Mercurial > hg > vamp-build-and-test
diff DEPENDENCIES/mingw32/Python27/Lib/site-packages/numpy/lib/function_base.py @ 87:2a2c65a20a8b
Add Python libs and headers
author | Chris Cannam |
---|---|
date | Wed, 25 Feb 2015 14:05:22 +0000 |
parents | |
children |
line wrap: on
line diff
--- /dev/null Thu Jan 01 00:00:00 1970 +0000 +++ b/DEPENDENCIES/mingw32/Python27/Lib/site-packages/numpy/lib/function_base.py Wed Feb 25 14:05:22 2015 +0000 @@ -0,0 +1,3884 @@ +from __future__ import division, absolute_import, print_function + +import warnings +import sys +import collections +import operator + +import numpy as np +import numpy.core.numeric as _nx +from numpy.core import linspace, atleast_1d, atleast_2d +from numpy.core.numeric import ( + ones, zeros, arange, concatenate, array, asarray, asanyarray, empty, + empty_like, ndarray, around, floor, ceil, take, dot, where, intp, + integer, isscalar + ) +from numpy.core.umath import ( + pi, multiply, add, arctan2, frompyfunc, cos, less_equal, sqrt, sin, + mod, exp, log10 + ) +from numpy.core.fromnumeric import ( + ravel, nonzero, sort, partition, mean + ) +from numpy.core.numerictypes import typecodes, number +from numpy.lib.twodim_base import diag +from .utils import deprecate +from ._compiled_base import _insert, add_docstring +from ._compiled_base import digitize, bincount, interp as compiled_interp +from ._compiled_base import add_newdoc_ufunc +from numpy.compat import long + +# Force range to be a generator, for np.delete's usage. +if sys.version_info[0] < 3: + range = xrange + + +__all__ = [ + 'select', 'piecewise', 'trim_zeros', 'copy', 'iterable', 'percentile', + 'diff', 'gradient', 'angle', 'unwrap', 'sort_complex', 'disp', + 'extract', 'place', 'vectorize', 'asarray_chkfinite', 'average', + 'histogram', 'histogramdd', 'bincount', 'digitize', 'cov', 'corrcoef', + 'msort', 'median', 'sinc', 'hamming', 'hanning', 'bartlett', + 'blackman', 'kaiser', 'trapz', 'i0', 'add_newdoc', 'add_docstring', + 'meshgrid', 'delete', 'insert', 'append', 'interp', 'add_newdoc_ufunc' + ] + + +def iterable(y): + """ + Check whether or not an object can be iterated over. + + Parameters + ---------- + y : object + Input object. + + Returns + ------- + b : {0, 1} + Return 1 if the object has an iterator method or is a sequence, + and 0 otherwise. + + + Examples + -------- + >>> np.iterable([1, 2, 3]) + 1 + >>> np.iterable(2) + 0 + + """ + try: + iter(y) + except: + return 0 + return 1 + + +def histogram(a, bins=10, range=None, normed=False, weights=None, + density=None): + """ + Compute the histogram of a set of data. + + Parameters + ---------- + a : array_like + Input data. The histogram is computed over the flattened array. + bins : int or sequence of scalars, optional + If `bins` is an int, it defines the number of equal-width + bins in the given range (10, by default). If `bins` is a sequence, + it defines the bin edges, including the rightmost edge, allowing + for non-uniform bin widths. + range : (float, float), optional + The lower and upper range of the bins. If not provided, range + is simply ``(a.min(), a.max())``. Values outside the range are + ignored. + normed : bool, optional + This keyword is deprecated in Numpy 1.6 due to confusing/buggy + behavior. It will be removed in Numpy 2.0. Use the density keyword + instead. + If False, the result will contain the number of samples + in each bin. If True, the result is the value of the + probability *density* function at the bin, normalized such that + the *integral* over the range is 1. Note that this latter behavior is + known to be buggy with unequal bin widths; use `density` instead. + weights : array_like, optional + An array of weights, of the same shape as `a`. Each value in `a` + only contributes its associated weight towards the bin count + (instead of 1). If `normed` is True, the weights are normalized, + so that the integral of the density over the range remains 1 + density : bool, optional + If False, the result will contain the number of samples + in each bin. If True, the result is the value of the + probability *density* function at the bin, normalized such that + the *integral* over the range is 1. Note that the sum of the + histogram values will not be equal to 1 unless bins of unity + width are chosen; it is not a probability *mass* function. + Overrides the `normed` keyword if given. + + Returns + ------- + hist : array + The values of the histogram. See `normed` and `weights` for a + description of the possible semantics. + bin_edges : array of dtype float + Return the bin edges ``(length(hist)+1)``. + + + See Also + -------- + histogramdd, bincount, searchsorted, digitize + + Notes + ----- + All but the last (righthand-most) bin is half-open. In other words, if + `bins` is:: + + [1, 2, 3, 4] + + then the first bin is ``[1, 2)`` (including 1, but excluding 2) and the + second ``[2, 3)``. The last bin, however, is ``[3, 4]``, which *includes* + 4. + + Examples + -------- + >>> np.histogram([1, 2, 1], bins=[0, 1, 2, 3]) + (array([0, 2, 1]), array([0, 1, 2, 3])) + >>> np.histogram(np.arange(4), bins=np.arange(5), density=True) + (array([ 0.25, 0.25, 0.25, 0.25]), array([0, 1, 2, 3, 4])) + >>> np.histogram([[1, 2, 1], [1, 0, 1]], bins=[0,1,2,3]) + (array([1, 4, 1]), array([0, 1, 2, 3])) + + >>> a = np.arange(5) + >>> hist, bin_edges = np.histogram(a, density=True) + >>> hist + array([ 0.5, 0. , 0.5, 0. , 0. , 0.5, 0. , 0.5, 0. , 0.5]) + >>> hist.sum() + 2.4999999999999996 + >>> np.sum(hist*np.diff(bin_edges)) + 1.0 + + """ + + a = asarray(a) + if weights is not None: + weights = asarray(weights) + if np.any(weights.shape != a.shape): + raise ValueError( + 'weights should have the same shape as a.') + weights = weights.ravel() + a = a.ravel() + + if (range is not None): + mn, mx = range + if (mn > mx): + raise AttributeError( + 'max must be larger than min in range parameter.') + + if not iterable(bins): + if np.isscalar(bins) and bins < 1: + raise ValueError( + '`bins` should be a positive integer.') + if range is None: + if a.size == 0: + # handle empty arrays. Can't determine range, so use 0-1. + range = (0, 1) + else: + range = (a.min(), a.max()) + mn, mx = [mi + 0.0 for mi in range] + if mn == mx: + mn -= 0.5 + mx += 0.5 + bins = linspace(mn, mx, bins + 1, endpoint=True) + else: + bins = asarray(bins) + if (np.diff(bins) < 0).any(): + raise AttributeError( + 'bins must increase monotonically.') + + # Histogram is an integer or a float array depending on the weights. + if weights is None: + ntype = int + else: + ntype = weights.dtype + n = np.zeros(bins.shape, ntype) + + block = 65536 + if weights is None: + for i in arange(0, len(a), block): + sa = sort(a[i:i+block]) + n += np.r_[sa.searchsorted(bins[:-1], 'left'), + sa.searchsorted(bins[-1], 'right')] + else: + zero = array(0, dtype=ntype) + for i in arange(0, len(a), block): + tmp_a = a[i:i+block] + tmp_w = weights[i:i+block] + sorting_index = np.argsort(tmp_a) + sa = tmp_a[sorting_index] + sw = tmp_w[sorting_index] + cw = np.concatenate(([zero, ], sw.cumsum())) + bin_index = np.r_[sa.searchsorted(bins[:-1], 'left'), + sa.searchsorted(bins[-1], 'right')] + n += cw[bin_index] + + n = np.diff(n) + + if density is not None: + if density: + db = array(np.diff(bins), float) + return n/db/n.sum(), bins + else: + return n, bins + else: + # deprecated, buggy behavior. Remove for Numpy 2.0 + if normed: + db = array(np.diff(bins), float) + return n/(n*db).sum(), bins + else: + return n, bins + + +def histogramdd(sample, bins=10, range=None, normed=False, weights=None): + """ + Compute the multidimensional histogram of some data. + + Parameters + ---------- + sample : array_like + The data to be histogrammed. It must be an (N,D) array or data + that can be converted to such. The rows of the resulting array + are the coordinates of points in a D dimensional polytope. + bins : sequence or int, optional + The bin specification: + + * A sequence of arrays describing the bin edges along each dimension. + * The number of bins for each dimension (nx, ny, ... =bins) + * The number of bins for all dimensions (nx=ny=...=bins). + + range : sequence, optional + A sequence of lower and upper bin edges to be used if the edges are + not given explicitly in `bins`. Defaults to the minimum and maximum + values along each dimension. + normed : bool, optional + If False, returns the number of samples in each bin. If True, + returns the bin density ``bin_count / sample_count / bin_volume``. + weights : array_like (N,), optional + An array of values `w_i` weighing each sample `(x_i, y_i, z_i, ...)`. + Weights are normalized to 1 if normed is True. If normed is False, + the values of the returned histogram are equal to the sum of the + weights belonging to the samples falling into each bin. + + Returns + ------- + H : ndarray + The multidimensional histogram of sample x. See normed and weights + for the different possible semantics. + edges : list + A list of D arrays describing the bin edges for each dimension. + + See Also + -------- + histogram: 1-D histogram + histogram2d: 2-D histogram + + Examples + -------- + >>> r = np.random.randn(100,3) + >>> H, edges = np.histogramdd(r, bins = (5, 8, 4)) + >>> H.shape, edges[0].size, edges[1].size, edges[2].size + ((5, 8, 4), 6, 9, 5) + + """ + + try: + # Sample is an ND-array. + N, D = sample.shape + except (AttributeError, ValueError): + # Sample is a sequence of 1D arrays. + sample = atleast_2d(sample).T + N, D = sample.shape + + nbin = empty(D, int) + edges = D*[None] + dedges = D*[None] + if weights is not None: + weights = asarray(weights) + + try: + M = len(bins) + if M != D: + raise AttributeError( + 'The dimension of bins must be equal to the dimension of the ' + ' sample x.') + except TypeError: + # bins is an integer + bins = D*[bins] + + # Select range for each dimension + # Used only if number of bins is given. + if range is None: + # Handle empty input. Range can't be determined in that case, use 0-1. + if N == 0: + smin = zeros(D) + smax = ones(D) + else: + smin = atleast_1d(array(sample.min(0), float)) + smax = atleast_1d(array(sample.max(0), float)) + else: + smin = zeros(D) + smax = zeros(D) + for i in arange(D): + smin[i], smax[i] = range[i] + + # Make sure the bins have a finite width. + for i in arange(len(smin)): + if smin[i] == smax[i]: + smin[i] = smin[i] - .5 + smax[i] = smax[i] + .5 + + # avoid rounding issues for comparisons when dealing with inexact types + if np.issubdtype(sample.dtype, np.inexact): + edge_dt = sample.dtype + else: + edge_dt = float + # Create edge arrays + for i in arange(D): + if isscalar(bins[i]): + if bins[i] < 1: + raise ValueError( + "Element at index %s in `bins` should be a positive " + "integer." % i) + nbin[i] = bins[i] + 2 # +2 for outlier bins + edges[i] = linspace(smin[i], smax[i], nbin[i]-1, dtype=edge_dt) + else: + edges[i] = asarray(bins[i], edge_dt) + nbin[i] = len(edges[i]) + 1 # +1 for outlier bins + dedges[i] = diff(edges[i]) + if np.any(np.asarray(dedges[i]) <= 0): + raise ValueError( + "Found bin edge of size <= 0. Did you specify `bins` with" + "non-monotonic sequence?") + + nbin = asarray(nbin) + + # Handle empty input. + if N == 0: + return np.zeros(nbin-2), edges + + # Compute the bin number each sample falls into. + Ncount = {} + for i in arange(D): + Ncount[i] = digitize(sample[:, i], edges[i]) + + # Using digitize, values that fall on an edge are put in the right bin. + # For the rightmost bin, we