diff DEPENDENCIES/mingw32/Python27/Lib/site-packages/numpy/lib/tests/test_nanfunctions.py @ 87:2a2c65a20a8b

Add Python libs and headers
author Chris Cannam
date Wed, 25 Feb 2015 14:05:22 +0000
parents
children
line wrap: on
line diff
--- /dev/null	Thu Jan 01 00:00:00 1970 +0000
+++ b/DEPENDENCIES/mingw32/Python27/Lib/site-packages/numpy/lib/tests/test_nanfunctions.py	Wed Feb 25 14:05:22 2015 +0000
@@ -0,0 +1,774 @@
+from __future__ import division, absolute_import, print_function
+
+import warnings
+
+import numpy as np
+from numpy.testing import (
+    run_module_suite, TestCase, assert_, assert_equal, assert_almost_equal,
+    assert_raises, assert_array_equal
+    )
+
+
+# Test data
+_ndat = np.array([[0.6244, np.nan, 0.2692, 0.0116, np.nan, 0.1170],
+                  [0.5351, -0.9403, np.nan, 0.2100, 0.4759, 0.2833],
+                  [np.nan, np.nan, np.nan, 0.1042, np.nan, -0.5954],
+                  [0.1610, np.nan, np.nan, 0.1859, 0.3146, np.nan]])
+
+
+# Rows of _ndat with nans removed
+_rdat = [np.array([0.6244, 0.2692, 0.0116, 0.1170]),
+         np.array([0.5351, -0.9403, 0.2100, 0.4759, 0.2833]),
+         np.array([0.1042, -0.5954]),
+         np.array([0.1610, 0.1859, 0.3146])]
+
+
+class TestNanFunctions_MinMax(TestCase):
+
+    nanfuncs = [np.nanmin, np.nanmax]
+    stdfuncs = [np.min, np.max]
+
+    def test_mutation(self):
+        # Check that passed array is not modified.
+        ndat = _ndat.copy()
+        for f in self.nanfuncs:
+            f(ndat)
+            assert_equal(ndat, _ndat)
+
+    def test_keepdims(self):
+        mat = np.eye(3)
+        for nf, rf in zip(self.nanfuncs, self.stdfuncs):
+            for axis in [None, 0, 1]:
+                tgt = rf(mat, axis=axis, keepdims=True)
+                res = nf(mat, axis=axis, keepdims=True)
+                assert_(res.ndim == tgt.ndim)
+
+    def test_out(self):
+        mat = np.eye(3)
+        for nf, rf in zip(self.nanfuncs, self.stdfuncs):
+            resout = np.zeros(3)
+            tgt = rf(mat, axis=1)
+            res = nf(mat, axis=1, out=resout)
+            assert_almost_equal(res, resout)
+            assert_almost_equal(res, tgt)
+
+    def test_dtype_from_input(self):
+        codes = 'efdgFDG'
+        for nf, rf in zip(self.nanfuncs, self.stdfuncs):
+            for c in codes:
+                mat = np.eye(3, dtype=c)
+                tgt = rf(mat, axis=1).dtype.type
+                res = nf(mat, axis=1).dtype.type
+                assert_(res is tgt)
+                # scalar case
+                tgt = rf(mat, axis=None).dtype.type
+                res = nf(mat, axis=None).dtype.type
+                assert_(res is tgt)
+
+    def test_result_values(self):
+        for nf, rf in zip(self.nanfuncs, self.stdfuncs):
+            tgt = [rf(d) for d in _rdat]
+            res = nf(_ndat, axis=1)
+            assert_almost_equal(res, tgt)
+
+    def test_allnans(self):
+        mat = np.array([np.nan]*9).reshape(3, 3)
+        for f in self.nanfuncs:
+            for axis in [None, 0, 1]:
+                with warnings.catch_warnings(record=True) as w:
+                    warnings.simplefilter('always')
+                    assert_(np.isnan(f(mat, axis=axis)).all())
+                    assert_(len(w) == 1, 'no warning raised')
+                    assert_(issubclass(w[0].category, RuntimeWarning))
+            # Check scalars
+            with warnings.catch_warnings(record=True) as w:
+                warnings.simplefilter('always')
+                assert_(np.isnan(f(np.nan)))
+                assert_(len(w) == 1, 'no warning raised')
+                assert_(issubclass(w[0].category, RuntimeWarning))
+
+    def test_masked(self):
+        mat = np.ma.fix_invalid(_ndat)
+        msk = mat._mask.copy()
+        for f in [np.nanmin]:
+            res = f(mat, axis=1)
+            tgt = f(_ndat, axis=1)
+            assert_equal(res, tgt)
+            assert_equal(mat._mask, msk)
+            assert_(not np.isinf(mat).any())
+
+    def test_scalar(self):
+        for f in self.nanfuncs:
+            assert_(f(0.) == 0.)
