integers")
+    degx, degy = ideg
+    x, y = np.array((x, y), copy=0) + 0.0
+
+    vx = lagvander(x, degx)
+    vy = lagvander(y, degy)
+    v = vx[..., None]*vy[..., None,:]
+    return v.reshape(v.shape[:-2] + (-1,))
+
+
+def lagvander3d(x, y, z, deg):
+    """Pseudo-Vandermonde matrix of given degrees.
+
+    Returns the pseudo-Vandermonde matrix of degrees `deg` and sample
+    points `(x, y, z)`. If `l, m, n` are the given degrees in `x, y, z`,
+    then The pseudo-Vandermonde matrix is defined by
+
+    .. math:: V[..., (m+1)(n+1)i + (n+1)j + k] = L_i(x)*L_j(y)*L_k(z),
+
+    where `0 <= i <= l`, `0 <= j <= m`, and `0 <= j <= n`.  The leading
+    indices of `V` index the points `(x, y, z)` and the last index encodes
+    the degrees of the Laguerre polynomials.
+
+    If ``V = lagvander3d(x, y, z, [xdeg, ydeg, zdeg])``, then the columns
+    of `V` correspond to the elements of a 3-D coefficient array `c` of
+    shape (xdeg + 1, ydeg + 1, zdeg + 1) in the order
+
+    .. math:: c_{000}, c_{001}, c_{002},... , c_{010}, c_{011}, c_{012},...
+
+    and  ``np.dot(V, c.flat)`` and ``lagval3d(x, y, z, c)`` will be the
+    same up to roundoff. This equivalence is useful both for least squares
+    fitting and for the evaluation of a large number of 3-D Laguerre
+    series of the same degrees and sample points.
+
+    Parameters
+    ----------
+    x, y, z : array_like
+        Arrays of point coordinates, all of the same shape. The dtypes will
+        be converted to either float64 or complex128 depending on whether
+        any of the elements are complex. Scalars are converted to 1-D
+        arrays.
+    deg : list of ints
+        List of maximum degrees of the form [x_deg, y_deg, z_deg].
+
+    Returns
+    -------
+    vander3d : ndarray
+        The shape of the returned matrix is ``x.shape + (order,)``, where
+        :math:`order = (deg[0]+1)*(deg([1]+1)*(deg[2]+1)`.  The dtype will
+        be the same as the converted `x`, `y`, and `z`.
+
+    See Also
+    --------
+    lagvander, lagvander3d. lagval2d, lagval3d
+
+    Notes
+    -----
+
+    .. versionadded::1.7.0
+
+    """
+    ideg = [int(d) for d in deg]
+    is_valid = [id == d and id >= 0 for id, d in zip(ideg, deg)]
+    if is_valid != [1, 1, 1]:
+        raise ValueError("degrees must be non-negative integers")
+    degx, degy, degz = ideg
+    x, y, z = np.array((x, y, z), copy=0) + 0.0
+
+    vx = lagvander(x, degx)
+    vy = lagvander(y, degy)
+    vz = lagvander(z, degz)
+    v = vx[..., None, None]*vy[..., None,:, None]*vz[..., None, None,:]
+    return v.reshape(v.shape[:-3] + (-1,))
+
+
+def lagfit(x, y, deg, rcond=None, full=False, w=None):
+    """
+    Least squares fit of Laguerre series to data.
+
+    Return the coefficients of a Laguerre series of degree `deg` that is the
+    least squares fit to the data values `y` given at points `x`. If `y` is
+    1-D the returned coefficients will also be 1-D. If `y` is 2-D multiple
+    fits are done, one for each column of `y`, and the resulting
+    coefficients are stored in the corresponding columns of a 2-D return.
+    The fitted polynomial(s) are in the form
+
+    .. math::  p(x) = c_0 + c_1 * L_1(x) + ... + c_n * L_n(x),
+
+    where `n` is `deg`.
+
+    Parameters
+    ----------
+    x : array_like, shape (M,)
+        x-coordinates of the M sample points ``(x[i], y[i])``.
+    y : array_like, shape (M,) or (M, K)
+        y-coordinates of the sample points. Several data sets of sample
+        points sharing the same x-coordinates can be fitted at once by
+        passing in a 2D-array that contains one dataset per column.
+    deg : int
+        Degree of the fitting polynomial
+    rcond : float, optional
+        Relative condition number of the fit. Singular values smaller than
+        this relative to the largest singular value will be ignored. The
+        default value is len(x)*eps, where eps is the relative precision of
+        the float type, about 2e-16 in most cases.