want values equal to the right edge to be + # counted in the last bin, and not as an outlier. + for i in arange(D): + # Rounding precision + mindiff = dedges[i].min() + if not np.isinf(mindiff): + decimal = int(-log10(mindiff)) + 6 + # Find which points are on the rightmost edge. + not_smaller_than_edge = (sample[:, i] >= edges[i][-1]) + on_edge = (around(sample[:, i], decimal) == + around(edges[i][-1], decimal)) + # Shift these points one bin to the left. + Ncount[i][where(on_edge & not_smaller_than_edge)[0]] -= 1 + + # Flattened histogram matrix (1D) + # Reshape is used so that overlarge arrays + # will raise an error. + hist = zeros(nbin, float).reshape(-1) + + # Compute the sample indices in the flattened histogram matrix. + ni = nbin.argsort() + xy = zeros(N, int) + for i in arange(0, D-1): + xy += Ncount[ni[i]] * nbin[ni[i+1:]].prod() + xy += Ncount[ni[-1]] + + # Compute the number of repetitions in xy and assign it to the + # flattened histmat. + if len(xy) == 0: + return zeros(nbin-2, int), edges + + flatcount = bincount(xy, weights) + a = arange(len(flatcount)) + hist[a] = flatcount + + # Shape into a proper matrix + hist = hist.reshape(sort(nbin)) + for i in arange(nbin.size): + j = ni.argsort()[i] + hist = hist.swapaxes(i, j) + ni[i], ni[j] = ni[j], ni[i] + + # Remove outliers (indices 0 and -1 for each dimension). + core = D*[slice(1, -1)] + hist = hist[core] + + # Normalize if normed is True + if normed: + s = hist.sum() + for i in arange(D): + shape = ones(D, int) + shape[i] = nbin[i] - 2 + hist = hist / dedges[i].reshape(shape) + hist /= s + + if (hist.shape != nbin - 2).any(): + raise RuntimeError( + "Internal Shape Error") + return hist, edges + + +def average(a, axis=None, weights=None, returned=False): + """ + Compute the weighted average along the specified axis. + + Parameters + ---------- + a : array_like + Array containing data to be averaged. If `a` is not an array, a + conversion is attempted. + axis : int, optional + Axis along which to average `a`. If `None`, averaging is done over + the flattened array. + weights : array_like, optional + An array of weights associated with the values in `a`. Each value in + `a` contributes to the average according to its associated weight. + The weights array can either be 1-D (in which case its length must be + the size of `a` along the given axis) or of the same shape as `a`. + If `weights=None`, then all data in `a` are assumed to have a + weight equal to one. + returned : bool, optional + Default is `False`. If `True`, the tuple (`average`, `sum_of_weights`) + is returned, otherwise only the average is returned. + If `weights=None`, `sum_of_weights` is equivalent to the number of + elements over which the average is taken. + + + Returns + ------- + average, [sum_of_weights] : {array_type, double} + Return the average along the specified axis. When returned is `True`, + return a tuple with the average as the first element and the sum + of the weights as the second element. The return type is `Float` + if `a` is of integer type, otherwise it is of the same type as `a`. + `sum_of_weights` is of the same type as `average`. + + Raises + ------ + ZeroDivisionError + When all weights along axis are zero. See `numpy.ma.average` for a + version robust to this type of error. + TypeError + When the length of 1D `weights` is not the same as the shape of `a` + along axis. + + See Also + -------- + mean + + ma.average : average for masked arrays -- useful if your data contains + "missing" values + + Examples + -------- + >>> data = range(1,5) + >>> data + [1, 2, 3, 4] + >>> np.average(data) + 2.5 + >>> np.average(range(1,11), weights=range(10,0,-1)) + 4.0 + + >>> data = np.arange(6).reshape((3,2)) + >>> data + array([[0, 1], + [2, 3], + [4, 5]]) + >>> np.average(data, axis=1, weights=[1./4, 3./4]) + array([ 0.75, 2.75, 4.75]) + >>> np.average(data, weights=[1./4, 3./4]) + Traceback (most recent call last): + ... + TypeError: Axis must be specified when shapes of a and weights differ. + + """ + if not isinstance(a, np.matrix): + a = np.asarray(a) + + if weights is None: + avg = a.mean(axis) + scl = avg.dtype.type(a.size/avg.size) + else: + a = a + 0.0 + wgt = np.array(weights, dtype=a.dtype, copy=0) + + # Sanity checks + if a.shape != wgt.shape: + if axis is None: + raise TypeError( + "Axis must be specified when shapes of a and weights " + "differ.") + if wgt.ndim != 1: + raise TypeError( + "1D weights expected when shapes of a and weights differ.") + if wgt.shape[0] != a.shape[axis]: + raise ValueError( + "Length of weights not compatible with specified axis.") + + # setup wgt to broadcast along axis + wgt = np.array(wgt, copy=0, ndmin=a.ndim).swapaxes(-1, axis) + + scl = wgt.sum(axis=axis) + if (scl == 0.0).any(): + raise ZeroDivisionError( + "Weights sum to zero, can't be normalized") + + avg = np.multiply(a, wgt).sum(axis)/scl + + if returned: + scl = np.multiply(avg, 0) + scl + return avg, scl + else: + return avg + + +def asarray_chkfinite(a, dtype=None, order=None): + """ + Convert the input to an array, checking for NaNs or Infs. + + Parameters + ---------- + a : array_like + Input data, in any form that can be converted to an array. This + includes lists, lists of tuples, tuples, tuples of tuples, tuples + of lists and ndarrays. Success requires no NaNs or Infs. + dtype : data-type, optional + By default, the data-type is inferred from the input data. + order : {'C', 'F'}, optional + Whether to use row-major ('C') or column-major ('FORTRAN') memory + representation. Defaults to 'C'. + + Returns + ------- + out : ndarray + Array interpretation of `a`. No copy is performed if the input + is already an ndarray. If `a` is a subclass of ndarray, a base + class ndarray is returned. + + Raises + ------ + ValueError + Raises ValueError if `a` contains NaN (Not a Number) or Inf (Infinity). + + See Also + -------- + asarray : Create and array. + asanyarray : Similar function which passes through subclasses. + ascontiguousarray : Convert input to a contiguous array. + asfarray : Convert input to a floating point ndarray. + asfortranarray : Convert input to an ndarray with column-major + memory order. + fromiter : Create an array from an iterator. + fromfunction : Construct an array by executing a function on grid + positions. + + Examples + -------- + Convert a list into an array. If all elements are finite + ``asarray_chkfinite`` is identical to ``asarray``. + + >>> a = [1, 2] + >>> np.asarray_chkfinite(a, dtype=float) + array([1., 2.]) + + Raises ValueError if array_like contains Nans or Infs. + + >>> a = [1, 2, np.inf] + >>> try: + ... np.asarray_chkfinite(a) + ... except ValueError: + ... print 'ValueError' + ... + ValueError + + """ + a = asarray(a, dtype=dtype, order=order) + if a.dtype.char in typecodes['AllFloat'] and not np.isfinite(a).all(): + raise ValueError( + "array must not contain infs or NaNs") + return a + + +def piecewise(x, condlist, funclist, *args, **kw): + """ + Evaluate a piecewise-defined function. + + Given a set of conditions and corresponding functions, evaluate each + function on the input data wherever its condition is true. + + Parameters + ---------- + x : ndarray + The input domain. + condlist : list of bool arrays + Each boolean array corresponds to a function in `funclist`. Wherever + `condlist[i]` is True, `funclist[i](x)` is used as the output value. + + Each boolean array in `condlist` selects a piece of `x`, + and should therefore be of the same shape as `x`. + + The length of `condlist` must correspond to that of `funclist`. + If one extra function is given, i.e. if + ``len(funclist) - len(condlist) == 1``, then that extra function + is the default value, used wherever all conditions are false. + funclist : list of callables, f(x,*args,**kw), or scalars + Each function is evaluated over `x` wherever its corresponding + condition is True. It should take an array as input and give an array + or a scalar value as output. If, instead of a callable, + a scalar is provided then a constant function (``lambda x: scalar``) is + assumed. + args : tuple, optional + Any further arguments given to `piecewise` are passed to the functions + upon execution, i.e., if called ``piecewise(..., ..., 1, 'a')``, then + each function is called as ``f(x, 1, 'a')``. + kw : dict, optional + Keyword arguments used in calling `piecewise` are passed to the + functions upon execution, i.e., if called + ``piecewise(..., ..., lambda=1)``, then each function is called as + ``f(x, lambda=1)``. + + Returns + ------- + out : ndarray + The output is the same shape and type as x and is found by + calling the functions in `funclist` on the appropriate portions of `x`, + as defined by the boolean arrays in `condlist`. Portions not covered + by any condition have a default value of 0. + + + See Also + -------- + choose, select, where + + Notes + ----- + This is similar to choose or select, except that functions are + evaluated on elements of `x` that satisfy the corresponding condition from + `condlist`. + + The result is:: + + |-- + |funclist[0](x[condlist[0]]) + out = |funclist[1](x[condlist[1]]) + |... + |funclist[n2](x[condlist[n2]]) + |-- + + Examples + -------- + Define the sigma function, which is -1 for ``x < 0`` and +1 for ``x >= 0``. + + >>> x = np.linspace(-2.5, 2.5, 6) + >>> np.piecewise(x, [x < 0, x >= 0], [-1, 1]) + array([-1., -1., -1., 1., 1., 1.]) + + Define the absolute value, which is ``-x`` for ``x <0`` and ``x`` for + ``x >= 0``. + + >>> np.piecewise(x, [x < 0, x >= 0], [lambda x: -x, lambda x: x]) + array([ 2.5, 1.5, 0.5, 0.5, 1.5, 2.5]) + + """ + x = asanyarray(x) + n2 = len(funclist) + if (isscalar(condlist) or not (isinstance(condlist[0], list) or + isinstance(condlist[0], ndarray))): + condlist = [condlist] + condlist = array(condlist, dtype=bool) + n = len(condlist) + # This is a hack to work around problems with NumPy's + # handling of 0-d arrays and boolean indexing with + # numpy.bool_ scalars + zerod = False + if x.ndim == 0: + x = x[None] + zerod = True + if condlist.shape[-1] != 1: + condlist = condlist.T + if n == n2 - 1: # compute the "otherwise" condition. + totlist = np.logical_or.reduce(condlist, axis=0) + condlist = np.vstack([condlist, ~totlist]) + n += 1 + if (n != n2): + raise ValueError( + "function list and condition list must be the same") + + y = zeros(x.shape, x.dtype) + for k in range(n): + item = funclist[k] + if not isinstance(item, collections.Callable): + y[condlist[k]] = item + else: + vals = x[condlist[k]] + if vals.size > 0: + y[condlist[k]] = item(vals, *args, **kw) + if zerod: + y = y.squeeze() + return y + + +def select(condlist, choicelist, default=0): + """ + Return an array drawn from elements in choicelist, depending on conditions. + + Parameters + ---------- + condlist : list of bool ndarrays + The list of conditions which determine from which array in `choicelist` + the output elements are taken. When multiple conditions are satisfied, + the first one encountered in `condlist` is used. + choicelist : list of ndarrays + The list of arrays from which the output elements are taken. It has + to be of the same length as `condlist`. + default : scalar, optional + The element inserted in `output` when all conditions evaluate to False. + + Returns + ------- + output : ndarray + The output at position m is the m-th element of the array in + `choicelist` where the m-th element of the corresponding array in + `condlist` is True. + + See