+
+    def test_matrices(self):
+        # Check that it works and that type and
+        # shape are preserved
+        mat = np.matrix(np.eye(3))
+        for f in self.nanfuncs:
+            res = f(mat, axis=0)
+            assert_(isinstance(res, np.matrix))
+            assert_(res.shape == (1, 3))
+            res = f(mat, axis=1)
+            assert_(isinstance(res, np.matrix))
+            assert_(res.shape == (3, 1))
+            res = f(mat)
+            assert_(np.isscalar(res))
+        # check that rows of nan are dealt with for subclasses (#4628)
+        mat[1] = np.nan
+        for f in self.nanfuncs:
+            with warnings.catch_warnings(record=True) as w:
+                warnings.simplefilter('always')
+                res = f(mat, axis=0)
+                assert_(isinstance(res, np.matrix))
+                assert_(not np.any(np.isnan(res)))
+                assert_(len(w) == 0)
+
+            with warnings.catch_warnings(record=True) as w:
+                warnings.simplefilter('always')
+                res = f(mat, axis=1)
+                assert_(isinstance(res, np.matrix))
+                assert_(np.isnan(res[1, 0]) and not np.isnan(res[0, 0])
+                        and not np.isnan(res[2, 0]))
+                assert_(len(w) == 1, 'no warning raised')
+                assert_(issubclass(w[0].category, RuntimeWarning))
+
+            with warnings.catch_warnings(record=True) as w:
+                warnings.simplefilter('always')
+                res = f(mat)
+                assert_(np.isscalar(res))
+                assert_(res != np.nan)
+                assert_(len(w) == 0)
+
+
+class TestNanFunctions_ArgminArgmax(TestCase):
+
+    nanfuncs = [np.nanargmin, np.nanargmax]
+
+    def test_mutation(self):
+        # Check that passed array is not modified.
+        ndat = _ndat.copy()
+        for f in self.nanfuncs:
+            f(ndat)
+            assert_equal(ndat, _ndat)
+
+    def test_result_values(self):
+        for f, fcmp in zip(self.nanfuncs, [np.greater, np.less]):
+            for row in _ndat:
+                with warnings.catch_warnings(record=True):
+                    warnings.simplefilter('always')
+                    ind = f(row)
+                    val = row[ind]
+                    # comparing with NaN is tricky as the result
+                    # is always false except for NaN != NaN
+                    assert_(not np.isnan(val))
+                    assert_(not fcmp(val, row).any())
+                    assert_(not np.equal(val, row[:ind]).any())
+
+    def test_allnans(self):
+        mat = np.array([np.nan]*9).reshape(3, 3)
+        for f in self.nanfuncs:
+            for axis in [None, 0, 1]:
+                assert_raises(ValueError, f, mat, axis=axis)
+            assert_raises(ValueError, f, np.nan)
+
+    def test_empty(self):
+        mat = np.zeros((0, 3))
+        for f in self.nanfuncs:
+            for axis in [0, None]:
+                assert_raises(ValueError, f, mat, axis=axis)
+            for axis in [1]:
+                res = f(mat, axis=axis)
+                assert_equal(res, np.zeros(0))
+
+    def test_scalar(self):
+        for f in self.nanfuncs:
+            assert_(f(0.) == 0.)