+    full : bool, optional
+        Switch determining nature of return value. When it is False (the
+        default) just the coefficients are returned, when True diagnostic
+        information from the singular value decomposition is also returned.
+    w : array_like, shape (`M`,), optional
+        Weights. If not None, the contribution of each point
+        ``(x[i],y[i])`` to the fit is weighted by `w[i]`. Ideally the
+        weights are chosen so that the errors of the products ``w[i]*y[i]``
+        all have the same variance.  The default value is None.
+
+    Returns
+    -------
+    coef : ndarray, shape (M,) or (M, K)
+        Laguerre coefficients ordered from low to high. If `y` was 2-D,
+        the coefficients for the data in column k  of `y` are in column
+        `k`.
+
+    [residuals, rank, singular_values, rcond] : list
+        These values are only returned if `full` = True
+
+        resid -- sum of squared residuals of the least squares fit
+        rank -- the numerical rank of the scaled Vandermonde matrix
+        sv -- singular values of the scaled Vandermonde matrix
+        rcond -- value of `rcond`.
+
+        For more details, see `linalg.lstsq`.
+
+    Warns
+    -----
+    RankWarning
+        The rank of the coefficient matrix in the least-squares fit is
+        deficient. The warning is only raised if `full` = False.  The
+        warnings can be turned off by
+
+        >>> import warnings
+        >>> warnings.simplefilter('ignore', RankWarning)
+
+    See Also
+    --------
+    chebfit, legfit, polyfit, hermfit, hermefit
+    lagval : Evaluates a Laguerre series.
+    lagvander : pseudo Vandermonde matrix of Laguerre series.
+    lagweight : Laguerre weight function.
+    linalg.lstsq : Computes a least-squares fit from the matrix.
+    scipy.interpolate.UnivariateSpline : Computes spline fits.
+
+    Notes
+    -----
+    The solution is the coefficients of the Laguerre series `p` that
+    minimizes the sum of the weighted squared errors
+
+    .. math:: E = \\sum_j w_j^2 * |y_j - p(x_j)|^2,
+
+    where the :math:`w_j` are the weights. This problem is solved by
+    setting up as the (typically) overdetermined matrix equation
+
+    .. math:: V(x) * c = w * y,
+
+    where `V` is the weighted pseudo Vandermonde matrix of `x`, `c` are the
+    coefficients to be solved for, `w` are the weights, and `y` are the
+    observed values.  This equation is then solved using the singular value
+    decomposition of `V`.
+
+    If some of the singular values of `V` are so small that they are
+    neglected, then a `RankWarning` will be issued. This means that the
+    coefficient values may be poorly determined. Using a lower order fit
+    will usually get rid of the warning.  The `rcond` parameter can also be
+    set to a value smaller than its default, but the resulting fit may be
+    spurious and have large contributions from roundoff error.
+
+    Fits using Laguerre series are probably most useful when the data can
+    be approximated by ``sqrt(w(x)) * p(x)``, where `w(x)` is the Laguerre
+    weight. In that case the weight ``sqrt(w(x[i])`` should be used
+    together with data values ``y[i]/sqrt(w(x[i])``. The weight function is
+    available as `lagweight`.
+
+    References
+    ----------
+    .. [1] Wikipedia, "Curve fitting",
+           http://en.wikipedia.org/wiki/Curve_fitting
+
+    Examples
+    --------
+    >>> from numpy.polynomial.laguerre import lagfit, lagval
+    >>> x = np.linspace(0, 10)
+    >>> err = np.random.randn(len(x))/10
+    >>> y = lagval(x, [1, 2, 3]) + err
+    >>> lagfit(x, y, 2)
+    array([ 0.96971004,  2.00193749,  3.00288744])
+
+    """
+    order = int(deg) + 1
+    x = np.asarray(x) + 0.0
+    y = np.asarray(y) + 0.0
+
+    # check arguments.
+    if deg < 0:
+        raise ValueError("expected deg >= 0")
+    if x.ndim != 1:
+        raise TypeError("expected 1D vector for x")
+    if x.size == 0:
+        raise TypeError("expected non-empty vector for x")
+    if y.ndim < 1 or y.ndim > 2:
+        raise TypeError("expected 1D or 2D array for y")
+    if len(x) != len(y):
+        raise TypeError("expected x and y to have same length")
+
+    # set up the least squares matrices in transposed form
+    lhs = lagvander(x, deg).T
+    rhs = y.T
+    if w is not None:
+        w = np.asarray(w) + 0.0
+        if w.ndim != 1:
+            raise TypeError("expected 1D vector for w")
+        if len(x) != len(w):
+            raise TypeError("expected x and w to have same length")
+        # apply weights. Don't use inplace operations as they
+        # can cause problems with NA.