Also + -------- + where : Return elements from one of two arrays depending on condition. + take, choose, compress, diag, diagonal + + Examples + -------- + >>> x = np.arange(10) + >>> condlist = [x<3, x>5] + >>> choicelist = [x, x**2] + >>> np.select(condlist, choicelist) + array([ 0, 1, 2, 0, 0, 0, 36, 49, 64, 81]) + + """ + # Check the size of condlist and choicelist are the same, or abort. + if len(condlist) != len(choicelist): + raise ValueError( + 'list of cases must be same length as list of conditions') + + # Now that the dtype is known, handle the deprecated select([], []) case + if len(condlist) == 0: + warnings.warn("select with an empty condition list is not possible" + "and will be deprecated", + DeprecationWarning) + return np.asarray(default)[()] + + choicelist = [np.asarray(choice) for choice in choicelist] + choicelist.append(np.asarray(default)) + + # need to get the result type before broadcasting for correct scalar + # behaviour + dtype = np.result_type(*choicelist) + + # Convert conditions to arrays and broadcast conditions and choices + # as the shape is needed for the result. Doing it seperatly optimizes + # for example when all choices are scalars. + condlist = np.broadcast_arrays(*condlist) + choicelist = np.broadcast_arrays(*choicelist) + + # If cond array is not an ndarray in boolean format or scalar bool, abort. + deprecated_ints = False + for i in range(len(condlist)): + cond = condlist[i] + if cond.dtype.type is not np.bool_: + if np.issubdtype(cond.dtype, np.integer): + # A previous implementation accepted int ndarrays accidentally. + # Supported here deliberately, but deprecated. + condlist[i] = condlist[i].astype(bool) + deprecated_ints = True + else: + raise ValueError( + 'invalid entry in choicelist: should be boolean ndarray') + + if deprecated_ints: + msg = "select condlists containing integer ndarrays is deprecated " \ + "and will be removed in the future. Use `.astype(bool)` to " \ + "convert to bools." + warnings.warn(msg, DeprecationWarning) + + if choicelist[0].ndim == 0: + # This may be common, so avoid the call. + result_shape = condlist[0].shape + else: + result_shape = np.broadcast_arrays(condlist[0], choicelist[0])[0].shape + + result = np.full(result_shape, choicelist[-1], dtype) + + # Use np.copyto to burn each choicelist array onto result, using the + # corresponding condlist as a boolean mask. This is done in reverse + # order since the first choice should take precedence. + choicelist = choicelist[-2::-1] + condlist = condlist[::-1] + for choice, cond in zip(choicelist, condlist): + np.copyto(result, choice, where=cond) + + return result + + +def copy(a, order='K'): + """ + Return an array copy of the given object. + + Parameters + ---------- + a : array_like + Input data. + order : {'C', 'F', 'A', 'K'}, optional + Controls the memory layout of the copy. 'C' means C-order, + 'F' means F-order, 'A' means 'F' if `a` is Fortran contiguous, + 'C' otherwise. 'K' means match the layout of `a` as closely + as possible. (Note that this function and :meth:ndarray.copy are very + similar, but have different default values for their order= + arguments.) + + Returns + ------- + arr : ndarray + Array interpretation of `a`. + + Notes + ----- + This is equivalent to + + >>> np.array(a, copy=True) #doctest: +SKIP + + Examples + -------- + Create an array x, with a reference y and a copy z: + + >>> x = np.array([1, 2, 3]) + >>> y = x + >>> z = np.copy(x) + + Note that, when we modify x, y changes, but not z: + + >>> x[0] = 10 + >>> x[0] == y[0] + True + >>> x[0] == z[0] + False + + """ + return array(a, order=order, copy=True) + +# Basic operations + + +def gradient(f, *varargs, **kwargs): + """ + Return the gradient of an N-dimensional array. + + The gradient is computed using second order accurate central differences + in the interior and either first differences or second order accurate + one-sides (forward or backwards) differences at the boundaries. The + returned gradient hence has the same shape as the input array. + + Parameters + ---------- + f : array_like + An N-dimensional array containing samples of a scalar function. + varargs : list of scalar, optional + N scalars specifying the sample distances for each dimension, + i.e. `dx`, `dy`, `dz`, ... Default distance: 1. + edge_order : {1, 2}, optional + Gradient is calculated using N\ :sup:`th` order accurate differences + at the boundaries. Default: 1. + + .. versionadded:: 1.9.1 + + Returns + ------- + gradient : ndarray + N arrays of the same shape as `f` giving the derivative of `f` with + respect to each dimension. + + Examples + -------- + >>> x = np.array([1, 2, 4, 7, 11, 16], dtype=np.float) + >>> np.gradient(x) + array([ 1. , 1.5, 2.5, 3.5, 4.5, 5. ]) + >>> np.gradient(x, 2) + array([ 0.5 , 0.75, 1.25, 1.75, 2.25, 2.5 ]) + + >>> np.gradient(np.array([[1, 2, 6], [3, 4, 5]], dtype=np.float)) + [array([[ 2., 2., -1.], + [ 2., 2., -1.]]), array([[ 1. , 2.5, 4. ], + [ 1. , 1. , 1. ]])] + + >>> x = np.array([0, 1, 2, 3, 4]) + >>> dx = np.gradient(x) + >>> y = x**2 + >>> np.gradient(y, dx, edge_order=2) + array([-0., 2., 4., 6., 8.]) + """ + f = np.asanyarray(f) + N = len(f.shape) # number of dimensions + n = len(varargs) + if n == 0: + dx = [1.0]*N + elif n == 1: + dx = [varargs[0]]*N + elif n == N: + dx = list(varargs) + else: + raise SyntaxError( + "invalid number of arguments") + + edge_order = kwargs.pop('edge_order', 1) + if kwargs: + raise TypeError('"{}" are not valid keyword arguments.'.format( + '", "'.join(kwargs.keys()))) + if edge_order > 2: + raise ValueError("'edge_order' greater than 2 not supported") + + # use central differences on interior and one-sided differences on the + # endpoints. This preserves second order-accuracy over the full domain. + + outvals = [] + + # create slice objects --- initially all are [:, :, ..., :] + slice1 = [slice(None)]*N + slice2 = [slice(None)]*N + slice3 = [slice(None)]*N + slice4 = [slice(None)]*N + + otype = f.dtype.char + if otype not in ['f', 'd', 'F', 'D', 'm', 'M']: + otype = 'd' + + # Difference of datetime64 elements results in timedelta64 + if otype == 'M': + # Need to use the full dtype name because it contains unit information + otype = f.dtype.name.replace('datetime', 'timedelta') + elif otype == 'm': + # Needs to keep the specific units, can't be a general unit + otype = f.dtype + + # Convert datetime64 data into ints. Make dummy variable `y` + # that is a view of ints if the data is datetime64, otherwise + # just set y equal to the the array `f`. + if f.dtype.char in ["M", "m"]: + y = f.view('int64') + else: + y = f + + for axis in range(N): + + if y.shape[axis] < 2: + raise ValueError( + "Shape of array too small to calculate a numerical gradient, " + "at least two elements are required.") + + # Numerical differentiation: 1st order edges, 2nd order interior + if y.shape[axis] == 2 or edge_order == 1: + # Use first order differences for time data + out = np.empty_like(y, dtype=otype) + + slice1[axis] = slice(1, -1) + slice2[axis] = slice(2, None) + slice3[axis] = slice(None, -2) + # 1D equivalent -- out[1:-1] = (y[2:] - y[:-2])/2.0 + out[slice1] = (y[slice2] - y[slice3])/2.0 + + slice1[axis] = 0 + slice2[axis] = 1 + slice3[axis] = 0 + # 1D equivalent -- out[0] = (y[1] - y[0]) + out[slice1] = (y[slice2] - y[slice3]) + + slice1[axis] = -1 + slice2[axis] = -1 + slice3[axis] = -2 + # 1D equivalent -- out[-1] = (y[-1] - y[-2]) + out[slice1] = (y[slice2] - y[slice3]) + + # Numerical differentiation: 2st order edges, 2nd order interior + else: + # Use second order differences where possible + out = np.empty_like(y, dtype=otype) + + slice1[axis] = slice(1, -1) + slice2[axis] = slice(2, None) + slice3[axis] = slice(None, -2) + # 1D equivalent -- out[1:-1] = (y[2:] - y[:-2])/2.0 + out[slice1] = (y[slice2] - y[slice3])/2.0 + + slice1[axis] = 0 + slice2[axis] = 0 + slice3[axis] = 1 + slice4[axis] = 2 + # 1D equivalent -- out[0] = -(3*y[0] - 4*y[1] + y[2]) / 2.0 + out[slice1] = -(3.0*y[slice2] - 4.0*y[slice3] + y[slice4])/2.0 + + slice1[axis] = -1 + slice2[axis] = -1 + slice3[axis] = -2 + slice4[axis] = -3 + # 1D equivalent -- out[-1] = (3*y[-1] - 4*y[-2] + y[-3]) + out[slice1] = (3.0*y[slice2] - 4.0*y[slice3] + y[slice4])/2.0 + + # divide by step size + out /= dx[axis] + outvals.append(out) + + # reset the slice object in this dimension to ":" + slice1[axis] = slice(None) + slice2[axis] = slice(None) + slice3[axis] = slice(None) + slice4[axis] = slice(None) + + if N == 1: + return outvals[0] + else: + return outvals + + +def diff(a, n=1, axis=-1): + """ + Calculate the n-th order discrete difference along given axis. + + The first order difference is given by ``out[n] = a[n+1] - a[n]`` along + the given axis, higher order differences are calculated by using `diff` + recursively. + + Parameters + ---------- + a : array_like + Input array + n : int, optional + The number of times values are differenced. + axis : int, optional + The axis along which the difference is taken, default is the last axis. + + Returns + ------- + diff : ndarray + The `n` order differences. The shape of the output is the same as `a` + except along `axis` where the dimension is smaller by `n`. + + See Also + -------- + gradient, ediff1d, cumsum + + Examples + -------- + >>> x = np.array([1, 2, 4, 7, 0]) + >>> np.diff(x) + array([ 1, 2, 3, -7]) + >>> np.diff(x, n=2) + array([ 1, 1, -10]) + + >>> x = np.array([[1, 3, 6, 10], [0, 5, 6, 8]]) + >>> np.diff(x) + array([[2, 3, 4], + [5, 1, 2]]) + >>> np.diff(x, axis=0) + array([[-1, 2, 0, -2]]) + + """ + if n == 0: + return a + if n < 0: + raise ValueError( + "order must be non-negative but got " + repr(n)) + a = asanyarray(a) + nd = len(a.shape) + slice1 = [slice(None)]*nd + slice2 = [slice(None)]*nd + slice1[axis] = slice(1, None) + slice2[axis] = slice(None, -1) + slice1 = tuple(slice1) + slice2 = tuple(slice2) + if n > 1: + return diff(a[slice1]-a[slice2], n-1, axis=axis) + else: + return a[slice1]-a[slice2] + + +def interp(x, xp, fp, left=None, right=None): + """ + One-dimensional linear interpolation. + + Returns the one-dimensional piecewise linear interpolant to a function + with given values at discrete data-points. + + Parameters + ---------- + x : array_like + The x-coordinates of the interpolated values. + + xp : 1-D sequence of floats + The x-coordinates of the data points, must be increasing. + + fp : 1-D sequence of floats + The y-coordinates of the data points, same length as `xp`. + + left : float, optional + Value to return for `x < xp[0]`, default is `fp[0]`. + + right : float, optional + Value to return for `x > xp[-1]`, default is `fp[-1]`. + + Returns + ------- + y : {float, ndarray} + The interpolated values, same shape as `x`. + + Raises + ------ + ValueError + If `xp` and `fp` have different length + + Notes + ----- + Does not check that the x-coordinate sequence `xp` is increasing. + If `xp` is not increasing, the results are nonsense. + A simple check for increasing is:: + + np.all(np.diff(xp) > 0) + + + Examples + -------- + >>> xp = [1, 2, 3] + >>> fp = [3, 2, 0] + >>> np.interp(2.5, xp, fp) + 1.0 + >>> np.interp([0, 1, 1.5, 2.72, 3.14], xp, fp) + array([ 3. , 3. , 2.5 , 0.56, 0. ]) + >>> UNDEF = -99.0 + >>> np.interp(3.14, xp, fp, right=UNDEF) + -99.0 + + Plot an interpolant to the sine function: + + >>> x = np.linspace(0, 2*np.pi, 10) + >>> y = np.sin(x) + >>> xvals = np.linspace(0, 2*np.pi, 50) + >>> yinterp = np.interp(xvals, x, y) + >>> import matplotlib.pyplot as plt + >>> plt.plot(x, y, 'o') + [<matplotlib.lines.Line2D object at 0x...