Mercurial > hg > vamp-build-and-test
diff DEPENDENCIES/mingw32/Python27/Lib/site-packages/numpy/lib/shape_base.py @ 87:2a2c65a20a8b
Add Python libs and headers
author | Chris Cannam |
---|---|
date | Wed, 25 Feb 2015 14:05:22 +0000 |
parents | |
children |
line wrap: on
line diff
--- /dev/null Thu Jan 01 00:00:00 1970 +0000 +++ b/DEPENDENCIES/mingw32/Python27/Lib/site-packages/numpy/lib/shape_base.py Wed Feb 25 14:05:22 2015 +0000 @@ -0,0 +1,865 @@ +from __future__ import division, absolute_import, print_function + +import warnings + +import numpy.core.numeric as _nx +from numpy.core.numeric import ( + asarray, zeros, outer, concatenate, isscalar, array, asanyarray + ) +from numpy.core.fromnumeric import product, reshape +from numpy.core import vstack, atleast_3d + + +__all__ = [ + 'column_stack', 'row_stack', 'dstack', 'array_split', 'split', + 'hsplit', 'vsplit', 'dsplit', 'apply_over_axes', 'expand_dims', + 'apply_along_axis', 'kron', 'tile', 'get_array_wrap' + ] + + +def apply_along_axis(func1d, axis, arr, *args, **kwargs): + """ + Apply a function to 1-D slices along the given axis. + + Execute `func1d(a, *args)` where `func1d` operates on 1-D arrays and `a` + is a 1-D slice of `arr` along `axis`. + + Parameters + ---------- + func1d : function + This function should accept 1-D arrays. It is applied to 1-D + slices of `arr` along the specified axis. + axis : integer + Axis along which `arr` is sliced. + arr : ndarray + Input array. + args : any + Additional arguments to `func1d`. + kwargs: any + Additional named arguments to `func1d`. + + .. versionadded:: 1.9.0 + + + Returns + ------- + apply_along_axis : ndarray + The output array. The shape of `outarr` is identical to the shape of + `arr`, except along the `axis` dimension, where the length of `outarr` + is equal to the size of the return value of `func1d`. If `func1d` + returns a scalar `outarr` will have one fewer dimensions than `arr`. + + See Also + -------- + apply_over_axes : Apply a function repeatedly over multiple axes. + + Examples + -------- + >>> def my_func(a): + ... \"\"\"Average first and last element of a 1-D array\"\"\" + ... return (a[0] + a[-1]) * 0.5 + >>> b = np.array([[1,2,3], [4,5,6], [7,8,9]]) + >>> np.apply_along_axis(my_func, 0, b) + array([ 4., 5., 6.]) + >>> np.apply_along_axis(my_func, 1, b) + array([ 2., 5., 8.]) + + For a function that doesn't return a scalar, the number of dimensions in + `outarr` is the same as `arr`. + + >>> b = np.array([[8,1,7], [4,3,9], [5,2,6]]) + >>> np.apply_along_axis(sorted, 1, b) + array([[1, 7, 8], + [3, 4, 9], + [2, 5, 6]]) + + """ + arr = asarray(arr) + nd = arr.ndim + if axis < 0: + axis += nd + if (axis >= nd): + raise ValueError("axis must be less than arr.ndim; axis=%d, rank=%d." + % (axis, nd)) + ind = [0]*(nd-1) + i = zeros(nd, 'O') + indlist = list(range(nd)) + indlist.remove(axis) + i[axis] = slice(None, None) + outshape = asarray(arr.shape).take(indlist) + i.put(indlist, ind) + res = func1d(arr[tuple(i.tolist())], *args, **kwargs) + # if res is a number, then we have a smaller output array + if isscalar(res): + outarr = zeros(outshape, asarray(res).dtype) + outarr[tuple(ind)] = res + Ntot = product(outshape) + k = 1 + while k < Ntot: + # increment the index + ind[-1] += 1 + n = -1 + while (ind[n] >= outshape[n]) and (n > (1-nd)): + ind[n-1] += 1 + ind[n] = 0 + n -= 1 + i.put(indlist, ind) + res = func1d(arr[tuple(i.tolist())], *args, **kwargs) + outarr[tuple(ind)] = res + k += 1 + return outarr + else: + Ntot = product(outshape) + holdshape = outshape + outshape = list(arr.shape) + outshape[axis] = len(res) + outarr = zeros(outshape, asarray(res).dtype) + outarr[tuple(i.tolist())] = res + k = 1 + while k < Ntot: + # increment the index + ind[-1] += 1 + n = -1 + while (ind[n] >= holdshape[n]) and (n > (1-nd)): + ind[n-1] += 1 + ind[n] = 0 + n -= 1 + i.put(indlist, ind) + res = func1d(arr[tuple(i.tolist())], *args, **kwargs) + outarr[tuple(i.tolist())] = res + k += 1 + return outarr + + +def apply_over_axes(func, a, axes): + """ + Apply a function repeatedly over multiple axes. + + `func` is called as `res = func(a, axis)`, where `axis` is the first + element of `axes`. The result `res` of the function call must have + either the same dimensions as `a` or one less dimension. If `res` + has one less dimension than `a`, a dimension is inserted before + `axis`. The call to `func` is then repeated for each axis in `axes`, + with `res` as the first argument. + + Parameters + ---------- + func : function + This function must take two arguments, `func(a, axis)`. + a : array_like + Input array. + axes : array_like + Axes over which `func` is applied; the elements must be integers. + + Returns + ------- + apply_over_axis : ndarray + The output array. The number of dimensions is the same as `a`, + but the shape can be different. This depends on whether `func` + changes the shape of its output with respect to its input. + + See Also + -------- + apply_along_axis : + Apply a function to 1-D slices of an array along the given axis. + + Notes + ------ + This function is equivalent to tuple axis arguments to reorderable ufuncs + with keepdims=True. Tuple axis arguments to ufuncs have been availabe since + version 1.7.0. + + Examples + -------- + >>> a = np.arange(24).reshape(2,3,4) + >>> a + array([[[ 0, 1, 2, 3], + [ 4, 5, 6, 7], + [ 8, 9, 10, 11]], + [[12, 13, 14, 15], + [16, 17, 18, 19], + [20, 21, 22, 23]]]) + + Sum over axes 0 and 2. The result has same number of dimensions + as the original array: + + >>> np.apply_over_axes(np.sum, a, [0,2]) + array([[[ 60], + [ 92], + [124]]]) + + Tuple axis arguments to ufuncs are equivalent: + + >>> np.sum(a, axis=(0,2), keepdims=True) + array([[[ 60], + [ 92], + [124]]]) + + """ + val = asarray(a) + N = a.ndim + if array(axes).ndim == 0: + axes = (axes,) + for axis in axes: + if axis < 0: + axis = N + axis + args = (val, axis) + res = func(*args) + if res.ndim == val.ndim: + val = res + else: + res = expand_dims(res, axis) + if res.ndim == val.ndim: + val = res + else: + raise ValueError("function is not returning " + "an array of the correct shape") + return val + +def expand_dims(a, axis): + """ + Expand the shape of an array. + + Insert a new axis, corresponding to a given position in the array shape. + + Parameters + ---------- + a : array_like + Input array. + axis : int + Position (amongst axes) where new axis is to be inserted. + + Returns + ------- + res : ndarray + Output array. The number of dimensions is one greater than that of + the input array. + + See Also + -------- + doc.indexing, atleast_1d, atleast_2d, atleast_3d + + Examples + -------- + >>> x = np.array([1,2]) + >>> x.shape + (2,) + + The following is equivalent to ``x[np.newaxis,:]`` or ``x[np.newaxis]``: + + >>> y = np.expand_dims(x, axis=0) + >>> y + array([[1, 2]]) + >>> y.shape + (1, 2) + + >>> y = np.expand_dims(x, axis=1) # Equivalent to x[:,newaxis] + >>> y + array([[1], + [2]]) + >>> y.shape + (2, 1) + + Note that some examples may use ``None`` instead of ``np.newaxis``. These + are the same objects: + + >>> np.newaxis is None + True + + """ + a = asarray(a) + shape = a.shape + if axis < 0: + axis = axis + len(shape) + 1 + return a.reshape(shape[:axis] + (1,) + shape[axis:]) + +row_stack = vstack + +def column_stack(tup): + """ + Stack 1-D arrays as columns into a 2-D array. + + Take a sequence of 1-D arrays and stack them as columns + to make a single 2-D array. 2-D arrays are stacked as-is, + just like with `hstack`. 