+        lhs = lhs * w
+        rhs = rhs * w
+
+    # set rcond
+    if rcond is None:
+        rcond = len(x)*np.finfo(x.dtype).eps
+
+    # Determine the norms of the design matrix columns.
+    if issubclass(lhs.dtype.type, np.complexfloating):
+        scl = np.sqrt((np.square(lhs.real) + np.square(lhs.imag)).sum(1))
+    else:
+        scl = np.sqrt(np.square(lhs).sum(1))
+    scl[scl == 0] = 1
+
+    # Solve the least squares problem.
+    c, resids, rank, s = la.lstsq(lhs.T/scl, rhs.T, rcond)
+    c = (c.T/scl).T
+
+    # warn on rank reduction
+    if rank != order and not full:
+        msg = "The fit may be poorly conditioned"
+        warnings.warn(msg, pu.RankWarning)
+
+    if full:
+        return c, [resids, rank, s, rcond]
+    else:
+        return c
+
+
+def lagcompanion(c):
+    """
+    Return the companion matrix of c.
+
+    The usual companion matrix of the Laguerre polynomials is already
+    symmetric when `c` is a basis Laguerre polynomial, so no scaling is
+    applied.
+
+    Parameters
+    ----------
+    c : array_like
+        1-D array of Laguerre series coefficients ordered from low to high
+        degree.
+
+    Returns
+    -------
+    mat : ndarray
+        Companion matrix of dimensions (deg, deg).
+
+    Notes
+    -----
+
+    .. versionadded::1.7.0
+
+    """
+    # c is a trimmed copy
+    [c] = pu.as_series([c])
+    if len(c) < 2:
+        raise ValueError('Series must have maximum degree of at least 1.')
+    if len(c) == 2:
+        return np.array([[1 + c[0]/c[1]]])
+
+    n = len(c) - 1
+    mat = np.zeros((n, n), dtype=c.dtype)
+    top = mat.reshape(-1)[1::n+1]
+    mid = mat.reshape(-1)[0::n+1]
+    bot = mat.reshape(-1)[n::n+1]
+    top[...] = -np.arange(1, n)
+    mid[...] = 2.*np.arange(n) + 1.
+    bot[...] = top
+    mat[:, -1] += (c[:-1]/c[-1])*n
+    return mat
+
+
+def lagroots(c):
+    """
+    Compute the roots of a Laguerre series.
+
+    Return the roots (a.k.a. "zeros") of the polynomial
+
+    .. math:: p(x) = \\sum_i c[i] * L_i(x).
+
+    Parameters
+    ----------
+    c : 1-D array_like
+        1-D array of coefficients.
+
+    Returns
+    -------
+    out : ndarray
+        Array of the roots of the series. If all the roots are real,
+        then `out` is also real, otherwise it is complex.
+
+    See Also
+    --------
+    polyroots, legroots, chebroots, hermroots, hermeroots
+
+    Notes
+    -----
+    The root estimates are obtained as the eigenvalues of the companion
+    matrix, Roots far from the origin of the complex plane may have large
+    errors due to the numerical instability of the series for such
+    values. Roots with multiplicity greater than 1 will also show larger
+    errors as the value of the series near such points is relatively
+    insensitive to errors in the roots. Isolated roots near the origin can
+    be improved by a few iterations of Newton's method.
+
+    The Laguerre series basis polynomials aren't powers of `x` so the
+    results of this function may seem unintuitive.
+
+    Examples
+    --------
+    >>> from numpy.polynomial.laguerre import lagroots, lagfromroots
+    >>> coef = lagfromroots([0, 1, 2])
+    >>> coef
+    array([  2.,  -8.,  12.,  -6.])
+    >>> lagroots(coef)
+    array([ -4.44089210e-16,   1.00000000e+00,   2.00000000e+00])
+
+    """
+    # c is a trimmed copy
+    [c] = pu.as_series([c])
+    if len(c) <= 1:
+        return np.array([], dtype=c.dtype)
+    if len(c) == 2:
+        return np.array([1 + c[0]/c[1]])
+
+    m = lagcompanion(c)
+    r = la.eigvals(m)
+    r.sort()
+    return r
+
+
+def laggauss(deg):
+    """
+    Gauss-Laguerre quadrature.
