Mercurial > hg > vamp-build-and-test
diff DEPENDENCIES/mingw32/Python27/Lib/site-packages/numpy/lib/twodim_base.py @ 87:2a2c65a20a8b
Add Python libs and headers
author | Chris Cannam |
---|---|
date | Wed, 25 Feb 2015 14:05:22 +0000 |
parents | |
children |
line wrap: on
line diff
--- /dev/null Thu Jan 01 00:00:00 1970 +0000 +++ b/DEPENDENCIES/mingw32/Python27/Lib/site-packages/numpy/lib/twodim_base.py Wed Feb 25 14:05:22 2015 +0000 @@ -0,0 +1,1003 @@ +""" Basic functions for manipulating 2d arrays + +""" +from __future__ import division, absolute_import, print_function + +from numpy.core.numeric import ( + asanyarray, arange, zeros, greater_equal, multiply, ones, asarray, + where, int8, int16, int32, int64, empty, promote_types + ) +from numpy.core import iinfo + + +__all__ = [ + 'diag', 'diagflat', 'eye', 'fliplr', 'flipud', 'rot90', 'tri', 'triu', + 'tril', 'vander', 'histogram2d', 'mask_indices', 'tril_indices', + 'tril_indices_from', 'triu_indices', 'triu_indices_from', ] + + +i1 = iinfo(int8) +i2 = iinfo(int16) +i4 = iinfo(int32) +def _min_int(low, high): + """ get small int that fits the range """ + if high <= i1.max and low >= i1.min: + return int8 + if high <= i2.max and low >= i2.min: + return int16 + if high <= i4.max and low >= i4.min: + return int32 + return int64 + + +def fliplr(m): + """ + Flip array in the left/right direction. + + Flip the entries in each row in the left/right direction. + Columns are preserved, but appear in a different order than before. + + Parameters + ---------- + m : array_like + Input array, must be at least 2-D. + + Returns + ------- + f : ndarray + A view of `m` with the columns reversed. Since a view + is returned, this operation is :math:`\\mathcal O(1)`. + + See Also + -------- + flipud : Flip array in the up/down direction. + rot90 : Rotate array counterclockwise. + + Notes + ----- + Equivalent to A[:,::-1]. Requires the array to be at least 2-D. + + Examples + -------- + >>> A = np.diag([1.,2.,3.]) + >>> A + array([[ 1., 0., 0.], + [ 0., 2., 0.], + [ 0., 0., 3.]]) + >>> np.fliplr(A) + array([[ 0., 0., 1.], + [ 0., 2., 0.], + [ 3., 0., 0.]]) + + >>> A = np.random.randn(2,3,5) + >>> np.all(np.fliplr(A)==A[:,::-1,...]) + True + + """ + m = asanyarray(m) + if m.ndim < 2: + raise ValueError("Input must be >= 2-d.") + return m[:, ::-1] + + +def flipud(m): + """ + Flip array in the up/down direction. + + Flip the entries in each column in the up/down direction. + Rows are preserved, but appear in a different order than before. + + Parameters + ---------- + m : array_like + Input array. + + Returns + ------- + out : array_like + A view of `m` with the rows reversed. Since a view is + returned, this operation is :math:`\\mathcal O(1)`. + + See Also + -------- + fliplr : Flip array in the left/right direction. + rot90 : Rotate array counterclockwise. + + Notes + ----- + Equivalent to ``A[::-1,...]``. + Does not require the array to be two-dimensional. + + Examples + -------- + >>> A = np.diag([1.0, 2, 3]) + >>> A + array([[ 1., 0., 0.], + [ 0., 2., 0.], + [ 0., 0., 3.]]) + >>> np.flipud(A) + array([[ 0., 0., 3.], + [ 0., 2., 0.], + [ 1., 0., 0.]]) + + >>> A = np.random.randn(2,3,5) + >>> np.all(np.flipud(A)==A[::-1,...]) + True + + >>> np.flipud([1,2]) + array([2, 1]) + + """ + m = asanyarray(m) + if m.ndim < 1: + raise ValueError("Input must be >= 1-d.") + return m[::-1, ...] + + +def rot90(m, k=1): + """ + Rotate an array by 90 degrees in the counter-clockwise direction. + + The first two dimensions are