diff DEPENDENCIES/mingw32/Python27/Lib/site-packages/numpy/ma/__init__.py @ 87:2a2c65a20a8b

Add Python libs and headers
author Chris Cannam
date Wed, 25 Feb 2015 14:05:22 +0000
parents
children
line wrap: on
line diff
--- /dev/null	Thu Jan 01 00:00:00 1970 +0000
+++ b/DEPENDENCIES/mingw32/Python27/Lib/site-packages/numpy/ma/__init__.py	Wed Feb 25 14:05:22 2015 +0000
@@ -0,0 +1,58 @@
+"""
+=============
+Masked Arrays
+=============
+
+Arrays sometimes contain invalid or missing data.  When doing operations
+on such arrays, we wish to suppress invalid values, which is the purpose masked
+arrays fulfill (an example of typical use is given below).
+
+For example, examine the following array:
+
+>>> x = np.array([2, 1, 3, np.nan, 5, 2, 3, np.nan])
+
+When we try to calculate the mean of the data, the result is undetermined:
+
+>>> np.mean(x)
+nan
+
+The mean is calculated using roughly ``np.sum(x)/len(x)``, but since
+any number added to ``NaN`` [1]_ produces ``NaN``, this doesn't work.  Enter
+masked arrays:
+
+>>> m = np.ma.masked_array(x, np.isnan(x))
+>>> m
+masked_array(data = [2.0 1.0 3.0 -- 5.0 2.0 3.0 --],
+      mask = [False False False  True False False False  True],
+      fill_value=1e+20)
+
+Here, we construct a masked array that suppress all ``NaN`` values.  We
+may now proceed to calculate the mean of the other values:
+
+>>> np.mean(m)
+2.6666666666666665
+
+.. [1] Not-a-Number, a floating point value that is the result of an
+       invalid operation.
+
+"""
+from __future__ import division, absolute_import, print_function
+
+__author__ = "Pierre GF Gerard-Marchant ($Author: jarrod.millman $)"
+__version__ = '1.0'
+__revision__ = "$Revision: 3473 $"
+__date__     = '$Date: 2007-10-29 17:18:13 +0200 (Mon, 29 Oct 2007) $'
+
+from . import core
+from .core import *
+
+from . import extras
+from .extras import *
+
+__all__ = ['core', 'extras']
+__all__ += core.__all__
+__all__ += extras.__all__
+
+from numpy.testing import Tester
+test = Tester().test
+bench = Tester().bench