+
+    Computes the sample points and weights for Gauss-Laguerre quadrature.
+    These sample points and weights will correctly integrate polynomials of
+    degree :math:`2*deg - 1` or less over the interval :math:`[0, \inf]`
+    with the weight function :math:`f(x) = \exp(-x)`.
+
+    Parameters
+    ----------
+    deg : int
+        Number of sample points and weights. It must be >= 1.
+
+    Returns
+    -------
+    x : ndarray
+        1-D ndarray containing the sample points.
+    y : ndarray
+        1-D ndarray containing the weights.
+
+    Notes
+    -----
+
+    .. versionadded::1.7.0
+
+    The results have only been tested up to degree 100 higher degrees may
+    be problematic. The weights are determined by using the fact that
+
+    .. math:: w_k = c / (L'_n(x_k) * L_{n-1}(x_k))
+
+    where :math:`c` is a constant independent of :math:`k` and :math:`x_k`
+    is the k'th root of :math:`L_n`, and then scaling the results to get
+    the right value when integrating 1.
+
+    """
+    ideg = int(deg)
+    if ideg != deg or ideg < 1:
+        raise ValueError("deg must be a non-negative integer")
+
+    # first approximation of roots. We use the fact that the companion
+    # matrix is symmetric in this case in order to obtain better zeros.
+    c = np.array([0]*deg + [1])
+    m = lagcompanion(c)
+    x = la.eigvals(m)
+    x.sort()
+
+    # improve roots by one application of Newton
+    dy = lagval(x, c)
+    df = lagval(x, lagder(c))
+    x -= dy/df
+
+    # compute the weights. We scale the factor to avoid possible numerical
+    # overflow.
+    fm = lagval(x, c[1:])
+    fm /= np.abs(fm).max()
+    df /= np.abs(df).max()
+    w = 1/(fm * df)
+
+    # scale w to get the right value, 1 in this case
+    w /= w.sum()
+
+    return x, w
+
+
+def lagweight(x):
+    """Weight function of the Laguerre polynomials.
+
+    The weight function is :math:`exp(-x)` and the interval of integration
+    is :math:`[0, \inf]`. The Laguerre polynomials are orthogonal, but not
+    normalized, with respect to this weight function.
+
+    Parameters
+    ----------
+    x : array_like
+       Values at which the weight function will be computed.
+
+    Returns
+    -------
+    w : ndarray
+       The weight function at `x`.
+
+    Notes
+    -----
+
+    .. versionadded::1.7.0
+
+    """
+    w = np.exp(-x)
+    return w
+
+#
+# Laguerre series class
+#
+
+class Laguerre(ABCPolyBase):
+    """A Laguerre series class.
+
+    The Laguerre class provides the standard Python numerical methods
+    '+', '-', '*', '//', '%', 'divmod', '**', and '()' as well as the
+    attributes and methods listed in the `ABCPolyBase` documentation.
+
+    Parameters
+    ----------
+    coef : array_like
+        Laguerre coefficients in order of increasing degree, i.e,
+        ``(1, 2, 3)`` gives ``1*L_0(x) + 2*L_1(X) + 3*L_2(x)``.
+    domain : (2,) array_like, optional
+        Domain to use. The interval ``[domain[0], domain[1]]`` is mapped
+        to the interval ``[window[0], window[1]]`` by shifting and scaling.
+        The default value is [0, 1].
+    window : (2,) array_like, optional
+        Window, see `domain` for its use. The default value is [0, 1].
+
+        .. versionadded:: 1.6.0
+
+    """
+    # Virtual Functions
+    _add = staticmethod(lagadd)
+    _sub = staticmethod(lagsub)
+    _mul = staticmethod(lagmul)
+    _div = staticmethod(lagdiv)
+    _pow = staticmethod(lagpow)
+    _val = staticmethod(lagval)
+    _int = staticmethod(lagint)
+    _der = staticmethod(lagder)
+    _fit = staticmethod(lagfit)
+    _line = staticmethod(lagline)
+    _roots = staticmethod(lagroots)
+    _fromroots = staticmethod(lagfromroots)
+
+    # Virtual properties
+    nickname = 'lag'
+    domain = np.array(lagdomain)
+    window = np.array(lagdomain)