rotated; therefore, the array must be at + least 2-D. + + Parameters + ---------- + m : array_like + Array of two or more dimensions. + k : integer + Number of times the array is rotated by 90 degrees. + + Returns + ------- + y : ndarray + Rotated array. + + See Also + -------- + fliplr : Flip an array horizontally. + flipud : Flip an array vertically. + + Examples + -------- + >>> m = np.array([[1,2],[3,4]], int) + >>> m + array([[1, 2], + [3, 4]]) + >>> np.rot90(m) + array([[2, 4], + [1, 3]]) + >>> np.rot90(m, 2) + array([[4, 3], + [2, 1]]) + + """ + m = asanyarray(m) + if m.ndim < 2: + raise ValueError("Input must >= 2-d.") + k = k % 4 + if k == 0: + return m + elif k == 1: + return fliplr(m).swapaxes(0, 1) + elif k == 2: + return fliplr(flipud(m)) + else: + # k == 3 + return fliplr(m.swapaxes(0, 1)) + + +def eye(N, M=None, k=0, dtype=float): + """ + Return a 2-D array with ones on the diagonal and zeros elsewhere. + + Parameters + ---------- + N : int + Number of rows in the output. + M : int, optional + Number of columns in the output. If None, defaults to `N`. + k : int, optional + Index of the diagonal: 0 (the default) refers to the main diagonal, + a positive value refers to an upper diagonal, and a negative value + to a lower diagonal. + dtype : data-type, optional + Data-type of the returned array. + + Returns + ------- + I : ndarray of shape (N,M) + An array where all elements are equal to zero, except for the `k`-th + diagonal, whose values are equal to one. + + See Also + -------- + identity : (almost) equivalent function + diag : diagonal 2-D array from a 1-D array specified by the user. + + Examples + -------- + >>> np.eye(2, dtype=int) + array([[1, 0], + [0, 1]]) + >>> np.eye(3, k=1) + array([[ 0., 1., 0.], + [ 0., 0., 1.], + [ 0., 0., 0.]]) + + """ + if M is None: + M = N + m = zeros((N, M), dtype=dtype) + if k >= M: + return m + if k >= 0: + i = k + else: + i = (-k) * M + m[:M-k].flat[i::M+1] = 1 + return m + + +def diag(v, k=0): + """ + Extract a diagonal or construct a diagonal array. + + See the more detailed documentation for ``numpy.diagonal`` if you use this + function to extract a diagonal and wish to write to the resulting array; + whether it returns a copy or a view depends on what version of numpy you + are using. + + Parameters + ---------- + v : array_like + If `v` is a 2-D array, return a copy of its `k`-th diagonal. + If `v` is a 1-D array, return a 2-D array with `v` on the `k`-th + diagonal. + k : int, optional + Diagonal in question. The default is 0. Use `k>0` for diagonals + above the main diagonal, and `k<0` for diagonals below the main + diagonal. + + Returns + ------- + out : ndarray + The extracted diagonal or constructed diagonal array. + + See Also + -------- + diagonal : Return specified diagonals. + diagflat : Create a 2-D array with the flattened input as a diagonal. + trace : Sum along diagonals. + triu : Upper triangle of an array. + tril : Lower triangle of an array. + + Examples + -------- + >>> x = np.arange(9).reshape((3,3)) + >>> x + array([[0, 1, 2], + [3, 4, 5], + [6, 7, 8]]) + + >>> np.diag(x) + array([0, 4, 8]) + >>> np.diag(x, k=1) + array([1, 5]) + >>> np.diag(x, k=-1) + array([3, 7]) + + >>> np.diag(np.diag(x)) + array([[0, 0, 0], + [0, 4, 0], + [0, 0, 8]]) + + """ + v = asarray(v) + s = v.shape + if len(s) == 1: + n = s[0]+abs(k) + res = zeros((n, n), v.dtype) + if k >= 0: + i = k + else: + i = (-k) * n + res[:n-k].flat[i::n+1] = v + return res + elif len(s) == 2: + return