>] + >>> plt.plot(xvals, yinterp, '-x') + [<matplotlib.lines.Line2D object at 0x...>] + >>> plt.show() + + """ + if isinstance(x, (float, int, number)): + return compiled_interp([x], xp, fp, left, right).item() + elif isinstance(x, np.ndarray) and x.ndim == 0: + return compiled_interp([x], xp, fp, left, right).item() + else: + return compiled_interp(x, xp, fp, left, right) + + +def angle(z, deg=0): + """ + Return the angle of the complex argument. + + Parameters + ---------- + z : array_like + A complex number or sequence of complex numbers. + deg : bool, optional + Return angle in degrees if True, radians if False (default). + + Returns + ------- + angle : {ndarray, scalar} + The counterclockwise angle from the positive real axis on + the complex plane, with dtype as numpy.float64. + + See Also + -------- + arctan2 + absolute + + + + Examples + -------- + >>> np.angle([1.0, 1.0j, 1+1j]) # in radians + array([ 0. , 1.57079633, 0.78539816]) + >>> np.angle(1+1j, deg=True) # in degrees + 45.0 + + """ + if deg: + fact = 180/pi + else: + fact = 1.0 + z = asarray(z) + if (issubclass(z.dtype.type, _nx.complexfloating)): + zimag = z.imag + zreal = z.real + else: + zimag = 0 + zreal = z + return arctan2(zimag, zreal) * fact + + +def unwrap(p, discont=pi, axis=-1): + """ + Unwrap by changing deltas between values to 2*pi complement. + + Unwrap radian phase `p` by changing absolute jumps greater than + `discont` to their 2*pi complement along the given axis. + + Parameters + ---------- + p : array_like + Input array. + discont : float, optional + Maximum discontinuity between values, default is ``pi``. + axis : int, optional + Axis along which unwrap will operate, default is the last axis. + + Returns + ------- + out : ndarray + Output array. + + See Also + -------- + rad2deg, deg2rad + + Notes + ----- + If the discontinuity in `p` is smaller than ``pi``, but larger than + `discont`, no unwrapping is done because taking the 2*pi complement + would only make the discontinuity larger. + + Examples + -------- + >>> phase = np.linspace(0, np.pi, num=5) + >>> phase[3:] += np.pi + >>> phase + array([ 0. , 0.78539816, 1.57079633, 5.49778714, 6.28318531]) + >>> np.unwrap(phase) + array([ 0. , 0.78539816, 1.57079633, -0.78539816, 0. ]) + + """ + p = asarray(p) + nd = len(p.shape) + dd = diff(p, axis=axis) + slice1 = [slice(None, None)]*nd # full slices + slice1[axis] = slice(1, None) + ddmod = mod(dd + pi, 2*pi) - pi + _nx.copyto(ddmod, pi, where=(ddmod == -pi) & (dd > 0)) + ph_correct = ddmod - dd + _nx.copyto(ph_correct, 0, where=abs(dd) < discont) + up = array(p, copy=True, dtype='d') + up[slice1] = p[slice1] + ph_correct.cumsum(axis) + return up + + +def sort_complex(a): + """ + Sort a complex array using the real part first, then the imaginary part. + + Parameters + ---------- + a : array_like + Input array + + Returns + ------- + out : complex ndarray + Always returns a sorted complex array. + + Examples + -------- + >>> np.sort_complex([5, 3, 6, 2, 1]) + array([ 1.+0.j, 2.+0.j, 3.+0.j, 5.+0.j, 6.+0.j]) + + >>> np.sort_complex([1 + 2j, 2 - 1j, 3 - 2j, 3 - 3j, 3 + 5j]) + array([ 1.+2.j, 2.-1.j, 3.-3.j, 3.-2.j, 3.+5.j]) + + """ + b = array(a, copy=True) + b.sort() + if not issubclass(b.dtype.type, _nx.complexfloating): + if b.dtype.char in 'bhBH': + return b.astype('F') + elif b.dtype.char == 'g': + return b.astype('G') + else: + return b.astype('D') + else: + return b + + +def trim_zeros(filt, trim='fb'): + """ + Trim the leading and/or trailing zeros from a 1-D array or sequence. + + Parameters + ---------- + filt : 1-D array or sequence + Input array. + trim : str, optional + A string with 'f' representing trim from front and 'b' to trim from + back. Default is 'fb', trim zeros from both front and back of the + array. + + Returns + ------- + trimmed : 1-D array or sequence + The result of trimming the input. The input data type is preserved. + + Examples + -------- + >>> a = np.array((0, 0, 0, 1, 2, 3, 0, 2, 1, 0)) + >>> np.trim_zeros(a) + array([1, 2, 3, 0, 2, 1]) + + >>> np.trim_zeros(a, 'b') + array([0, 0, 0, 1, 2, 3, 0, 2, 1]) + + The input data type is preserved, list/tuple in means list/tuple out. + + >>> np.trim_zeros([0, 1, 2, 0]) + [1, 2] + + """ + first = 0 + trim = trim.upper() + if 'F' in trim: + for i in filt: + if i != 0.: + break + else: + first = first + 1 + last = len(filt) + if 'B' in trim: + for i in filt[::-1]: + if i != 0.: + break + else: + last = last - 1 + return filt[first:last] + + +@deprecate +def unique(x): + """ + This function is deprecated. Use numpy.lib.arraysetops.unique() + instead. + """ + try: + tmp = x.flatten() + if tmp.size == 0: + return tmp + tmp.sort() + idx = concatenate(([True], tmp[1:] != tmp[:-1])) + return tmp[idx] + except AttributeError: + items = sorted(set(x)) + return asarray(items) + + +def extract(condition, arr): + """ + Return the elements of an array that satisfy some condition. + + This is equivalent to ``np.compress(ravel(condition), ravel(arr))``. If + `condition` is boolean ``np.extract`` is equivalent to ``arr[condition]``. + + Parameters + ---------- + condition : array_like + An array whose nonzero or True entries indicate the elements of `arr` + to extract. + arr : array_like + Input array of the same size as `condition`. + + Returns + ------- + extract : ndarray + Rank 1 array of values from `arr` where `condition` is True. + + See Also + -------- + take, put, copyto, compress + + Examples + -------- + >>> arr = np.arange(12).reshape((3, 4)) + >>> arr + array([[ 0, 1, 2, 3], + [ 4, 5, 6, 7], + [ 8, 9, 10, 11]]) + >>> condition = np.mod(arr, 3)==0 + >>> condition + array([[ True, False, False, True], + [False, False, True, False], + [False, True, False, False]], dtype=bool) + >>> np.extract(condition, arr) + array([0, 3, 6, 9]) + + + If `condition` is boolean: + + >>> arr[condition] + array([0, 3, 6, 9]) + + """ + return _nx.take(ravel(arr), nonzero(ravel(condition))[0]) + + +def place(arr, mask, vals): + """ + Change elements of an array based on conditional and input values. + + Similar to ``np.copyto(arr, vals, where=mask)``, the difference is that + `place` uses the first N elements of `vals`, where N is the number of + True values in `mask`, while `copyto` uses the elements where `mask` + is True. + + Note that `extract` does the exact opposite of `place`. + + Parameters + ---------- + arr : array_like + Array to put data into. + mask : array_like + Boolean mask array. Must have the same size as `a`. + vals : 1-D sequence + Values to put into `a`. Only the first N elements are used, where + N is the number of True values in `mask`. If `vals` is smaller + than N it will be repeated. + + See Also + -------- + copyto, put, take, extract + + Examples + -------- + >>> arr = np.arange(6).reshape(2, 3) + >>> np.place(arr, arr>2, [44, 55]) + >>> arr + array([[ 0, 1, 2], + [44, 55, 44]]) + + """ + return _insert(arr, mask, vals) + + +def disp(mesg, device=None, linefeed=True): + """ + Display a message on a device. + + Parameters + ---------- + mesg : str + Message to display. + device : object + Device to write message. If None, defaults to ``sys.stdout`` which is + very similar to ``print``. `device` needs to have ``write()`` and + ``flush()`` methods. + linefeed : bool, optional + Option whether to print a line feed or not. Defaults to True. + + Raises + ------ + AttributeError + If `device` does not have a ``write()`` or ``flush()`` method. + + Examples + -------- + Besides ``sys.stdout``, a file-like object can also be used as it has + both required methods: + + >>> from StringIO import StringIO + >>> buf = StringIO() + >>> np.disp('"Display" in a file', device=buf) + >>> buf.getvalue() + '"Display" in a file\\n' + + """ + if device is None: + device = sys.stdout + if linefeed: + device.write('%s\n' % mesg) + else: + device.write('%s' % mesg) + device.flush() + return + + +class vectorize(object): + """ + vectorize(pyfunc, otypes='', doc=None, excluded=None, cache=False) + + Generalized function class. + + Define a vectorized function which takes a nested sequence + of objects or numpy arrays as inputs and returns a + numpy array as output. The vectorized function evaluates `pyfunc` over + successive tuples of the input arrays like the python map function, + except it uses the broadcasting rules of numpy. + + The data type of the output of `vectorized` is determined by calling + the function with the first element of the input. This can be avoided + by specifying the `otypes` argument. + + Parameters + ---------- + pyfunc : callable + A python function or method. + otypes : str or list of dtypes, optional + The output data type. It must be specified as either a string of + typecode characters or a list of data type specifiers. There should + be one data type specifier for each output. + doc : str, optional + The docstring for the function. If `None`, the docstring will be the + ``pyfunc.__doc__``. + excluded : set, optional + Set of strings or integers representing the positional or keyword + arguments for which the function will not be vectorized. These will be + passed directly to `pyfunc` unmodified. + + .. versionadded:: 1.7.0 + + cache : bool, optional + If `True`, then cache the first function call that determines the number + of outputs if `otypes` is not provided. + + .. versionadded:: 1.7.0 + + Returns + ------- + vectorized : callable + Vectorized function. + + Examples + -------- + >>> def myfunc(a, b): + ... "Return a-b if a>b, otherwise return a+b" + ... if a > b: + ... return a - b + ... else: + ... return a + b + + >>> vfunc = np.vectorize(myfunc) + >>> vfunc([1, 2, 3, 4], 2) + array([3, 4, 1, 2]) + + The docstring is taken from the input function to `vectorize` unless it + is specified + + >>> vfunc.__doc__ + 'Return a-b if a>b, otherwise return a+b' + >>> vfunc = np.vectorize(myfunc, doc='Vectorized `myfunc`') + >>> vfunc.__doc__ + 'Vectorized `myfunc`' + + The output type is determined by evaluating the first element of the input, + unless it is specified + + >>> out = vfunc([1, 2, 3, 4], 2) + >>> type(out[0]) + <type 'numpy.int32'> + >>> vfunc = np.vectorize(myfunc, otypes=[np.float]) + >>> out = vfunc([1, 2, 3, 4], 2) + >>> type(out[0]) + <type 'numpy.float64'> + + The `excluded` argument can be used to prevent vectorizing over certain + arguments. This can be useful for array-like arguments of a fixed length + such as the coefficients for a polynomial as in `polyval`: + + >>> def mypolyval(p, x): + ... _p = list(p) + ... res = _p.pop(0) + ... while _p: + ... res = res*x + _p.pop(0) + ... return res + >>> vpolyval = np.vectorize(mypolyval, excluded=['p']) + >>> vpolyval(p=[1, 2, 3], x=[0, 1]) + array([3, 6]) + + Positional arguments may also be excluded by specifying their position: + + >>> vpolyval.excluded.add(0) + >>> vpolyval([1, 2, 3], x=[0, 1]) + array([3, 6]) + + Notes + ----- + The `vectorize` function is provided primarily for convenience, not for + performance. The implementation is essentially a for loop. + + If `otypes` is not specified, then a call to the function with the + first argument will be used to determine the number of outputs. The + results of this call will be cached if `cache` is `True` to prevent + calling the function twice. However, to implement the cache, the + original function must be wrapped which will slow down subsequent + calls, so only do this if your function is expensive. + + The new keyword argument interface and `excluded` argument support + further degrades performance. + + """ + + def __init__(self, pyfunc, otypes='', doc=None, excluded=None, + cache=False): + self.pyfunc = pyfunc + self.cache = cache + self._ufunc = None # Caching to improve default performance + + if doc is None: + self.