+
+    def test_matrices(self):
+        # Check that it works and that type and
+        # shape are preserved
+        mat = np.matrix(np.eye(3))
+        for f in self.nanfuncs:
+            res = f(mat, axis=0)
+            assert_(isinstance(res, np.matrix))
+            assert_(res.shape == (1, 3))
+            res = f(mat, axis=1)
+            assert_(isinstance(res, np.matrix))
+            assert_(res.shape == (3, 1))
+            res = f(mat)
+            assert_(np.isscalar(res))
+
+
+class TestNanFunctions_IntTypes(TestCase):
+
+    int_types = (np.int8, np.int16, np.int32, np.int64, np.uint8,
+                 np.uint16, np.uint32, np.uint64)
+
+    mat = np.array([127, 39, 93, 87, 46])
+
+    def integer_arrays(self):
+        for dtype in self.int_types:
+            yield self.mat.astype(dtype)
+
+    def test_nanmin(self):
+        tgt = np.min(self.mat)
+        for mat in self.integer_arrays():
+            assert_equal(np.nanmin(mat), tgt)
+
+    def test_nanmax(self):
+        tgt = np.max(self.mat)
+        for mat in self.integer_arrays():
+            assert_equal(np.nanmax(mat), tgt)
+
+    def test_nanargmin(self):
+        tgt = np.argmin(self.mat)
+        for mat in self.integer_arrays():
+            assert_equal(np.nanargmin(mat), tgt)
+
+    def test_nanargmax(self):
+        tgt = np.argmax(self.mat)
+        for mat in self.integer_arrays():
+            assert_equal(np.nanargmax(mat), tgt)
+
+    def test_nansum(self):
+        tgt = np.sum(self.mat)
+        for mat in self.integer_arrays():
+            assert_equal(np.nansum(mat), tgt)
+
+    def test_nanmean(self):
+        tgt = np.mean(self.mat)
+        for mat in self.integer_arrays():
+            assert_equal(np.nanmean(mat), tgt)
+
+    def test_nanvar(self):
+        tgt = np.var(self.mat)
+        for mat in self.integer_arrays():
+            assert_equal(np.nanvar(mat), tgt)
+
+        tgt = np.var(mat, ddof=1)
+        for mat in self.integer_arrays():
+            assert_equal(np.nanvar(mat, ddof=1), tgt)
+
+    def test_nanstd(self):
+        tgt = np.std(self.mat)
+        for mat in self.integer_arrays():
+            assert_equal(np.nanstd(mat), tgt)
+
+        tgt = np.std(self.mat, ddof=1)
+        for mat in self.integer_arrays():
+            assert_equal(np.nanstd(mat, ddof=1), tgt)
+
+
+class TestNanFunctions_Sum(TestCase):
+
+    def test_mutation(self):
+        # Check that passed array is not modified.
+        ndat = _ndat.copy()
+        np.nansum(ndat)
+        assert_equal(ndat, _ndat)
+
+    def test_keepdims(self):
+        mat = np.eye(3)
+        for axis in [None, 0, 1]:
+            tgt = np.sum(mat, axis=axis, keepdims=True)
+            res = np.nansum(mat, axis=axis, keepdims=True)
+            assert_(res.ndim == tgt.ndim)
+
+    def test_out(self):
+        mat = np.eye(3)
+        resout = np.zeros(3)
+        tgt = np.sum(mat, axis=1)
+        res = np.nansum(mat, axis=1, out=resout)
+        assert_almost_equal(res, resout)
+        assert_almost_equal(res, tgt)
+
+    def test_dtype_from_dtype(self):
+        mat = np.eye(3)
+        codes = 'efdgFDG'
+        for c in codes:
+            tgt = np.sum(mat, dtype=np.dtype(c), axis=1).dtype.type
+            res = np.nansum(mat, dtype=np.dtype(c), axis=1).dtype.type
+            assert_(res is tgt)
+            # scalar case
+            tgt = np.sum(mat, dtype=np.dtype(c), axis=None).dtype.type
+            res = np.nansum(mat, dtype=np.dtype(c), axis=None).dtype.type
+            assert_(res is tgt)
+
+    def test_dtype_from_char(self):
+        mat = np.eye(3)
+        codes = 'efdgFDG'
+        for c in codes:
+            tgt = np.sum(mat, dtype=c, axis=1).dtype.type
+            res = np.nansum(mat, dtype=c, axis=1).dtype.type
+            assert_(res is tgt)
+            # scalar case
+            tgt = np.sum(mat, dtype=c, axis=None).dtype.type
+            res = np.nansum(mat, dtype=c, axis=None).dtype.type