v.diagonal(k) + else: + raise ValueError("Input must be 1- or 2-d.") + + +def diagflat(v, k=0): + """ + Create a two-dimensional array with the flattened input as a diagonal. + + Parameters + ---------- + v : array_like + Input data, which is flattened and set as the `k`-th + diagonal of the output. + k : int, optional + Diagonal to set; 0, the default, corresponds to the "main" diagonal, + a positive (negative) `k` giving the number of the diagonal above + (below) the main. + + Returns + ------- + out : ndarray + The 2-D output array. + + See Also + -------- + diag : MATLAB work-alike for 1-D and 2-D arrays. + diagonal : Return specified diagonals. + trace : Sum along diagonals. + + Examples + -------- + >>> np.diagflat([[1,2], [3,4]]) + array([[1, 0, 0, 0], + [0, 2, 0, 0], + [0, 0, 3, 0], + [0, 0, 0, 4]]) + + >>> np.diagflat([1,2], 1) + array([[0, 1, 0], + [0, 0, 2], + [0, 0, 0]]) + + """ + try: + wrap = v.__array_wrap__ + except AttributeError: + wrap = None + v = asarray(v).ravel() + s = len(v) + n = s + abs(k) + res = zeros((n, n), v.dtype) + if (k >= 0): + i = arange(0, n-k) + fi = i+k+i*n + else: + i = arange(0, n+k) + fi = i+(i-k)*n + res.flat[fi] = v + if not wrap: + return res + return wrap(res) + + +def tri(N, M=None, k=0, dtype=float): + """ + An array with ones at and below the given diagonal and zeros elsewhere. + + Parameters + ---------- + N : int + Number of rows in the array. + M : int, optional + Number of columns in the array. + By default, `M` is taken equal to `N`. + k : int, optional + The sub-diagonal at and below which the array is filled. + `k` = 0 is the main diagonal, while `k` < 0 is below it, + and `k` > 0 is above. The default is 0. + dtype : dtype, optional + Data type of the returned array. The default is float. + + Returns + ------- + tri : ndarray of shape (N, M) + Array with its lower triangle filled with ones and zero elsewhere; + in other words ``T[i,j] == 1`` for ``i <= j + k``, 0 otherwise. + + Examples + -------- + >>> np.tri(3, 5, 2, dtype=int) + array([[1, 1, 1, 0, 0], + [1, 1, 1, 1, 0], + [1, 1, 1, 1, 1]]) + + >>> np.tri(3, 5, -1) + array([[ 0., 0., 0., 0., 0.], + [ 1., 0., 0., 0., 0.], + [ 1., 1., 0., 0., 0.]]) + + """ + if M is None: + M = N + + m = greater_equal.outer(arange(N, dtype=_min_int(0, N)), + arange(-k, M-k, dtype=_min_int(-k, M - k))) + + # Avoid making a copy if the requested type is already bool + m = m.astype(dtype, copy=False) + + return m + + +def tril(m, k=0): + """ + Lower triangle of an array. + + Return a copy of an array with elements above the `k`-th diagonal zeroed. + + Parameters + ---------- + m : array_like, shape (M, N) + Input array. + k : int, optional + Diagonal above which to zero elements. `k = 0` (the default) is the + main diagonal, `k < 0` is below it and `k > 0` is above. + + Returns + ------- + tril : ndarray, shape (M, N) + Lower triangle of `m`, of same shape and data-type as `m`. + + See Also + -------- + triu : same thing, only for the upper triangle + + Examples + -------- + >>> np.tril([[1,2,3],[4,5,6],[7,8,9],[10,11,12]], -1) + array([[ 0, 0, 0], + [ 4, 0, 0], + [ 7, 8, 0], + [10, 11, 12]]) + + """ + m = asanyarray(m) + mask = tri(*m.shape[-2:], k=k, dtype=bool) + + return where(mask, m, zeros(1, m.dtype)) + + +def triu(m, k=0): + """ + Upper triangle of an array. + + Return a copy of a matrix with the elements below the `k`-th diagonal + zeroed. + + Please refer to the documentation for `tril` for further details. + + See Also + -------- + tril : lower triangle