__doc__ = pyfunc.__doc__ + else: + self.__doc__ = doc + + if isinstance(otypes, str): + self.otypes = otypes + for char in self.otypes: + if char not in typecodes['All']: + raise ValueError( + "Invalid otype specified: %s" % (char,)) + elif iterable(otypes): + self.otypes = ''.join([_nx.dtype(x).char for x in otypes]) + else: + raise ValueError( + "Invalid otype specification") + + # Excluded variable support + if excluded is None: + excluded = set() + self.excluded = set(excluded) + + def __call__(self, *args, **kwargs): + """ + Return arrays with the results of `pyfunc` broadcast (vectorized) over + `args` and `kwargs` not in `excluded`. + """ + excluded = self.excluded + if not kwargs and not excluded: + func = self.pyfunc + vargs = args + else: + # The wrapper accepts only positional arguments: we use `names` and + # `inds` to mutate `the_args` and `kwargs` to pass to the original + # function. + nargs = len(args) + + names = [_n for _n in kwargs if _n not in excluded] + inds = [_i for _i in range(nargs) if _i not in excluded] + the_args = list(args) + + def func(*vargs): + for _n, _i in enumerate(inds): + the_args[_i] = vargs[_n] + kwargs.update(zip(names, vargs[len(inds):])) + return self.pyfunc(*the_args, **kwargs) + + vargs = [args[_i] for _i in inds] + vargs.extend([kwargs[_n] for _n in names]) + + return self._vectorize_call(func=func, args=vargs) + + def _get_ufunc_and_otypes(self, func, args): + """Return (ufunc, otypes).""" + # frompyfunc will fail if args is empty + if not args: + raise ValueError('args can not be empty') + + if self.otypes: + otypes = self.otypes + nout = len(otypes) + + # Note logic here: We only *use* self._ufunc if func is self.pyfunc + # even though we set self._ufunc regardless. + if func is self.pyfunc and self._ufunc is not None: + ufunc = self._ufunc + else: + ufunc = self._ufunc = frompyfunc(func, len(args), nout) + else: + # Get number of outputs and output types by calling the function on + # the first entries of args. We also cache the result to prevent + # the subsequent call when the ufunc is evaluated. + # Assumes that ufunc first evaluates the 0th elements in the input + # arrays (the input values are not checked to ensure this) + inputs = [asarray(_a).flat[0] for _a in args] + outputs = func(*inputs) + + # Performance note: profiling indicates that -- for simple + # functions at least -- this wrapping can almost double the + # execution time. + # Hence we make it optional. + if self.cache: + _cache = [outputs] + + def _func(*vargs): + if _cache: + return _cache.pop() + else: + return func(*vargs) + else: + _func = func + + if isinstance(outputs, tuple): + nout = len(outputs) + else: + nout = 1 + outputs = (outputs,) + + otypes = ''.join([asarray(outputs[_k]).dtype.char + for _k in range(nout)]) + + # Performance note: profiling indicates that creating the ufunc is + # not a significant cost compared with wrapping so it seems not + # worth trying to cache this. + ufunc = frompyfunc(_func, len(args), nout) + + return ufunc, otypes + + def _vectorize_call(self, func, args): + """Vectorized call to `func` over positional `args`.""" + if not args: + _res = func() + else: + ufunc, otypes = self._get_ufunc_and_otypes(func=func, args=args) + + # Convert args to object arrays first + inputs = [array(_a, copy=False, subok=True, dtype=object) + for _a in args] + + outputs = ufunc(*inputs) + + if ufunc.nout == 1: + _res = array(outputs, + copy=False, subok=True, dtype=otypes[0]) + else: + _res = tuple([array(_x, copy=False, subok=True, dtype=_t) + for _x, _t in zip(outputs, otypes)]) + return _res + + +def cov(m, y=None, rowvar=1, bias=0, ddof=None): + """ + Estimate a covariance matrix, given data. + + Covariance indicates the level to which two variables vary together. + If we examine N-dimensional samples, :math:`X = [x_1, x_2, ... x_N]^T`, + then the covariance matrix element :math:`C_{ij}` is the covariance of + :math:`x_i` and :math:`x_j`. The element :math:`C_{ii}` is the variance + of :math:`x_i`. + + Parameters + ---------- + m : array_like + A 1-D or 2-D array containing multiple variables and observations. + Each row of `m` represents a variable, and each column a single + observation of all those variables. Also see `rowvar` below. + y : array_like, optional + An additional set of variables and observations. `y` has the same + form as that of `m`. + rowvar : int, optional + If `rowvar` is non-zero (default), then each row represents a + variable, with observations in the columns. Otherwise, the relationship + is transposed: each column represents a variable, while the rows + contain observations. + bias : int, optional + Default normalization is by ``(N - 1)``, where ``N`` is the number of + observations given (unbiased estimate). If `bias` is 1, then + normalization is by ``N``. These values can be overridden by using + the keyword ``ddof`` in numpy versions >= 1.5. + ddof : int, optional + .. versionadded:: 1.5 + If not ``None`` normalization is by ``(N - ddof)``, where ``N`` is + the number of observations; this overrides the value implied by + ``bias``. The default value is ``None``. + + Returns + ------- + out : ndarray + The covariance matrix of the variables. + + See Also + -------- + corrcoef : Normalized covariance matrix + + Examples + -------- + Consider two variables, :math:`x_0` and :math:`x_1`, which + correlate perfectly, but in opposite directions: + + >>> x = np.array([[0, 2], [1, 1], [2, 0]]).T + >>> x + array([[0, 1, 2], + [2, 1, 0]]) + + Note how :math:`x_0` increases while :math:`x_1` decreases. The covariance + matrix shows this clearly: + + >>> np.cov(x) + array([[ 1., -1.], + [-1., 1.]]) + + Note that element :math:`C_{0,1}`, which shows the correlation between + :math:`x_0` and :math:`x_1`, is negative. + + Further, note how `x` and `y` are combined: + + >>> x = [-2.1, -1, 4.3] + >>> y = [3, 1.1, 0.12] + >>> X = np.vstack((x,y)) + >>> print np.cov(X) + [[ 11.71 -4.286 ] + [ -4.286 2.14413333]] + >>> print np.cov(x, y) + [[ 11.71 -4.286 ] + [ -4.286 2.14413333]] + >>> print np.cov(x) + 11.71 + + """ + # Check inputs + if ddof is not None and ddof != int(ddof): + raise ValueError( + "ddof must be integer") + + # Handles complex arrays too + m = np.asarray(m) + if y is None: + dtype = np.result_type(m, np.float64) + else: + y = np.asarray(y) + dtype = np.result_type(m, y, np.float64) + X = array(m, ndmin=2, dtype=dtype) + + if X.shape[0] == 1: + rowvar = 1 + if rowvar: + N = X.shape[1] + axis = 0 + else: + N = X.shape[0] + axis = 1 + + # check ddof + if ddof is None: + if bias == 0: + ddof = 1 + else: + ddof = 0 + fact = float(N - ddof) + if fact <= 0: + warnings.warn("Degrees of freedom <= 0 for slice", RuntimeWarning) + fact = 0.0 + + if y is not None: + y = array(y, copy=False, ndmin=2, dtype=dtype) + X = concatenate((X, y), axis) + + X -= X.mean(axis=1-axis, keepdims=True) + if not rowvar: + return (dot(X.T, X.conj()) / fact).squeeze() + else: + return (dot(X, X.T.conj()) / fact).squeeze() + + +def corrcoef(x, y=None, rowvar=1, bias=0, ddof=None): + """ + Return correlation coefficients. + + Please refer to the documentation for `cov` for more detail. The + relationship between the correlation coefficient matrix, `P`, and the + covariance matrix, `C`, is + + .. math:: P_{ij} = \\frac{ C_{ij} } { \\sqrt{ C_{ii} * C_{jj} } } + + The values of `P` are between -1 and 1, inclusive. + + Parameters + ---------- + x : array_like + A 1-D or 2-D array containing multiple variables and observations. + Each row of `m` represents a variable, and each column a single + observation of all those variables. Also see `rowvar` below. + y : array_like, optional + An additional set of variables and observations. `y` has the same + shape as `m`. + rowvar : int, optional + If `rowvar` is non-zero (default), then each row represents a + variable, with observations in the columns. Otherwise, the relationship + is transposed: each column represents a variable, while the rows + contain observations. + bias : int, optional + Default normalization is by ``(N - 1)``, where ``N`` is the number of + observations (unbiased estimate). If `bias` is 1, then + normalization is by ``N``. These values can be overridden by using + the keyword ``ddof`` in numpy versions >= 1.5. + ddof : {None, int}, optional + .. versionadded:: 1.5 + If not ``None`` normalization is by ``(N - ddof)``, where ``N`` is + the number of observations; this overrides the value implied by + ``bias``. The default value is ``None``. + + Returns + ------- + out : ndarray + The correlation coefficient matrix of the variables. + + See Also + -------- + cov : Covariance matrix + + """ + c = cov(x, y, rowvar, bias, ddof) + try: + d = diag(c) + except ValueError: # scalar covariance + # nan if incorrect value (nan, inf, 0), 1 otherwise + return c / c + return c / sqrt(multiply.outer(d, d)) + + +def blackman(M): + """ + Return the Blackman window. + + The Blackman window is a taper formed by using the first three + terms of a summation of cosines. It was designed to have close to the + minimal leakage possible. It is close to optimal, only slightly worse + than a Kaiser window. + + Parameters + ---------- + M : int + Number of points in the output window. If zero or less, an empty + array is returned. + + Returns + ------- + out : ndarray + The window, with the maximum value normalized to one (the value one + appears only if the number of samples is odd). + + See Also + -------- + bartlett, hamming, hanning, kaiser + + Notes + ----- + The Blackman window is defined as + + .. math:: w(n) = 0.42 - 0.5 \\cos(2\\pi n/M) + 0.08 \\cos(4\\pi n/M) + + Most references to the Blackman window come from the signal processing + literature, where it is used as one of many windowing functions for + smoothing values. It is also known as an apodization (which means + "removing the foot", i.e. smoothing discontinuities at the beginning + and end of the sampled signal) or tapering function. It is known as a + "near optimal" tapering function, almost as good (by some measures) + as the kaiser window. + + References + ---------- + Blackman, R.B. and Tukey, J.W., (1958) The measurement of power spectra, + Dover Publications, New York. + + Oppenheim, A.V., and R.W. Schafer. Discrete-Time Signal Processing. + Upper Saddle River, NJ: Prentice-Hall, 1999, pp. 468-471. + + Examples + -------- + >>> np.blackman(12) + array([ -1.38777878e-17, 3.26064346e-02, 1.59903635e-01, + 4.14397981e-01, 7.36045180e-01, 9.67046769e-01, + 9.67046769e-01, 7.36045180e-01, 4.14397981e-01, + 1.59903635e-01, 3.26064346e-02, -1.38777878e-17]) + + + Plot the window and the frequency response: + + >>> from numpy.fft import fft, fftshift + >>> window = np.blackman(51) + >>> plt.plot(window) + [<matplotlib.lines.Line2D object at 0x...>] + >>> plt.title("Blackman window") + <matplotlib.text.Text object at 0x...> + >>> plt.ylabel("Amplitude") + <matplotlib.text.Text object at 0x...> + >>> plt.xlabel("Sample") + <matplotlib.text.Text object at 0x...> + >>> plt.show() + + >>> plt.figure() + <matplotlib.figure.Figure object at 0x...