+            assert_(res is tgt)
+
+    def test_dtype_from_input(self):
+        codes = 'efdgFDG'
+        for c in codes:
+            mat = np.eye(3, dtype=c)
+            tgt = np.sum(mat, axis=1).dtype.type
+            res = np.nansum(mat, axis=1).dtype.type
+            assert_(res is tgt)
+            # scalar case
+            tgt = np.sum(mat, axis=None).dtype.type
+            res = np.nansum(mat, axis=None).dtype.type
+            assert_(res is tgt)
+
+    def test_result_values(self):
+            tgt = [np.sum(d) for d in _rdat]
+            res = np.nansum(_ndat, axis=1)
+            assert_almost_equal(res, tgt)
+
+    def test_allnans(self):
+        # Check for FutureWarning
+        with warnings.catch_warnings(record=True) as w:
+            warnings.simplefilter('always')
+            res = np.nansum([np.nan]*3, axis=None)
+            assert_(res == 0, 'result is not 0')
+            assert_(len(w) == 0, 'warning raised')
+            # Check scalar
+            res = np.nansum(np.nan)
+            assert_(res == 0, 'result is not 0')
+            assert_(len(w) == 0, 'warning raised')
+            # Check there is no warning for not all-nan
+            np.nansum([0]*3, axis=None)
+            assert_(len(w) == 0, 'unwanted warning raised')
+
+    def test_empty(self):
+        mat = np.zeros((0, 3))
+        tgt = [0]*3
+        res = np.nansum(mat, axis=0)
+        assert_equal(res, tgt)
+        tgt = []
+        res = np.nansum(mat, axis=1)
+        assert_equal(res, tgt)
+        tgt = 0
+        res = np.nansum(mat, axis=None)
+        assert_equal(res, tgt)
+
+    def test_scalar(self):
+        assert_(np.nansum(0.) == 0.)
+
+    def test_matrices(self):
+        # Check that it works and that type and
+        # shape are preserved
+        mat = np.matrix(np.eye(3))
+        res = np.nansum(mat, axis=0)
+        assert_(isinstance(res, np.matrix))
+        assert_(res.shape == (1, 3))
+        res = np.nansum(mat, axis=1)
+        assert_(isinstance(res, np.matrix))
+        assert_(res.shape == (3, 1))
+        res = np.nansum(mat)
+        assert_(np.isscalar(res))
+
+
+class TestNanFunctions_MeanVarStd(TestCase):
+
+    nanfuncs = [np.nanmean, np.nanvar, np.nanstd]
+    stdfuncs = [np.mean, np.var, np.std]
+
+    def test_mutation(self):
+        # Check that passed array is not modified.
+        ndat = _ndat.copy()
+        for f in self.nanfuncs:
+            f(ndat)
+            assert_equal(ndat, _ndat)
+
+    def test_dtype_error(self):
+        for f in self.nanfuncs:
+            for dtype in [np.bool_, np.int_, np.object]:
+                assert_raises(TypeError, f, _ndat, axis=1, dtype=np.int)
+
+    def test_out_dtype_error(self):
+        for f in self.nanfuncs:
+            for dtype in [np.bool_, np.int_, np.object]:
+                out = np.empty(_ndat.shape[0], dtype=dtype)
+                assert_raises(TypeError, f, _ndat, axis=1, out=out)
+
+    def test_keepdims(self):
+        mat = np.eye(3)
+        for nf, rf in zip(self.nanfuncs, self.stdfuncs):
+            for axis in [None, 0, 1]:
+                tgt = rf(mat, axis=axis, keepdims=True)
+                res = nf(mat, axis=axis, keepdims=True)
+                assert_(res.ndim == tgt.ndim)
+
+    def test_out(self):
+        mat = np.eye(3)
+        for nf, rf in zip(self.nanfuncs, self.stdfuncs):
+            resout = np.zeros(3)
+            tgt = rf(mat, axis=1)
+            res = nf(mat, axis=1, out=resout)
+            assert_almost_equal(res, resout)
+            assert_almost_equal(res, tgt)
+
+    def test_dtype_from_dtype(self):
+        mat = np.eye(3)
+        codes = 'efdgFDG'
+        for nf, rf in zip(self.nanfuncs, self.stdfuncs):
+            for c in codes:
+                tgt = rf(mat, dtype=np.dtype(c), axis=1).dtype.type
+                res = nf(mat, dtype=np.dtype(c), axis=1).dtype.type
+                assert_(res is tgt)
+                # scalar case