of an array + + Examples + -------- + >>> np.triu([[1,2,3],[4,5,6],[7,8,9],[10,11,12]], -1) + array([[ 1, 2, 3], + [ 4, 5, 6], + [ 0, 8, 9], + [ 0, 0, 12]]) + + """ + m = asanyarray(m) + mask = tri(*m.shape[-2:], k=k-1, dtype=bool) + + return where(mask, zeros(1, m.dtype), m) + + +# Originally borrowed from John Hunter and matplotlib +def vander(x, N=None, increasing=False): + """ + Generate a Vandermonde matrix. + + The columns of the output matrix are powers of the input vector. The + order of the powers is determined by the `increasing` boolean argument. + Specifically, when `increasing` is False, the `i`-th output column is + the input vector raised element-wise to the power of ``N - i - 1``. Such + a matrix with a geometric progression in each row is named for Alexandre- + Theophile Vandermonde. + + Parameters + ---------- + x : array_like + 1-D input array. + N : int, optional + Number of columns in the output. If `N` is not specified, a square + array is returned (``N = len(x)``). + increasing : bool, optional + Order of the powers of the columns. If True, the powers increase + from left to right, if False (the default) they are reversed. + + .. versionadded:: 1.9.0 + + Returns + ------- + out : ndarray + Vandermonde matrix. If `increasing` is False, the first column is + ``x^(N-1)``, the second ``x^(N-2)`` and so forth. If `increasing` is + True, the columns are ``x^0, x^1, ..., x^(N-1)``. + + See Also + -------- + polynomial.polynomial.polyvander + + Examples + -------- + >>> x = np.array([1, 2, 3, 5]) + >>> N = 3 + >>> np.vander(x, N) + array([[ 1, 1, 1], + [ 4, 2, 1], + [ 9, 3, 1], + [25, 5, 1]]) + + >>> np.column_stack([x**(N-1-i) for i in range(N)]) + array([[ 1, 1, 1], + [ 4, 2, 1], + [ 9, 3, 1], + [25, 5, 1]]) + + >>> x = np.array([1, 2, 3, 5]) + >>> np.vander(x) + array([[ 1, 1, 1, 1], + [ 8, 4, 2, 1], + [ 27, 9, 3, 1], + [125, 25, 5, 1]]) + >>> np.vander(x, increasing=True) + array([[ 1, 1, 1, 1], + [ 1, 2, 4, 8], + [ 1, 3, 9, 27], + [ 1, 5, 25, 125]]) + + The determinant of a square Vandermonde matrix is the product + of the differences between the values of the input vector: + + >>> np.linalg.det(np.vander(x)) + 48.000000000000043 + >>> (5-3)*(5-2)*(5-1)*(3-2)*(3-1)*(2-1) + 48 + + """ + x = asarray(x) + if x.ndim != 1: + raise ValueError("x must be a one-dimensional array or sequence.") + if N is None: + N = len(x) + + v = empty((len(x), N), dtype=promote_types(x.dtype, int)) + tmp = v[:, ::-1] if not increasing else v + + if N > 0: + tmp[:, 0] = 1 + if N > 1: + tmp[:, 1:] = x[:, None] + multiply.accumulate(tmp[:, 1:], out=tmp[:, 1:], axis=1) + + return v + + +def histogram2d(x, y, bins=10, range=None, normed=False, weights=None): + """ + Compute the bi-dimensional histogram of two data samples. + + Parameters + ---------- + x : array_like, shape (N,) + An array containing the x coordinates of the points to be + histogrammed. + y : array_like, shape (N,) + An array containing the y coordinates of the points to be + histogrammed. + bins : int or [int, int] or array_like or [array, array], optional + The bin specification: + + * If int, the number of bins for the two dimensions (nx=ny=bins). + * If [int, int], the number of bins in each dimension + (nx, ny = bins). + * If array_like, the bin edges for the two dimensions + (x_edges=y_edges=bins). + * If [array, array], the bin edges in each dimension + (x_edges, y_edges = bins). + + range : array_like, shape(2,2), optional + The leftmost and rightmost edges of the bins along