1-D arrays are turned into 2-D columns + first. + + Parameters + ---------- + tup : sequence of 1-D or 2-D arrays. + Arrays to stack. All of them must have the same first dimension. + + Returns + ------- + stacked : 2-D array + The array formed by stacking the given arrays. + + See Also + -------- + hstack, vstack, concatenate + + Examples + -------- + >>> a = np.array((1,2,3)) + >>> b = np.array((2,3,4)) + >>> np.column_stack((a,b)) + array([[1, 2], + [2, 3], + [3, 4]]) + + """ + arrays = [] + for v in tup: + arr = array(v, copy=False, subok=True) + if arr.ndim < 2: + arr = array(arr, copy=False, subok=True, ndmin=2).T + arrays.append(arr) + return _nx.concatenate(arrays, 1) + +def dstack(tup): + """ + Stack arrays in sequence depth wise (along third axis). + + Takes a sequence of arrays and stack them along the third axis + to make a single array. Rebuilds arrays divided by `dsplit`. + This is a simple way to stack 2D arrays (images) into a single + 3D array for processing. + + Parameters + ---------- + tup : sequence of arrays + Arrays to stack. All of them must have the same shape along all + but the third axis. + + Returns + ------- + stacked : ndarray + The array formed by stacking the given arrays. + + See Also + -------- + vstack : Stack along first axis. + hstack : Stack along second axis. + concatenate : Join arrays. + dsplit : Split array along third axis. + + Notes + ----- + Equivalent to ``np.concatenate(tup, axis=2)``. + + Examples + -------- + >>> a = np.array((1,2,3)) + >>> b = np.array((2,3,4)) + >>> np.dstack((a,b)) + array([[[1, 2], + [2, 3], + [3, 4]]]) + + >>> a = np.array([[1],[2],[3]]) + >>> b = np.array([[2],[3],[4]]) + >>> np.dstack((a,b)) + array([[[1, 2]], + [[2, 3]], + [[3, 4]]]) + + """ + return _nx.concatenate([atleast_3d(_m) for _m in tup], 2) + +def _replace_zero_by_x_arrays(sub_arys): + for i in range(len(sub_arys)): + if len(_nx.shape(sub_arys[i])) == 0: + sub_arys[i] = _nx.empty(0, dtype=sub_arys[i].dtype) + elif _nx.sometrue(_nx.equal(_nx.shape(sub_arys[i]), 0)): + sub_arys[i] = _nx.empty(0, dtype=sub_arys[i].dtype) + return sub_arys + +def array_split(ary, indices_or_sections, axis=0): + """ + Split an array into multiple sub-arrays. + + Please refer to the ``split`` documentation. The only difference + between these functions is that ``array_split`` allows + `indices_or_sections` to be an integer that does *not* equally + divide the axis. + + See Also + -------- + split : Split array into multiple sub-arrays of equal size. + + Examples + -------- + >>> x = np.arange(8.0) + >>> np.array_split(x, 3) + [array([ 0., 1., 2.]), array([ 3., 4., 5.]), array([ 6., 7.])] + + """ + try: + Ntotal = ary.shape[axis] + except AttributeError: + Ntotal = len(ary) + try: + # handle scalar case. + Nsections = len(indices_or_sections) + 1 + div_points = [0] + list(indices_or_sections) + [Ntotal] + except TypeError: + # indices_or_sections is a scalar, not an array. + Nsections = int(indices_or_sections) + if Nsections <= 0: + raise ValueError('number sections must be larger than 0.') + Neach_section, extras = divmod(Ntotal, Nsections) + section_sizes = ([0] + + extras * [Neach_section+1] + + (Nsections-extras) * [Neach_section]) + div_points = _nx.array(section_sizes).cumsum() + + sub_arys = [] + sary = _nx.swapaxes(ary, axis, 0) + for i in range(Nsections): + st = div_points[i] + end = div_points[i + 1] + sub_arys.append(_nx.swapaxes(sary[st:end], axis, 0)) + + # This "kludge" was introduced here to replace arrays shaped (0, 10) + # or similar with an array shaped (0,). + # There seems no need for this, so give a FutureWarning to remove later. + if sub_arys[-1].size == 0 and sub_arys[-1].ndim != 1: + warnings.warn("in the future