+                tgt = rf(mat, dtype=np.dtype(c), axis=None).dtype.type
+                res = nf(mat, dtype=np.dtype(c), axis=None).dtype.type
+                assert_(res is tgt)
+
+    def test_dtype_from_char(self):
+        mat = np.eye(3)
+        codes = 'efdgFDG'
+        for nf, rf in zip(self.nanfuncs, self.stdfuncs):
+            for c in codes:
+                tgt = rf(mat, dtype=c, axis=1).dtype.type
+                res = nf(mat, dtype=c, axis=1).dtype.type
+                assert_(res is tgt)
+                # scalar case
+                tgt = rf(mat, dtype=c, axis=None).dtype.type
+                res = nf(mat, dtype=c, axis=None).dtype.type
+                assert_(res is tgt)
+
+    def test_dtype_from_input(self):
+        codes = 'efdgFDG'
+        for nf, rf in zip(self.nanfuncs, self.stdfuncs):
+            for c in codes:
+                mat = np.eye(3, dtype=c)
+                tgt = rf(mat, axis=1).dtype.type
+                res = nf(mat, axis=1).dtype.type
+                assert_(res is tgt, "res %s, tgt %s" % (res, tgt))
+                # scalar case
+                tgt = rf(mat, axis=None).dtype.type
+                res = nf(mat, axis=None).dtype.type
+                assert_(res is tgt)
+
+    def test_ddof(self):
+        nanfuncs = [np.nanvar, np.nanstd]
+        stdfuncs = [np.var, np.std]
+        for nf, rf in zip(nanfuncs, stdfuncs):
+            for ddof in [0, 1]:
+                tgt = [rf(d, ddof=ddof) for d in _rdat]
+                res = nf(_ndat, axis=1, ddof=ddof)
+                assert_almost_equal(res, tgt)
+
+    def test_ddof_too_big(self):
+        nanfuncs = [np.nanvar, np.nanstd]
+        stdfuncs = [np.var, np.std]
+        dsize = [len(d) for d in _rdat]
+        for nf, rf in zip(nanfuncs, stdfuncs):
+            for ddof in range(5):
+                with warnings.catch_warnings(record=True) as w:
+                    warnings.simplefilter('always')
+                    tgt = [ddof >= d for d in dsize]
+                    res = nf(_ndat, axis=1, ddof=ddof)
+                    assert_equal(np.isnan(res), tgt)
+                    if any(tgt):
+                        assert_(len(w) == 1)
+                        assert_(issubclass(w[0].category, RuntimeWarning))
+                    else:
+                        assert_(len(w) == 0)
+
+    def test_result_values(self):
+        for nf, rf in zip(self.nanfuncs, self.stdfuncs):
+            tgt = [rf(d) for d in _rdat]
+            res = nf(_ndat, axis=1)
+            assert_almost_equal(res, tgt)
+
+    def test_allnans(self):
+        mat = np.array([np.nan]*9).reshape(3, 3)
+        for f in self.nanfuncs:
+            for axis in [None, 0, 1]:
+                with warnings.catch_warnings(record=True) as w:
+                    warnings.simplefilter('always')
+                    assert_(np.isnan(f(mat, axis=axis)).all())
+                    assert_(len(w) == 1)
+                    assert_(issubclass(w[0].category, RuntimeWarning))
+                    # Check scalar
+                    assert_(np.isnan(f(np.nan)))
+                    assert_(len(w) == 2)
+                    assert_(issubclass(w[0].category, RuntimeWarning))
+
+    def test_empty(self):
+        mat = np.zeros((0, 3))
+        for f in self.nanfuncs:
+            for axis in [0, None]:
+                with warnings.catch_warnings(record=True) as w:
+                    warnings.simplefilter('always')
+                    assert_(np.isnan(f(mat, axis=axis)).all())
+                    assert_(len(w) == 1)
+                    assert_(issubclass(w[0].category, RuntimeWarning))
+            for axis in [1]:
+                with warnings.catch_warnings(record=True) as w:
+                    warnings.simplefilter('always')
+                    assert_equal(f(mat, axis=axis), np.zeros([]))
+                    assert_(len(w) == 0)
+
+    def test_scalar(self):
+        for f in self.nanfuncs:
+            assert_(f(0.) == 0.)