> + >>> A = fft(window, 2048) / 25.5 + >>> mag = np.abs(fftshift(A)) + >>> freq = np.linspace(-0.5, 0.5, len(A)) + >>> response = 20 * np.log10(mag) + >>> response = np.clip(response, -100, 100) + >>> plt.plot(freq, response) + [<matplotlib.lines.Line2D object at 0x...>] + >>> plt.title("Frequency response of Blackman window") + <matplotlib.text.Text object at 0x...> + >>> plt.ylabel("Magnitude [dB]") + <matplotlib.text.Text object at 0x...> + >>> plt.xlabel("Normalized frequency [cycles per sample]") + <matplotlib.text.Text object at 0x...> + >>> plt.axis('tight') + (-0.5, 0.5, -100.0, ...) + >>> plt.show() + + """ + if M < 1: + return array([]) + if M == 1: + return ones(1, float) + n = arange(0, M) + return 0.42 - 0.5*cos(2.0*pi*n/(M-1)) + 0.08*cos(4.0*pi*n/(M-1)) + + +def bartlett(M): + """ + Return the Bartlett window. + + The Bartlett window is very similar to a triangular window, except + that the end points are at zero. It is often used in signal + processing for tapering a signal, without generating too much + ripple in the frequency domain. + + Parameters + ---------- + M : int + Number of points in the output window. If zero or less, an + empty array is returned. + + Returns + ------- + out : array + The triangular window, with the maximum value normalized to one + (the value one appears only if the number of samples is odd), with + the first and last samples equal to zero. + + See Also + -------- + blackman, hamming, hanning, kaiser + + Notes + ----- + The Bartlett window is defined as + + .. math:: w(n) = \\frac{2}{M-1} \\left( + \\frac{M-1}{2} - \\left|n - \\frac{M-1}{2}\\right| + \\right) + + Most references to the Bartlett window come from the signal + processing literature, where it is used as one of many windowing + functions for smoothing values. Note that convolution with this + window produces linear interpolation. It is also known as an + apodization (which means"removing the foot", i.e. smoothing + discontinuities at the beginning and end of the sampled signal) or + tapering function. The fourier transform of the Bartlett is the product + of two sinc functions. + Note the excellent discussion in Kanasewich. + + References + ---------- + .. [1] M.S. Bartlett, "Periodogram Analysis and Continuous Spectra", + Biometrika 37, 1-16, 1950. + .. [2] E.R. Kanasewich, "Time Sequence Analysis in Geophysics", + The University of Alberta Press, 1975, pp. 109-110. + .. [3] A.V. Oppenheim and R.W. Schafer, "Discrete-Time Signal + Processing", Prentice-Hall, 1999, pp. 468-471. + .. [4] Wikipedia, "Window function", + http://en.wikipedia.org/wiki/Window_function + .. [5] W.H. Press, B.P. Flannery, S.A. Teukolsky, and W.T. Vetterling, + "Numerical Recipes", Cambridge University Press, 1986, page 429. + + + Examples + -------- + >>> np.bartlett(12) + array([ 0. , 0.18181818, 0.36363636, 0.54545455, 0.72727273, + 0.90909091, 0.90909091, 0.72727273, 0.54545455, 0.36363636, + 0.18181818, 0. ]) + + Plot the window and its frequency response (requires SciPy and matplotlib): + + >>> from numpy.fft import fft, fftshift + >>> window = np.bartlett(51) + >>> plt.plot(window) + [<matplotlib.lines.Line2D object at 0x...>] + >>> plt.title("Bartlett window") + <matplotlib.text.Text object at 0x...> + >>> plt.ylabel("Amplitude") + <matplotlib.text.Text object at 0x...> + >>> plt.xlabel("Sample") + <matplotlib.text.Text object at 0x...> + >>> plt.show() + + >>> plt.figure() + <matplotlib.figure.Figure object at 0x...> + >>> A = fft(window, 2048) / 25.5 + >>> mag = np.abs(fftshift(A)) + >>> freq = np.linspace(-0.5, 0.5, len(A)) + >>> response = 20 * np.log10(mag) + >>> response = np.clip(response, -100, 100) + >>> plt.plot(freq, response) + [<matplotlib.lines.Line2D object at 0x...>] + >>> plt.title("Frequency response of Bartlett window") + <matplotlib.text.Text object at 0x...> + >>> plt.ylabel("Magnitude [dB]") + <matplotlib.text.Text object at 0x...> + >>> plt.xlabel("Normalized frequency [cycles per sample]") + <matplotlib.text.Text object at 0x...> + >>> plt.axis('tight') + (-0.5, 0.5, -100.0, ...) + >>> plt.show() + + """ + if M < 1: + return array([]) + if M == 1: + return ones(1, float) + n = arange(0, M) + return where(less_equal(n, (M-1)/2.0), 2.0*n/(M-1), 2.0 - 2.0*n/(M-1)) + + +def hanning(M): + """ + Return the Hanning window. + + The Hanning window is a taper formed by using a weighted cosine. + + Parameters + ---------- + M : int + Number of points in the output window. If zero or less, an + empty array is returned. + + Returns + ------- + out : ndarray, shape(M,) + The window, with the maximum value normalized to one (the value + one appears only if `M` is odd). + + See Also + -------- + bartlett, blackman, hamming, kaiser + + Notes + ----- + The Hanning window is defined as + + .. math:: w(n) = 0.5 - 0.5cos\\left(\\frac{2\\pi{n}}{M-1}\\right) + \\qquad 0 \\leq n \\leq M-1 + + The Hanning was named for Julius van Hann, an Austrian meteorologist. + It is also known as the Cosine Bell. Some authors prefer that it be + called a Hann window, to help avoid confusion with the very similar + Hamming window. + + Most references to the Hanning window come from the signal processing + literature, where it is used as one of many windowing functions for + smoothing values. It is also known as an apodization (which means + "removing the foot", i.e. smoothing discontinuities at the beginning + and end of the sampled signal) or tapering function. + + References + ---------- + .. [1] Blackman, R.B. and Tukey, J.W., (1958) The measurement of power + spectra, Dover Publications, New York. + .. [2] E.R. Kanasewich, "Time Sequence Analysis in Geophysics", + The University of Alberta Press, 1975, pp. 106-108. + .. [3] Wikipedia, "Window function", + http://en.wikipedia.org/wiki/Window_function + .. [4] W.H. Press, B.P. Flannery, S.A. Teukolsky, and W.T. Vetterling, + "Numerical Recipes", Cambridge University Press, 1986, page 425. + + Examples + -------- + >>> np.hanning(12) + array([ 0. , 0.07937323, 0.29229249, 0.57115742, 0.82743037, + 0.97974649, 0.97974649, 0.82743037, 0.57115742, 0.29229249, + 0.07937323, 0. ]) + + Plot the window and its frequency response: + + >>> from numpy.fft import fft, fftshift + >>> window = np.hanning(51) + >>> plt.plot(window) + [<matplotlib.lines.Line2D object at 0x...>] + >>> plt.title("Hann window") + <matplotlib.text.Text object at 0x...> + >>> plt.ylabel("Amplitude") + <matplotlib.text.Text object at 0x...> + >>> plt.xlabel("Sample") + <matplotlib.text.Text object at 0x...> + >>> plt.show() + + >>> plt.figure() + <matplotlib.figure.Figure object at 0x...> + >>> A = fft(window, 2048) / 25.5 + >>> mag = np.abs(fftshift(A)) + >>> freq = np.linspace(-0.5, 0.5, len(A)) + >>> response = 20 * np.log10(mag) + >>> response = np.clip(response, -100, 100) + >>> plt.plot(freq, response) + [<matplotlib.lines.Line2D object at 0x...>] + >>> plt.title("Frequency response of the Hann window") + <matplotlib.text.Text object at 0x...> + >>> plt.ylabel("Magnitude [dB]") + <matplotlib.text.Text object at 0x...> + >>> plt.xlabel("Normalized frequency [cycles per sample]") + <matplotlib.text.Text object at 0x...> + >>> plt.axis('tight') + (-0.5, 0.5, -100.0, ...) + >>> plt.show() + + """ + if M < 1: + return array([]) + if M == 1: + return ones(1, float) + n = arange(0, M) + return 0.5 - 0.5*cos(2.0*pi*n/(M-1)) + + +def hamming(M): + """ + Return the Hamming window. + + The Hamming window is a taper formed by using a weighted cosine. + + Parameters + ---------- + M : int + Number of points in the output window. If zero or less, an + empty array is returned. + + Returns + ------- + out : ndarray + The window, with the maximum value normalized to one (the value + one appears only if the number of samples is odd). + + See Also + -------- + bartlett, blackman, hanning, kaiser + + Notes + ----- + The Hamming window is defined as + + .. math:: w(n) = 0.54 - 0.46cos\\left(\\frac{2\\pi{n}}{M-1}\\right) + \\qquad 0 \\leq n \\leq M-1 + + The Hamming was named for R. W. Hamming, an associate of J. W. Tukey + and is described in Blackman and Tukey. It was recommended for + smoothing the truncated autocovariance function in the time domain. + Most references to the Hamming window come from the signal processing + literature, where it is used as one of many windowing functions for + smoothing values. It is also known as an apodization (which means + "removing the foot", i.e. smoothing discontinuities at the beginning + and end of the sampled signal) or tapering function. + + References + ---------- + .. [1] Blackman, R.B. and Tukey, J.W., (1958) The measurement of power + spectra, Dover Publications, New York. + .. [2] E.R. Kanasewich, "Time Sequence Analysis in Geophysics", The + University of Alberta Press, 1975, pp. 109-110. + .. [3] Wikipedia, "Window function", + http://en.wikipedia.org/wiki/Window_function + .. [4] W.H. Press, B.P. Flannery, S.A. Teukolsky, and W.T. Vetterling, + "Numerical Recipes", Cambridge University Press, 1986, page 425. + + Examples + -------- + >>> np.hamming(12) + array([ 0.08 , 0.15302337, 0.34890909, 0.60546483, 0.84123594, + 0.98136677, 0.98136677, 0.84123594, 0.60546483, 0.34890909, + 0.15302337, 0.08 ]) + + Plot the window and the frequency response: + + >>> from numpy.fft import fft, fftshift + >>> window = np.hamming(51) + >>> plt.plot(window) + [<matplotlib.lines.Line2D object at 0x...>] + >>> plt.title("Hamming window") + <matplotlib.text.Text object at 0x...> + >>> plt.ylabel("Amplitude") + <matplotlib.text.Text object at 0x...> + >>> plt.xlabel("Sample") + <matplotlib.text.Text object at 0x...> + >>> plt.show() + + >>> plt.figure() + <matplotlib.figure.Figure object at 0x...> + >>> A = fft(window, 2048) / 25.5 + >>> mag = np.abs(fftshift(A)) + >>> freq = np.linspace(-0.5, 0.5, len(A)) + >>> response = 20 * np.log10(mag) + >>> response = np.clip(response, -100, 100) + >>> plt.plot(freq, response) + [<matplotlib.lines.Line2D object at 0x...>] + >>> plt.title("Frequency response of Hamming window") + <matplotlib.text.Text object at 0x...> + >>> plt.ylabel("Magnitude [dB]") + <matplotlib.text.Text object at 0x...> + >>> plt.xlabel("Normalized frequency [cycles per sample]") + <matplotlib.text.Text object at 0x...