np.array_split will retain the shape of " + "arrays with a zero size, instead of replacing them by " + "`array([])`, which always has a shape of (0,).", + FutureWarning) + sub_arys = _replace_zero_by_x_arrays(sub_arys) + + return sub_arys + +def split(ary,indices_or_sections,axis=0): + """ + Split an array into multiple sub-arrays. + + Parameters + ---------- + ary : ndarray + Array to be divided into sub-arrays. + indices_or_sections : int or 1-D array + If `indices_or_sections` is an integer, N, the array will be divided + into N equal arrays along `axis`. If such a split is not possible, + an error is raised. + + If `indices_or_sections` is a 1-D array of sorted integers, the entries + indicate where along `axis` the array is split. For example, + ``[2, 3]`` would, for ``axis=0``, result in + + - ary[:2] + - ary[2:3] + - ary[3:] + + If an index exceeds the dimension of the array along `axis`, + an empty sub-array is returned correspondingly. + axis : int, optional + The axis along which to split, default is 0. + + Returns + ------- + sub-arrays : list of ndarrays + A list of sub-arrays. + + Raises + ------ + ValueError + If `indices_or_sections` is given as an integer, but + a split does not result in equal division. + + See Also + -------- + array_split : Split an array into multiple sub-arrays of equal or + near-equal size. Does not raise an exception if + an equal division cannot be made. + hsplit : Split array into multiple sub-arrays horizontally (column-wise). + vsplit : Split array into multiple sub-arrays vertically (row wise). + dsplit : Split array into multiple sub-arrays along the 3rd axis (depth). + concatenate : Join arrays together. + hstack : Stack arrays in sequence horizontally (column wise). + vstack : Stack arrays in sequence vertically (row wise). + dstack : Stack arrays in sequence depth wise (along third dimension). + + Examples + -------- + >>> x = np.arange(9.0) + >>> np.split(x, 3) + [array([ 0., 1., 2.]), array([ 3., 4., 5.]), array([ 6., 7., 8.])] + + >>> x = np.arange(8.0) + >>> np.split(x, [3, 5, 6, 10]) + [array([ 0., 1., 2.]), + array([ 3., 4.]), + array([ 5.]), + array([ 6., 7.]), + array([], dtype=float64)] + + """ + try: + len(indices_or_sections) + except TypeError: + sections = indices_or_sections + N = ary.shape[axis] + if N % sections: + raise ValueError( + 'array split does not result in an equal division') + res = array_split(ary, indices_or_sections, axis) + return res + +def hsplit(ary, indices_or_sections): + """ + Split an array into multiple sub-arrays horizontally (column-wise). + + Please refer to the `split` documentation. `hsplit` is equivalent + to `split` with ``axis=1``, the array is always split along the second + axis regardless of the array dimension. + + See Also + -------- + split : Split an array into multiple sub-arrays of equal size. + + Examples + -------- + >>> x = np.arange(16.0).reshape(4, 4) + >>> x + array([[ 0., 1., 2., 3.], + [ 4., 5., 6., 7.], + [ 8., 9., 10., 11.], + [ 12., 13., 14., 15.]]) + >>> np.hsplit(x, 2) + [array([[ 0., 1.], + [ 4., 5.], + [ 8., 9.], + [ 12., 13.]]), + array([[ 2., 3.], + [ 6., 7.], + [ 10., 11.], + [ 14., 15.]])] + >>> np.hsplit(x, np.array([3, 6])) + [array([[ 0., 1., 2.], + [ 4., 5., 6.], + [ 8., 9., 10.], + [ 12., 13., 14.]]), + array([[ 3.], + [ 7.], + [ 11.], + [ 15.]]), + array([], dtype=float64)] + + With a higher dimensional array the split is still along the second axis. + + >>> x = np.arange(8.0).reshape(2, 2, 2) + >>> x + array([[[ 0., 1.], + [ 2., 3.]], + [[ 4., 5.], + [ 6., 7.]]]) + >>> np.hsplit(x, 2) + [array([[[ 0., 1.]], + [[ 4., 5.]]]), + array([[[ 2., 3.]], + [[ 6., 7.]]])] + + """ + if len(_nx.shape(ary)) == 0: + raise ValueError('hsplit only works on