+
+    def test_matrices(self):
+        # Check that it works and that type and
+        # shape are preserved
+        mat = np.matrix(np.eye(3))
+        for f in self.nanfuncs:
+            res = f(mat, axis=0)
+            assert_(isinstance(res, np.matrix))
+            assert_(res.shape == (1, 3))
+            res = f(mat, axis=1)
+            assert_(isinstance(res, np.matrix))
+            assert_(res.shape == (3, 1))
+            res = f(mat)
+            assert_(np.isscalar(res))
+
+
+class TestNanFunctions_Median(TestCase):
+
+    def test_mutation(self):
+        # Check that passed array is not modified.
+        ndat = _ndat.copy()
+        np.nanmedian(ndat)
+        assert_equal(ndat, _ndat)
+
+    def test_keepdims(self):
+        mat = np.eye(3)
+        for axis in [None, 0, 1]:
+            tgt = np.median(mat, axis=axis, out=None, overwrite_input=False)
+            res = np.nanmedian(mat, axis=axis, out=None, overwrite_input=False)
+            assert_(res.ndim == tgt.ndim)
+
+        d = np.ones((3, 5, 7, 11))
+        # Randomly set some elements to NaN:
+        w = np.random.random((4, 200)) * np.array(d.shape)[:, None]
+        w = w.astype(np.intp)
+        d[tuple(w)] = np.nan
+        with warnings.catch_warnings(record=True) as w:
+            warnings.simplefilter('always', RuntimeWarning)
+            res = np.nanmedian(d, axis=None, keepdims=True)
+            assert_equal(res.shape, (1, 1, 1, 1))
+            res = np.nanmedian(d, axis=(0, 1), keepdims=True)
+            assert_equal(res.shape, (1, 1, 7, 11))
+            res = np.nanmedian(d, axis=(0, 3), keepdims=True)
+            assert_equal(res.shape, (1, 5, 7, 1))
+            res = np.nanmedian(d, axis=(1,), keepdims=True)
+            assert_equal(res.shape, (3, 1, 7, 11))
+            res = np.nanmedian(d, axis=(0, 1, 2, 3), keepdims=True)
+            assert_equal(res.shape, (1, 1, 1, 1))
+            res = np.nanmedian(d, axis=(0, 1, 3), keepdims=True)
+            assert_equal(res.shape, (1, 1, 7, 1))
+
+    def test_out(self):
+        mat = np.random.rand(3, 3)
+        nan_mat = np.insert(mat, [0, 2], np.nan, axis=1)
+        resout = np.zeros(3)
+        tgt = np.median(mat, axis=1)
+        res = np.nanmedian(nan_mat, axis=1, out=resout)
+        assert_almost_equal(res, resout)
+        assert_almost_equal(res, tgt)
+        # 0-d output:
+        resout = np.zeros(())
+        tgt = np.median(mat, axis=None)
+        res = np.nanmedian(nan_mat, axis=None, out=resout)
+        assert_almost_equal(res, resout)
+        assert_almost_equal(res, tgt)
+        res = np.nanmedian(nan_mat, axis=(0, 1), out=resout)
+        assert_almost_equal(res, resout)
+        assert_almost_equal(res, tgt)
+
+    def test_small_large(self):
+        # test the small and large code paths, current cutoff 400 elements
+        for s in [5, 20, 51, 200, 1000]:
+            d = np.random.randn(4, s)
+            # Randomly set some elements to NaN:
+            w = np.random.randint(0, d.size, size=d.size // 5)
+            d.ravel()[w] = np.nan
+            d[:,0] = 1.  # ensure at least one good value
+            # use normal median without nans to compare