each dimension + (if not specified explicitly in the `bins` parameters): + ``[[xmin, xmax], [ymin, ymax]]``. All values outside of this range + will be considered outliers and not tallied in the histogram. + normed : bool, optional + If False, returns the number of samples in each bin. If True, + returns the bin density ``bin_count / sample_count / bin_area``. + weights : array_like, shape(N,), optional + An array of values ``w_i`` weighing each sample ``(x_i, y_i)``. + Weights are normalized to 1 if `normed` is True. If `normed` is + False, the values of the returned histogram are equal to the sum of + the weights belonging to the samples falling into each bin. + + Returns + ------- + H : ndarray, shape(nx, ny) + The bi-dimensional histogram of samples `x` and `y`. Values in `x` + are histogrammed along the first dimension and values in `y` are + histogrammed along the second dimension. + xedges : ndarray, shape(nx,) + The bin edges along the first dimension. + yedges : ndarray, shape(ny,) + The bin edges along the second dimension. + + See Also + -------- + histogram : 1D histogram + histogramdd : Multidimensional histogram + + Notes + ----- + When `normed` is True, then the returned histogram is the sample + density, defined such that the sum over bins of the product + ``bin_value * bin_area`` is 1. + + Please note that the histogram does not follow the Cartesian convention + where `x` values are on the abscissa and `y` values on the ordinate + axis. Rather, `x` is histogrammed along the first dimension of the + array (vertical), and `y` along the second dimension of the array + (horizontal). This ensures compatibility with `histogramdd`. + + Examples + -------- + >>> import matplotlib as mpl + >>> import matplotlib.pyplot as plt + + Construct a 2D-histogram with variable bin width. First define the bin + edges: + + >>> xedges = [0, 1, 1.5, 3, 5] + >>> yedges = [0, 2, 3, 4, 6] + + Next we create a histogram H with random bin content: + + >>> x = np.random.normal(3, 1, 100) + >>> y = np.random.normal(1, 1, 100) + >>> H, xedges, yedges = np.histogram2d(y, x, bins=(xedges, yedges)) + + Or we fill the histogram H with a determined bin content: + + >>> H = np.ones((4, 4)).cumsum().reshape(4, 4) + >>> print H[::-1] # This shows the bin content in the order as plotted + [[ 13. 14. 15. 16.] + [ 9. 10. 11. 12.] + [ 5. 6. 7. 8.] + [ 1. 2. 3. 4.]] + + Imshow can only do an equidistant representation of bins: + + >>> fig = plt.figure(figsize=(7, 3)) + >>> ax = fig.add_subplot(131) + >>> ax.set_title('imshow: equidistant') + >>> im = plt.imshow(H, interpolation='nearest', origin='low', + extent=[xedges[0], xedges[-1], yedges[0], yedges[-1]]) + + pcolormesh can display exact bin edges: + + >>> ax = fig.add_subplot(132) + >>> ax.set_title('pcolormesh: exact bin edges') + >>> X, Y = np.meshgrid(xedges, yedges) + >>> ax.pcolormesh(X, Y, H) + >>> ax.set_aspect('equal') + + NonUniformImage displays exact bin edges with interpolation: + + >>> ax = fig.add_subplot(133) + >>> ax.set_title('NonUniformImage: interpolated') + >>> im = mpl.image.NonUniformImage(ax, interpolation='bilinear') + >>> xcenters = xedges[:-1] + 0.5 * (xedges[1:] - xedges[:-1]) + >>> ycenters = yedges[:-1] + 0.5 * (yedges[1:] - yedges[:-1]) + >>> im.set_data(xcenters, ycenters, H) + >>> ax.images.append(im) + >>> ax.set_xlim(xedges[0], xedges[-1]) + >>> ax.set_ylim(yedges[0], yedges[-1]) + >>> ax.set_aspect('equal') + >>> plt.show() + + """ + from numpy import histogramdd + + try: + N = len(bins) + except TypeError: + N = 1 + + if N != 1 and N != 2: + xedges = yedges = asarray(bins, float) + bins = [xedges, yedges] + hist, edges = histogramdd([x, y], bins, range, normed, weights) + return hist, edges[0], edges[1] + + +def mask_indices(n, mask_func, k=0): + """ + Return the indices to access (n, n) arrays, given a masking function. + + Assume `mask_func` is a function that, for a square array a of size + ``(n, n)`` with a possible offset argument `k`, when called as + ``mask_func(a, k)`` returns a new array with zeros in certain locations + (functions like `triu` or `tril` do precisely this). Then this function + returns the indices where the non-zero values would be located. + + Parameters + ---------- + n : int + The returned indices will be valid to access arrays of shape (n, n). + mask_func : callable + A function whose call signature is similar to that of `triu`, `tril`. + That is, ``mask_func(x, k)`` returns a boolean array, shaped like `x`. + `k` is an optional argument to the function. + k : scalar + An optional argument which is passed through to `mask_func`. Functions + like `triu`, `tril` take a second argument that is interpreted as an + offset. + + Returns + ------- + indices : tuple of arrays. + The `n` arrays of indices corresponding to the locations where + ``mask_func(np.ones((n, n)), k)`` is True. + + See Also + -------- + triu, tril, triu_indices, tril_indices + + Notes + ----- + .. versionadded:: 1.4.0 + + Examples + -------- + These are the indices that would allow you to access the upper triangular + part of any 3x3 array: + + >>> iu = np.mask_indices(3, np.triu) + + For example, if `a` is a 3x3 array: + + >>> a = np.arange(9).reshape(3, 3) + >>> a + array([[0, 1, 2], + [3, 4, 5], + [6, 7, 8]]) + >>> a[iu] + array([0, 1, 2, 4, 5, 8]) + + An offset can be passed also to the masking function. This gets us the + indices starting on the first diagonal right of the main one: + + >>> iu1 = np.mask_indices(3, np.triu, 1) + + with which we now extract only three elements: + + >>> a[iu1] + array([1, 2, 5]) + + """ + m = ones((n, n), int) + a = mask_func(m, k) + return where(a != 0) + + +def tril_indices(n, k=0, m=None): + """ + Return the indices for the lower-triangle of an (n, m) array. + + Parameters + ---------- + n : int + The row dimension of the arrays for which the returned + indices will be valid. + k : int, optional + Diagonal offset (see `tril` for details). + m : int, optional + .. versionadded:: 1.9.0 + + The column dimension of the arrays for which the returned + arrays will be valid. + By default `m` is taken equal to `n`. + + + Returns + ------- + inds : tuple of arrays + The indices for the triangle. The returned tuple contains two arrays, + each with the indices along one dimension of the array. + + See also + -------- + triu_indices : similar function, for upper-triangular. + mask_indices : generic function accepting an arbitrary mask function. + tril, triu + + Notes + ----- + .. versionadded:: 1.4.0 + + Examples + -------- + Compute two different sets of indices to access 4x4 arrays, one for the + lower triangular part starting at the main diagonal, and one starting two + diagonals further right: + + >>> il1 = np.tril_indices(4) + >>> il2 = np.tril_indices(4, 2) + + Here is how they can be used with a sample array: + + >>> a = np.arange(16).reshape(4, 4) + >>> a + array([[ 0, 1, 2, 3], + [ 4, 5, 6, 7], + [ 8, 9, 10, 11], + [12, 13, 14, 15]]) + + Both for indexing: + + >>> a[il1] + array([ 0, 4, 