arrays of 1 or more dimensions') + if len(ary.shape) > 1: + return split(ary, indices_or_sections, 1) + else: + return split(ary, indices_or_sections, 0) + +def vsplit(ary, indices_or_sections): + """ + Split an array into multiple sub-arrays vertically (row-wise). + + Please refer to the ``split`` documentation. ``vsplit`` is equivalent + to ``split`` with `axis=0` (default), the array is always split along the + first axis regardless of the array dimension. + + See Also + -------- + split : Split an array into multiple sub-arrays of equal size. + + Examples + -------- + >>> x = np.arange(16.0).reshape(4, 4) + >>> x + array([[ 0., 1., 2., 3.], + [ 4., 5., 6., 7.], + [ 8., 9., 10., 11.], + [ 12., 13., 14., 15.]]) + >>> np.vsplit(x, 2) + [array([[ 0., 1., 2., 3.], + [ 4., 5., 6., 7.]]), + array([[ 8., 9., 10., 11.], + [ 12., 13., 14., 15.]])] + >>> np.vsplit(x, np.array([3, 6])) + [array([[ 0., 1., 2., 3.], + [ 4., 5., 6., 7.], + [ 8., 9., 10., 11.]]), + array([[ 12., 13., 14., 15.]]), + array([], dtype=float64)] + + With a higher dimensional array the split is still along the first axis. + + >>> x = np.arange(8.0).reshape(2, 2, 2) + >>> x + array([[[ 0., 1.], + [ 2., 3.]], + [[ 4., 5.], + [ 6., 7.]]]) + >>> np.vsplit(x, 2) + [array([[[ 0., 1.], + [ 2., 3.]]]), + array([[[ 4., 5.], + [ 6., 7.]]])] + + """ + if len(_nx.shape(ary)) < 2: + raise ValueError('vsplit only works on arrays of 2 or more dimensions') + return split(ary, indices_or_sections, 0) + +def dsplit(ary, indices_or_sections): + """ + Split array into multiple sub-arrays along the 3rd axis (depth). + + Please refer to the `split` documentation. `dsplit` is equivalent + to `split` with ``axis=2``, the array is always split along the third + axis provided the array dimension is greater than or equal to 3. + + See Also + -------- + split : Split an array into multiple sub-arrays of equal size. + + Examples + -------- + >>> x = np.arange(16.0).reshape(2, 2, 4) + >>> x + array([[[ 0., 1., 2., 3.], + [ 4., 5., 6., 7.]], + [[ 8., 9., 10., 11.], + [ 12., 13., 14., 15.]]]) + >>> np.dsplit(x, 2) + [array([[[ 0., 1.], + [ 4., 5.]], + [[ 8., 9.], + [ 12., 13.]]]), + array([[[ 2., 3.], + [ 6., 7.]], + [[ 10., 11.], + [ 14., 15.]]])] + >>> np.dsplit(x, np.array([3, 6])) + [array([[[ 0., 1., 2.], + [ 4., 5., 6.]], + [[ 8., 9., 10.], + [ 12., 13., 14.]]]), + array([[[ 3.], + [ 7.]], + [[ 11.], + [ 15.]]]), + array([], dtype=float64)] + + """ + if len(_nx.shape(ary)) < 3: + raise ValueError('dsplit only works on arrays of 3 or more dimensions') + return split(ary, indices_or_sections, 2) + +def get_array_prepare(*args): + """Find the wrapper for the array with the highest priority. + + In case of ties, leftmost wins. If no wrapper is found, return None + """ + wrappers = sorted((getattr(x, '__array_priority__', 0), -i, + x.__array_prepare__) for i, x in enumerate(args) + if hasattr(x, '__array_prepare__')) + if wrappers: + return wrappers[-1][-1] + return None + +def get_array_wrap(*args): + """Find the wrapper for the array with the highest priority. + + In case of ties, leftmost wins. If no wrapper is found, return None + """ + wrappers = sorted((getattr(x, '__array_priority__', 0), -i, + x.