+            tgt = []
+            for x in d:
+                nonan = np.compress(~np.isnan(x), x)
+                tgt.append(np.median(nonan, overwrite_input=True))
+
+            assert_array_equal(np.nanmedian(d, axis=-1), tgt)
+
+    def test_result_values(self):
+            tgt = [np.median(d) for d in _rdat]
+            res = np.nanmedian(_ndat, axis=1)
+            assert_almost_equal(res, tgt)
+
+    def test_allnans(self):
+        mat = np.array([np.nan]*9).reshape(3, 3)
+        for axis in [None, 0, 1]:
+            with warnings.catch_warnings(record=True) as w:
+                warnings.simplefilter('always')
+                assert_(np.isnan(np.nanmedian(mat, axis=axis)).all())
+                if axis is None:
+                    assert_(len(w) == 1)
+                else:
+                    assert_(len(w) == 3)
+                assert_(issubclass(w[0].category, RuntimeWarning))
+                # Check scalar
+                assert_(np.isnan(np.nanmedian(np.nan)))
+                if axis is None:
+                    assert_(len(w) == 2)
+                else:
+                    assert_(len(w) == 4)
+                assert_(issubclass(w[0].category, RuntimeWarning))
+
+    def test_empty(self):
+        mat = np.zeros((0, 3))
+        for axis in [0, None]:
+            with warnings.catch_warnings(record=True) as w:
+                warnings.simplefilter('always')
+                assert_(np.isnan(np.nanmedian(mat, axis=axis)).all())
+                assert_(len(w) == 1)
+                assert_(issubclass(w[0].category, RuntimeWarning))
+        for axis in [1]:
+            with warnings.catch_warnings(record=True) as w:
+                warnings.simplefilter('always')
+                assert_equal(np.nanmedian(mat, axis=axis), np.zeros([]))
+                assert_(len(w) == 0)
+
+    def test_scalar(self):
+        assert_(np.nanmedian(0.) == 0.)
+
+    def test_extended_axis_invalid(self):
+        d = np.ones((3, 5, 7, 11))
+        assert_raises(IndexError, np.nanmedian, d, axis=-5)
+        assert_raises(IndexError, np.nanmedian, d, axis=(0, -5))
+        assert_raises(IndexError, np.nanmedian, d, axis=4)
+        assert_raises(IndexError, np.nanmedian, d, axis=(0, 4))
+        assert_raises(ValueError, np.nanmedian, d, axis=(1, 1))
+
+    def test_float_special(self):
+        with warnings.catch_warnings(record=True):
+            warnings.simplefilter('ignore', RuntimeWarning)
+            a = np.array([[np.inf,  np.nan], [np.nan, np.nan]])
+            assert_equal(np.nanmedian(a, axis=0), [np.inf,  np.nan])
+            assert_equal(np.nanmedian(a, axis=1), [np.inf,  np.nan])
+            assert_equal(np.nanmedian(a), np.inf)
+
+            # minimum fill value check
+            a = np.array([[np.nan, np.nan, np.inf], [np.nan, np.nan, np.inf]])
+            assert_equal(np.nanmedian(a, axis=1), np.inf)
+
+            # no mask path
+            a = np.array([[np.inf, np.inf], [np.inf, np.inf]])
+            assert_equal(np.nanmedian(a, axis=1), np.inf)
+
+
+class TestNanFunctions_Percentile(TestCase):
+
+    def test_mutation(self):
+        # Check that passed array is not modified.