5, 8, 9, 10, 12, 13, 14, 15]) + + And for assigning values: + + >>> a[il1] = -1 + >>> a + array([[-1, 1, 2, 3], + [-1, -1, 6, 7], + [-1, -1, -1, 11], + [-1, -1, -1, -1]]) + + These cover almost the whole array (two diagonals right of the main one): + + >>> a[il2] = -10 + >>> a + array([[-10, -10, -10, 3], + [-10, -10, -10, -10], + [-10, -10, -10, -10], + [-10, -10, -10, -10]]) + + """ + return where(tri(n, m, k=k, dtype=bool)) + + +def tril_indices_from(arr, k=0): + """ + Return the indices for the lower-triangle of arr. + + See `tril_indices` for full details. + + Parameters + ---------- + arr : array_like + The indices will be valid for square arrays whose dimensions are + the same as arr. + k : int, optional + Diagonal offset (see `tril` for details). + + See Also + -------- + tril_indices, tril + + Notes + ----- + .. versionadded:: 1.4.0 + + """ + if arr.ndim != 2: + raise ValueError("input array must be 2-d") + return tril_indices(arr.shape[-2], k=k, m=arr.shape[-1]) + + +def triu_indices(n, k=0, m=None): + """ + Return the indices for the upper-triangle of an (n, m) array. + + Parameters + ---------- + n : int + The size of the arrays for which the returned indices will + be valid. + k : int, optional + Diagonal offset (see `triu` for details). + m : int, optional + .. versionadded:: 1.9.0 + + The column dimension of the arrays for which the returned + arrays will be valid. + By default `m` is taken equal to `n`. + + + Returns + ------- + inds : tuple, shape(2) of ndarrays, shape(`n`) + The indices for the triangle. The returned tuple contains two arrays, + each with the indices along one dimension of the array. Can be used + to slice a ndarray of shape(`n`, `n`). + + See also + -------- + tril_indices : similar function, for lower-triangular. + mask_indices : generic function accepting an arbitrary mask function. + triu, tril + + Notes + ----- + .. versionadded:: 1.4.0 + + Examples + -------- + Compute two different sets of indices to access 4x4 arrays, one for the + upper triangular part starting at the main diagonal, and one starting two + diagonals further right: + + >>> iu1 = np.triu_indices(4) + >>> iu2 = np.triu_indices(4, 2) + + Here is how they can be used with a sample array: + + >>> a = np.arange(16).reshape(4, 4) + >>> a + array([[ 0, 1, 2, 3], + [ 4, 5, 6, 7], + [ 8, 9, 10, 11], + [12, 13, 14, 15]]) + + Both for indexing: + + >>> a[iu1] + array([ 0, 1, 2, 3, 5, 6, 7, 10, 11, 15]) + + And for assigning values: + + >>> a[iu1] = -1 + >>> a + array([[-1, -1, -1, -1], + [ 4, -1, -1, -1], + [ 8, 9, -1, -1], + [12, 13, 14, -1]]) + + These cover only a small part of the whole array (two diagonals right + of the main one): + + >>> a[iu2] = -10 + >>> a + array([[ -1, -1, -10, -10], + [ 4, -1, -1, -10], + [ 8, 9, -1, -1], + [ 12, 13, 14, -1]]) + + """ + return where(~tri(n, m, k=k-1, dtype=bool)) + + +def triu_indices_from(arr, k=0): + """ + Return the indices for the upper-triangle of arr. + + See `triu_indices` for full details. + + Parameters + ---------- + arr : ndarray, shape(N, N) + The indices will be valid for square arrays. + k : int, optional + Diagonal offset (see `triu` for details). + + Returns + ------- + triu_indices_from : tuple, shape(2) of ndarray, shape(N) + Indices for the upper-triangle of `arr`. + + See Also + -------- + triu_indices, triu + + Notes + ----- + .. versionadded:: 1.4.0 + + """ + if arr.ndim != 2: + raise ValueError("input array must be 2-d") + return triu_indices(arr.shape[-2], k=k, m=arr.shape[-1])