> + >>> plt.axis('tight') + (-0.5, 0.5, -100.0, ...) + >>> plt.show() + + """ + if M < 1: + return array([]) + if M == 1: + return ones(1, float) + n = arange(0, M) + return 0.54 - 0.46*cos(2.0*pi*n/(M-1)) + +## Code from cephes for i0 + +_i0A = [ + -4.41534164647933937950E-18, + 3.33079451882223809783E-17, + -2.43127984654795469359E-16, + 1.71539128555513303061E-15, + -1.16853328779934516808E-14, + 7.67618549860493561688E-14, + -4.85644678311192946090E-13, + 2.95505266312963983461E-12, + -1.72682629144155570723E-11, + 9.67580903537323691224E-11, + -5.18979560163526290666E-10, + 2.65982372468238665035E-9, + -1.30002500998624804212E-8, + 6.04699502254191894932E-8, + -2.67079385394061173391E-7, + 1.11738753912010371815E-6, + -4.41673835845875056359E-6, + 1.64484480707288970893E-5, + -5.75419501008210370398E-5, + 1.88502885095841655729E-4, + -5.76375574538582365885E-4, + 1.63947561694133579842E-3, + -4.32430999505057594430E-3, + 1.05464603945949983183E-2, + -2.37374148058994688156E-2, + 4.93052842396707084878E-2, + -9.49010970480476444210E-2, + 1.71620901522208775349E-1, + -3.04682672343198398683E-1, + 6.76795274409476084995E-1 + ] + +_i0B = [ + -7.23318048787475395456E-18, + -4.83050448594418207126E-18, + 4.46562142029675999901E-17, + 3.46122286769746109310E-17, + -2.82762398051658348494E-16, + -3.42548561967721913462E-16, + 1.77256013305652638360E-15, + 3.81168066935262242075E-15, + -9.55484669882830764870E-15, + -4.15056934728722208663E-14, + 1.54008621752140982691E-14, + 3.85277838274214270114E-13, + 7.18012445138366623367E-13, + -1.79417853150680611778E-12, + -1.32158118404477131188E-11, + -3.14991652796324136454E-11, + 1.18891471078464383424E-11, + 4.94060238822496958910E-10, + 3.39623202570838634515E-9, + 2.26666899049817806459E-8, + 2.04891858946906374183E-7, + 2.89137052083475648297E-6, + 6.88975834691682398426E-5, + 3.36911647825569408990E-3, + 8.04490411014108831608E-1 + ] + + +def _chbevl(x, vals): + b0 = vals[0] + b1 = 0.0 + + for i in range(1, len(vals)): + b2 = b1 + b1 = b0 + b0 = x*b1 - b2 + vals[i] + + return 0.5*(b0 - b2) + + +def _i0_1(x): + return exp(x) * _chbevl(x/2.0-2, _i0A) + + +def _i0_2(x): + return exp(x) * _chbevl(32.0/x - 2.0, _i0B) / sqrt(x) + + +def i0(x): + """ + Modified Bessel function of the first kind, order 0. + + Usually denoted :math:`I_0`. This function does broadcast, but will *not* + "up-cast" int dtype arguments unless accompanied by at least one float or + complex dtype argument (see Raises below). + + Parameters + ---------- + x : array_like, dtype float or complex + Argument of the Bessel function. + + Returns + ------- + out : ndarray, shape = x.shape, dtype = x.dtype + The modified Bessel function evaluated at each of the elements of `x`. + + Raises + ------ + TypeError: array cannot be safely cast to required type + If argument consists exclusively of int dtypes. + + See Also + -------- + scipy.special.iv, scipy.special.ive + + Notes + ----- + We use the algorithm published by Clenshaw [1]_ and referenced by + Abramowitz and Stegun [2]_, for which the function domain is + partitioned into the two intervals [0,8] and (8,inf), and Chebyshev + polynomial expansions are employed in each interval. Relative error on + the domain [0,30] using IEEE arithmetic is documented [3]_ as having a + peak of 5.8e-16 with an rms of 1.4e-16 (n = 30000). + + References + ---------- + .. [1] C. W. Clenshaw, "Chebyshev series for mathematical functions", in + *National Physical Laboratory Mathematical Tables*, vol. 5, London: + Her Majesty's Stationery Office, 1962. + .. [2] M. Abramowitz and I. A. Stegun, *Handbook of Mathematical + Functions*, 10th printing, New York: Dover, 1964, pp. 379. + http://www.math.sfu.ca/~cbm/aands/page_379.htm + .. [3] http://kobesearch.cpan.org/htdocs/Math-Cephes/Math/Cephes.html + + Examples + -------- + >>> np.i0([0.]) + array(1.0) + >>> np.i0([0., 1. + 2j]) + array([ 1.00000000+0.j , 0.18785373+0.64616944j]) + + """ + x = atleast_1d(x).copy() + y = empty_like(x) + ind = (x < 0) + x[ind] = -x[ind] + ind = (x <= 8.0) + y[ind] = _i0_1(x[ind]) + ind2 = ~ind + y[ind2] = _i0_2(x[ind2]) + return y.squeeze() + +## End of cephes code for i0 + + +def kaiser(M, beta): + """ + Return the Kaiser window. + + The Kaiser window is a taper formed by using a Bessel function. + + Parameters + ---------- + M : int + Number of points in the output window. If zero or less, an + empty array is returned. + beta : float + Shape parameter for window. + + Returns + ------- + out : array + The window, with the maximum value normalized to one (the value + one appears only if the number of samples is odd). + + See Also + -------- + bartlett, blackman, hamming, hanning + + Notes + ----- + The Kaiser window is defined as + + .. math:: w(n) = I_0\\left( \\beta \\sqrt{1-\\frac{4n^2}{(M-1)^2}} + \\right)/I_0(\\beta) + + with + + .. math:: \\quad -\\frac{M-1}{2} \\leq n \\leq \\frac{M-1}{2}, + + where :math:`I_0` is the modified zeroth-order Bessel function. + + The Kaiser was named for Jim Kaiser, who discovered a simple + approximation to the DPSS window based on Bessel functions. The Kaiser + window is a very good approximation to the Digital Prolate Spheroidal + Sequence, or Slepian window, which is the transform which maximizes the + energy in the main lobe of the window relative to total energy. + + The Kaiser can approximate many other windows by varying the beta + parameter. + + ==== ======================= + beta Window shape + ==== ======================= + 0 Rectangular + 5 Similar to a Hamming + 6 Similar to a Hanning + 8.6 Similar to a Blackman + ==== ======================= + + A beta value of 14 is probably a good starting point. Note that as beta + gets large, the window narrows, and so the number of samples needs to be + large enough to sample the increasingly narrow spike, otherwise NaNs will + get returned. + + Most references to the Kaiser window come from the signal processing + literature, where it is used as one of many windowing functions for + smoothing values. It is also known as an apodization (which means + "removing the foot", i.e. smoothing discontinuities at the beginning + and end of the sampled signal) or tapering function. + + References + ---------- + .. [1] J. F. Kaiser, "Digital Filters" - Ch 7 in "Systems analysis by + digital computer", Editors: F.F. Kuo and J.F. Kaiser, p 218-285. + John Wiley and Sons, New York, (1966). + .. [2] E.R. Kanasewich, "Time Sequence Analysis in Geophysics", The + University of Alberta Press, 1975, pp. 177-178. + .. [3] Wikipedia, "Window function", + http://en.wikipedia.org/wiki/Window_function + + Examples + -------- + >>> np.kaiser(12, 14) + array([ 7.72686684e-06, 3.46009194e-03, 4.65200189e-02, + 2.29737120e-01, 5.99885316e-01, 9.45674898e-01, + 9.45674898e-01, 5.99885316e-01, 2.29737120e-01, + 4.65200189e-02, 3.46009194e-03, 7.72686684e-06]) + + + Plot the window and the frequency response: + + >>> from numpy.fft import fft, fftshift + >>> window = np.kaiser(51, 14) + >>> plt.plot(window) + [<matplotlib.lines.Line2D object at 0x...>] + >>> plt.title("Kaiser window") + <matplotlib.text.Text object at 0x...> + >>> plt.ylabel("Amplitude") + <matplotlib.text.Text object at 0x...> + >>> plt.xlabel("Sample") + <matplotlib.text.Text object at 0x...> + >>> plt.show() + + >>> plt.figure() + <matplotlib.figure.Figure object at 0x...> + >>> A = fft(window, 2048) / 25.5 + >>> mag = np.abs(fftshift(A)) + >>> freq = np.linspace(-0.5, 0.5, len(A)) + >>> response = 20 * np.log10(mag) + >>> response = np.clip(response, -100, 100) + >>> plt.plot(freq, response) + [<matplotlib.lines.Line2D object at 0x...>] + >>> plt.title("Frequency response of Kaiser window") + <matplotlib.text.Text object at 0x...> + >>> plt.ylabel("Magnitude [dB]") + <matplotlib.text.Text object at 0x...> + >>> plt.xlabel("Normalized frequency [cycles per sample]") + <matplotlib.text.Text object at 0x...> + >>> plt.axis('tight') + (-0.5, 0.5, -100.0, ...) + >>> plt.show() + + """ + from numpy.dual import i0 + if M == 1: + return np.array([1.]) + n = arange(0, M) + alpha = (M-1)/2.0 + return i0(beta * sqrt(1-((n-alpha)/alpha)**2.0))/i0(float(beta)) + + +def sinc(x): + """ + Return the sinc function. + + The sinc function is :math:`\\sin(\\pi x)/(\\pi x)`. + + Parameters + ---------- + x : ndarray + Array (possibly multi-dimensional) of values for which to to + calculate ``sinc(x)``. + + Returns + ------- + out : ndarray + ``sinc(x)``, which has the same shape as the input. + + Notes + ----- + ``sinc(0)`` is the limit value 1. + + The name sinc is short for "sine cardinal" or "sinus cardinalis". + + The sinc function is used in various signal processing applications, + including in anti-aliasing, in the construction of a Lanczos resampling + filter, and in interpolation. + + For bandlimited interpolation of discrete-time signals, the ideal + interpolation kernel is proportional to the sinc function. + + References + ---------- + .. [1] Weisstein, Eric W. "Sinc Function." From MathWorld--A Wolfram Web + Resource. http://mathworld.wolfram.com/SincFunction.html + .. [2] Wikipedia, "Sinc function", + http://en.wikipedia.org/wiki/Sinc_function + + Examples + -------- + >>> x = np.linspace(-4, 4, 41) + >>> np.sinc(x) + array([ -3.89804309e-17, -4.92362781e-02, -8.40918587e-02, + -8.90384387e-02, -5.84680802e-02, 3.89804309e-17, + 6.68206631e-02, 1.16434881e-01, 1.26137788e-01, + 8.50444803e-02, -3.89804309e-17, -1.03943254e-01, + -1.89206682e-01, -2.16236208e-01, -1.55914881e-01, + 3.89804309e-17, 2.33872321e-01, 5.04551152e-01, + 7.56826729e-01, 9.35489284e-01, 1.00000000e+00, + 9.35489284e-01, 7.56826729e-01, 5.04551152e-01, + 2.33872321e-01, 3.89804309e-17, -1.55914881e-01, + -2.16236208e-01, -1.89206682e-01, -1.03943254e-01, + -3.89804309e-17, 8.50444803e-02, 1.26137788e-01, + 1.16434881e-01, 6.68206631e-02, 3.89804309e-17, + -5.84680802e-02, -8.90384387e-02, -8.40918587e-02, + -4.92362781e-02, -3.89804309e-17]) + + >>> plt.plot(x, np.sinc(x)) + [<matplotlib.lines.Line2D object at 0x...>] + >>> plt.title("Sinc Function") + <matplotlib.text.Text object at 0x...> + >>> plt.ylabel("Amplitude") + <matplotlib.text.Text object at 0x...> + >>> plt.xlabel("X") + <matplotlib.text.Text object at 0x...> + >>> plt.show() + + It works in 2-D as well: + + >>> x = np.linspace(-4, 4, 401) + >>> xx = np.outer(x, x) + >>> plt.imshow(np.sinc(xx)) + <matplotlib.image.AxesImage object at 0x...> + + """ + x = np.asanyarray(x) + y = pi * where(x == 0, 1.0e-20, x) + return sin(y)/y + + +def msort(a): + """ + Return a copy of an array sorted along the first axis. + + Parameters + ---------- + a : array_like + Array to be sorted. + + Returns + ------- + sorted_array : ndarray + Array of the same type and shape as `a`. + + See Also + -------- + sort + + Notes + ----- + ``np.msort(a)`` is equivalent to ``np.sort(a, axis=0)``. + + """ + b = array(a, subok=True, copy=True) + b.sort(0) + return b + + +def _ureduce(a, func, **kwargs): + """ + Internal Function. + Call `func` with `a` as first argument swapping the axes to use extended + axis on functions that don't support it natively. + + Returns result and a.shape with axis dims set to 1. + + Parameters + ---------- + a : array_like + Input array or object that can be converted to an array. + func : callable + Reduction function Kapable of receiving an axis argument. + It is is called with `a` as first argument followed by `kwargs`. + kwargs : keyword arguments + additional keyword arguments to pass to `func`. + + Returns + ------- + result : tuple + Result of func(a, **kwargs) and a.shape with axis dims set to 1 + which can be used to reshape the result to the same shape a ufunc with + keepdims=True would produce. + + """ + a = np.asanyarray(a) + axis = kwargs.get('axis', None) + if axis is not None: + keepdim = list(a.shape) + nd = a.ndim + try: + axis = operator.index(axis) + if axis >= nd or axis < -nd: + raise IndexError("axis %d out of bounds (%d)" % (axis, a.ndim)) + keepdim[axis] = 1 + except TypeError: + sax = set() + for x in axis: + if x >= nd or x < -nd: + raise IndexError("axis %d out of bounds (%d)" % (x, nd)) + if x in sax: + raise ValueError("duplicate value in axis") + sax.add(x % nd) + keepdim[x] = 1 + keep = sax.symmetric_difference(frozenset(range(nd))) + nkeep = len(keep) + # swap axis that should not be reduced to front + for i, s in enumerate(sorted(keep)): + a = a.swapaxes(i, s) + # merge reduced axis + a = a.reshape(a.shape[:nkeep] + (-1,)) + kwargs['axis'] = -1 + else: + keepdim = [1] * a.ndim + + r = func(a, **kwargs) + return r, keepdim + + +def median(a, axis=None, out=None, overwrite_input=False, keepdims=False): + """ + Compute the