+        ndat = _ndat.copy()
+        np.nanpercentile(ndat, 30)
+        assert_equal(ndat, _ndat)
+
+    def test_keepdims(self):
+        mat = np.eye(3)
+        for axis in [None, 0, 1]:
+            tgt = np.percentile(mat, 70, axis=axis, out=None,
+                                overwrite_input=False)
+            res = np.nanpercentile(mat, 70, axis=axis, out=None,
+                                   overwrite_input=False)
+            assert_(res.ndim == tgt.ndim)
+
+        d = np.ones((3, 5, 7, 11))
+        # Randomly set some elements to NaN:
+        w = np.random.random((4, 200)) * np.array(d.shape)[:, None]
+        w = w.astype(np.intp)
+        d[tuple(w)] = np.nan
+        with warnings.catch_warnings(record=True) as w:
+            warnings.simplefilter('always', RuntimeWarning)
+            res = np.nanpercentile(d, 90, axis=None, keepdims=True)
+            assert_equal(res.shape, (1, 1, 1, 1))
+            res = np.nanpercentile(d, 90, axis=(0, 1), keepdims=True)
+            assert_equal(res.shape, (1, 1, 7, 11))
+            res = np.nanpercentile(d, 90, axis=(0, 3), keepdims=True)
+            assert_equal(res.shape, (1, 5, 7, 1))
+            res = np.nanpercentile(d, 90, axis=(1,), keepdims=True)
+            assert_equal(res.shape, (3, 1, 7, 11))
+            res = np.nanpercentile(d, 90, axis=(0, 1, 2, 3), keepdims=True)
+            assert_equal(res.shape, (1, 1, 1, 1))
+            res = np.nanpercentile(d, 90, axis=(0, 1, 3), keepdims=True)
+            assert_equal(res.shape, (1, 1, 7, 1))
+
+    def test_out(self):
+        mat = np.random.rand(3, 3)
+        nan_mat = np.insert(mat, [0, 2], np.nan, axis=1)
+        resout = np.zeros(3)
+        tgt = np.percentile(mat, 42, axis=1)
+        res = np.nanpercentile(nan_mat, 42, axis=1, out=resout)
+        assert_almost_equal(res, resout)
+        assert_almost_equal(res, tgt)
+        # 0-d output:
+        resout = np.zeros(())
+        tgt = np.percentile(mat, 42, axis=None)
+        res = np.nanpercentile(nan_mat, 42, axis=None, out=resout)
+        assert_almost_equal(res, resout)
+        assert_almost_equal(res, tgt)
+        res = np.nanpercentile(nan_mat, 42, axis=(0, 1), out=resout)
+        assert_almost_equal(res, resout)
+        assert_almost_equal(res, tgt)
+
+    def test_result_values(self):
+        tgt = [np.percentile(d, 28) for d in _rdat]
+        res = np.nanpercentile(_ndat, 28, axis=1)
+        assert_almost_equal(res, tgt)
+        tgt = [np.percentile(d, (28, 98)) for d in _rdat]
+        res = np.nanpercentile(_ndat, (28, 98), axis=1)
+        assert_almost_equal(res, tgt)
+
+    def test_allnans(self):
+        mat = np.array([np.nan]*9).reshape(3, 3)
+        for axis in [None, 0, 1]:
+            with warnings.catch_warnings(record=True) as w:
+                warnings.simplefilter('always')
+                assert_(np.isnan(np.nanpercentile(mat, 60, axis=axis)).all())
+                if axis is None:
+                    assert_(len(w) == 1)
+                else:
+                    assert_(len(w) == 3)
+                assert_(issubclass(w[0].category, RuntimeWarning))
+                # Check scalar
+                assert_(np.isnan(np.nanpercentile(np.nan, 60)))
+                if axis is None:
+                    assert_(len(w) == 2)
+                else:
+                    assert_(len(w) == 4)
+                assert_(issubclass(w[0].category, RuntimeWarning))
+
+    def test_empty(self):
+        mat = np.zeros((0, 3))
+        for axis in [0, None]:
+            with warnings.catch_warnings(record=True) as w:
+                warnings.simplefilter('always')
+                assert_(np.isnan(np.nanpercentile(mat, 40, axis=axis)).all())
+                assert_(len(w) == 1)
+                assert_(issubclass(w[0].category, RuntimeWarning))
+        for axis in [1]:
+            with warnings.catch_warnings(record=True) as w:
+                warnings.simplefilter('always')
+                assert_equal(np.nanpercentile(mat, 40, axis=axis), np.zeros([]))
+                assert_(len(w) == 0)
+
+    def test_scalar(self):
+        assert_(np.nanpercentile(0., 100) == 0.)
+
+    def test_extended_axis_invalid(self):
+        d = np.ones((3, 5, 7, 11))
+        assert_raises(IndexError, np.nanpercentile, d, q=5, axis=-5)
+        assert_raises(IndexError, np.nanpercentile, d, q=5, axis=(0, -5))
+        assert_raises(IndexError, np.nanpercentile, d, q=5, axis=4)
+        assert_raises(IndexError, np.nanpercentile, d, q=5, axis=(0, 4))
+        assert_raises(ValueError, np.nanpercentile, d, q=5, axis=(1, 1))
+
+
+if __name__ == "__main__":
+    run_module_suite()