__array_wrap__) for i, x in enumerate(args) + if hasattr(x, '__array_wrap__')) + if wrappers: + return wrappers[-1][-1] + return None + +def kron(a, b): + """ + Kronecker product of two arrays. + + Computes the Kronecker product, a composite array made of blocks of the + second array scaled by the first. + + Parameters + ---------- + a, b : array_like + + Returns + ------- + out : ndarray + + See Also + -------- + outer : The outer product + + Notes + ----- + The function assumes that the number of dimenensions of `a` and `b` + are the same, if necessary prepending the smallest with ones. + If `a.shape = (r0,r1,..,rN)` and `b.shape = (s0,s1,...,sN)`, + the Kronecker product has shape `(r0*s0, r1*s1, ..., rN*SN)`. + The elements are products of elements from `a` and `b`, organized + explicitly by:: + + kron(a,b)[k0,k1,...,kN] = a[i0,i1,...,iN] * b[j0,j1,...,jN] + + where:: + + kt = it * st + jt, t = 0,...,N + + In the common 2-D case (N=1), the block structure can be visualized:: + + [[ a[0,0]*b, a[0,1]*b, ... , a[0,-1]*b ], + [ ... ... ], + [ a[-1,0]*b, a[-1,1]*b, ... , a[-1,-1]*b ]] + + + Examples + -------- + >>> np.kron([1,10,100], [5,6,7]) + array([ 5, 6, 7, 50, 60, 70, 500, 600, 700]) + >>> np.kron([5,6,7], [1,10,100]) + array([ 5, 50, 500, 6, 60, 600, 7, 70, 700]) + + >>> np.kron(np.eye(2), np.ones((2,2))) + array([[ 1., 1., 0., 0.], + [ 1., 1., 0., 0.], + [ 0., 0., 1., 1.], + [ 0., 0., 1., 1.]]) + + >>> a = np.arange(100).reshape((2,5,2,5)) + >>> b = np.arange(24).reshape((2,3,4)) + >>> c = np.kron(a,b) + >>> c.shape + (2, 10, 6, 20) + >>> I = (1,3,0,2) + >>> J = (0,2,1) + >>> J1 = (0,) + J # extend to ndim=4 + >>> S1 = (1,) + b.shape + >>> K = tuple(np.array(I) * np.array(S1) + np.array(J1)) + >>> c[K] == a[I]*b[J] + True + + """ + b = asanyarray(b) + a = array(a, copy=False, subok=True, ndmin=b.ndim) + ndb, nda = b.ndim, a.ndim + if (nda == 0 or ndb == 0): + return _nx.multiply(a, b) + as_ = a.shape + bs = b.shape + if not a.flags.contiguous: + a = reshape(a, as_) + if not b.flags.contiguous: + b = reshape(b, bs) + nd = ndb + if (ndb != nda): + if (ndb > nda): + as_ = (1,)*(ndb-nda) + as_ + else: + bs = (1,)*(nda-ndb) + bs + nd = nda + result = outer(a, b).reshape(as_+bs) + axis = nd-1 + for _ in range(nd): + result = concatenate(result, axis=axis) + wrapper = get_array_prepare(a, b) + if wrapper is not None: + result = wrapper(result) + wrapper = get_array_wrap(a, b) + if wrapper is not None: + result = wrapper(result) + return result + + +def tile(A, reps): + """ + Construct an array by repeating A the number of times given by reps. + + If `reps` has length ``d``, the result will have dimension of + ``max(d, A.ndim)``. + + If ``A.ndim < d``, `A` is promoted to be d-dimensional by prepending new + axes. So a shape (3,) array is promoted to (1, 3) for 2-D replication, + or shape (1, 1, 3) for 3-D replication. If this is not the desired + behavior, promote `A` to d-dimensions manually before calling this + function. + + If ``A.ndim > d``, `reps` is promoted to `A`.ndim by pre-pending 1's to it. + Thus for an `A` of shape (2, 3, 4, 5), a `reps` of (2, 2) is treated as + (1, 1, 2, 2). + + Parameters + ---------- + A : array_like + The input array. + reps : array_like + The number of repetitions of `A` along each axis. + + Returns + ------- + c : ndarray + The tiled output array. + + See Also + -------- + repeat : Repeat elements of an array. + + Examples + -------- + >>> a = np.array([0, 1, 2]) + >>> np.tile(a, 2) + array([0, 1, 2, 0, 1, 2]) + >>> np.tile(a, (2, 2)) + array([[0, 1, 2, 0, 1, 2], + [0, 1, 2, 0, 1, 2]]) + >>> np.tile(a, (2, 1, 2)) + array([[[0, 1, 2, 0, 1, 2]], + [[0, 1, 2, 0, 1, 2]]]) + + >>> b = np.array([[1, 2], [3, 4]]) + >>> np.tile(b, 2) + array([[1, 2, 1, 2], + [3, 4, 3, 4]]) + >>> np.tile(b, (2, 1)) + array([[1, 2], + [3, 4], + [1, 2], + [3, 4]]) + + """ + try: + tup = tuple(reps) + except TypeError: + tup = (reps,) + d = len(tup) + c = _nx.array(A, copy=False, subok=True, ndmin=d) + shape = list(c.shape) + n = max(c.size, 1) + if (d < c.ndim): + tup = (1,)*(c.ndim-d) + tup + for i, nrep in enumerate(tup): + if nrep != 1: + c = c.reshape(-1, n).repeat(nrep, 0) + dim_in = shape[i] + dim_out = dim_in*nrep + shape[i] = dim_out + n //= max(dim_in, 1) + return c.reshape(shape)