median along the specified axis. + + Returns the median of the array elements. + + Parameters + ---------- + a : array_like + Input array or object that can be converted to an array. + axis : int or sequence of int, optional + Axis along which the medians are computed. The default (axis=None) + is to compute the median along a flattened version of the array. + A sequence of axes is supported since version 1.9.0. + out : ndarray, optional + Alternative output array in which to place the result. It must have + the same shape and buffer length as the expected output, but the + type (of the output) will be cast if necessary. + overwrite_input : bool, optional + If True, then allow use of memory of input array (a) for + calculations. The input array will be modified by the call to + median. This will save memory when you do not need to preserve the + contents of the input array. Treat the input as undefined, but it + will probably be fully or partially sorted. Default is False. Note + that, if `overwrite_input` is True and the input is not already an + ndarray, an error will be raised. + keepdims : bool, optional + If this is set to True, the axes which are reduced are left + in the result as dimensions with size one. With this option, + the result will broadcast correctly against the original `arr`. + + .. versionadded:: 1.9.0 + + + Returns + ------- + median : ndarray + A new array holding the result (unless `out` is specified, in which + case that array is returned instead). If the input contains + integers, or floats of smaller precision than 64, then the output + data-type is float64. Otherwise, the output data-type is the same + as that of the input. + + See Also + -------- + mean, percentile + + Notes + ----- + Given a vector V of length N, the median of V is the middle value of + a sorted copy of V, ``V_sorted`` - i.e., ``V_sorted[(N-1)/2]``, when N is + odd. When N is even, it is the average of the two middle values of + ``V_sorted``. + + Examples + -------- + >>> a = np.array([[10, 7, 4], [3, 2, 1]]) + >>> a + array([[10, 7, 4], + [ 3, 2, 1]]) + >>> np.median(a) + 3.5 + >>> np.median(a, axis=0) + array([ 6.5, 4.5, 2.5]) + >>> np.median(a, axis=1) + array([ 7., 2.]) + >>> m = np.median(a, axis=0) + >>> out = np.zeros_like(m) + >>> np.median(a, axis=0, out=m) + array([ 6.5, 4.5, 2.5]) + >>> m + array([ 6.5, 4.5, 2.5]) + >>> b = a.copy() + >>> np.median(b, axis=1, overwrite_input=True) + array([ 7., 2.]) + >>> assert not np.all(a==b) + >>> b = a.copy() + >>> np.median(b, axis=None, overwrite_input=True) + 3.5 + >>> assert not np.all(a==b) + + """ + r, k = _ureduce(a, func=_median, axis=axis, out=out, + overwrite_input=overwrite_input) + if keepdims: + return r.reshape(k) + else: + return r + +def _median(a, axis=None, out=None, overwrite_input=False): + # can't be reasonably be implemented in terms of percentile as we have to + # call mean to not break astropy + a = np.asanyarray(a) + if axis is not None and axis >= a.ndim: + raise IndexError( + "axis %d out of bounds (%d)" % (axis, a.ndim)) + + if overwrite_input: + if axis is None: + part = a.ravel() + sz = part.size + if sz % 2 == 0: + szh = sz // 2 + part.partition((szh - 1, szh)) + else: + part.partition((sz - 1) // 2) + else: + sz = a.shape[axis] + if sz % 2 == 0: + szh = sz // 2 + a.partition((szh - 1, szh), axis=axis) + else: + a.partition((sz - 1) // 2, axis=axis) + part = a + else: + if axis is None: + sz = a.size + else: + sz = a.shape[axis] + if sz % 2 == 0: + part = partition(a, ((sz // 2) - 1, sz // 2), axis=axis) + else: + part = partition(a, (sz - 1) // 2, axis=axis) + if part.shape == (): + # make 0-D arrays work + return part.item() + if axis is None: + axis = 0 + indexer = [slice(None)] * part.ndim + index = part.shape[axis] // 2 + if part.shape[axis] % 2 == 1: + # index with slice to allow mean (below) to work + indexer[axis] = slice(index, index+1) + else: + indexer[axis] = slice(index-1, index+1) + # Use mean in odd and even case to coerce data type + # and check, use out array. + return mean(part[indexer], axis=axis, out=out) + + +def percentile(a, q, axis=None, out=None, + overwrite_input=False, interpolation='linear', keepdims=False): + """ + Compute the qth percentile of the data along the specified axis. + + Returns the qth percentile of the array elements. + + Parameters + ---------- + a : array_like + Input array or object that can be converted to an array. + q : float in range of [0,100] (or sequence of floats) + Percentile to compute which must be between 0 and 100 inclusive. + axis : int or sequence of int, optional + Axis along which the percentiles are computed. The default (None) + is to compute the percentiles along a flattened version of the array. + A sequence of axes is supported since version 1.9.0. + out : ndarray, optional + Alternative output array in which to place the result. It must + have the same shape and buffer length as the expected output, + but the type (of the output) will be cast if necessary. + overwrite_input : bool, optional + If True, then allow use of memory of input array `a` for + calculations. The input array will be modified by the call to + percentile. This will save memory when you do not need to preserve + the contents of the input array. In this case you should not make + any assumptions about the content of the passed in array `a` after + this function completes -- treat it as undefined. Default is False. + Note that, if the `a` input is not already an array this parameter + will have no effect, `a` will be converted to an array internally + regardless of the value of this parameter. + interpolation : {'linear', 'lower', 'higher', 'midpoint', 'nearest'} + This optional parameter specifies the interpolation method to use, + when the desired quantile lies between two data points `i` and `j`: + * linear: `i + (j - i) * fraction`, where `fraction` is the + fractional part of the index surrounded by `i` and `j`. + * lower: `i`. + * higher: `j`. + * nearest: `i` or `j` whichever is nearest. + * midpoint: (`i` + `j`) / 2. + + .. versionadded:: 1.9.0 + keepdims : bool, optional + If this is set to True, the axes which are reduced are left + in the result as dimensions with size one. With this option, + the result will broadcast correctly against the original `arr`. + + .. versionadded:: 1.9.0 + + Returns + ------- + percentile : scalar or ndarray + If a single percentile `q` is given and axis=None a scalar is + returned. If multiple percentiles `q` are given an array holding + the result is returned. The results are listed in the first axis. + (If `out` is specified, in which case that array is returned + instead). If the input contains integers, or floats of smaller + precision than 64, then the output data-type is float64. Otherwise, + the output data-type is the same as that of the input. + + See Also + -------- + mean, median + + Notes + ----- + Given a vector V of length N, the q-th percentile of V is the q-th ranked + value in a sorted copy of V. The values and distances of the two + nearest neighbors as well as the `interpolation` parameter will + determine the percentile if the normalized ranking does not match q + exactly. This function is the same as the median if ``q=50``, the same + as the minimum if ``q=0`` and the same as the maximum if ``q=100``. + + Examples + -------- + >>> a = np.array([[10, 7, 4], [3, 2, 1]]) + >>> a + array([[10, 7, 4], + [ 3, 2, 1]]) + >>> np.percentile(a, 50) + array([ 3.5]) + >>> np.percentile(a, 50, axis=0) + array([[ 6.5, 4.5, 2.5]]) + >>> np.percentile(a, 50, axis=1) + array([[ 7.], + [ 2.]]) + + >>> m = np.percentile(a, 50, axis=0) + >>> out = np.zeros_like(m) + >>> np.percentile(a, 50, axis=0, out=m) + array([[ 6.5, 4.5, 2.5]]) + >>> m + array([[ 6.5, 4.5, 2.5]]) + + >>> b = a.copy() + >>> np.percentile(b, 50, axis=1, overwrite_input=True) + array([[ 7.], + [ 2.]]) + >>> assert not np.all(a==b) + >>> b = a.copy() + >>> np.percentile(b, 50, axis=None, overwrite_input=True) + array([ 3.5]) + + """ + q = array(q, dtype=np.float64, copy=True) + r, k = _ureduce(a, func=_percentile, q=q, axis=axis, out=out, + overwrite_input=overwrite_input, + interpolation=interpolation) + if keepdims: + if q.ndim == 0: + return r.reshape(k) + else: + return r.reshape([len(q)] + k) + else: + return r + + +def _percentile(a, q, axis=None, out=None, + overwrite_input=False, interpolation='linear', keepdims=False): + a = asarray(a) + if q.ndim == 0: + # Do not allow 0-d arrays because following code fails for scalar + zerod = True + q = q[None] + else: + zerod = False + + # avoid expensive reductions, relevant for arrays with < O(1000) elements + if q.size < 10: + for i in range(q.size): + if q[i] < 0. or q[i] > 100.: + raise ValueError("Percentiles must be in the range [0,100]") + q[i] /= 100. + else: + # faster than any() + if np.count_nonzero(q < 0.) or np.count_nonzero(q > 100.): + raise ValueError("Percentiles must be in the range [0,100]") + q /= 100. + + # prepare a for partioning + if overwrite_input: + if axis is None: + ap = a.ravel() + else: + ap = a + else: + if axis is None: + ap = a.flatten() + else: + ap = a.copy() + + if axis is None: + axis = 0 + + Nx = ap.shape[axis] + indices = q * (Nx - 1) + + # round fractional indices according to interpolation method + if interpolation == 'lower': + indices = floor(indices).astype(intp) + elif interpolation == 'higher': + indices = ceil(indices).astype(intp) + elif interpolation == 'midpoint': + indices = floor(indices) + 0.5 + elif interpolation == 'nearest': + indices = around(indices).astype(intp) + elif interpolation == 'linear': + pass # keep index as fraction and interpolate + else: + raise ValueError( + "interpolation can only be 'linear', 'lower' 'higher', " + "'midpoint', or 'nearest'") + + if indices.dtype == intp: # take the points along axis + ap.partition(indices, axis=axis) + # ensure axis with qth is first + ap = np.rollaxis(ap, axis, 0) + axis = 0 + + if zerod: + indices = indices[0] + r = take(ap, indices, axis=axis, out=out) + else: # weight the points above and below the indices + indices_below = floor(indices).astype(intp) + indices_above = indices_below + 1 + indices_above[indices_above > Nx - 1] = Nx - 1 + + weights_above = indices - indices_below + weights_below = 1.0 - weights_above + + weights_shape = [1, ] * ap.ndim + weights_shape[axis] = len(indices) + weights_below.shape = weights_shape + weights_above.shape = weights_shape + + ap.partition(concatenate((indices_below, indices_above)), axis=axis) + x1 = take(ap, indices_below, axis=axis) * weights_below + x2 = take(ap, indices_above, axis=axis) * weights_above + + # ensure axis with qth is first + x1 = np.rollaxis(x1, axis, 0) + x2 = np.rollaxis(x2, axis, 0) + + if zerod: + x1 = x1.squeeze(0) + x2 = x2.squeeze(0) + + if out is not None: + r = add(x1, x2, out=out) + else: + r = add(x1, x2) + + return r + + +def trapz(y, x=None, dx=1.0, axis=-1): + """ + Integrate along the given axis using the composite trapezoidal rule. + + Integrate `y` (`x`) along given axis. + + Parameters + ---------- + y : array_like + Input array to integrate. + x : array_like, optional + If `x` is None, then spacing between all `y` elements is `dx`. + dx : scalar, optional + If `x` is None, spacing given by `dx` is assumed. Default is 1. + axis : int, optional + Specify the axis. + + Returns + ------- + trapz : float + Definite integral as approximated by trapezoidal rule. + + See Also + -------- + sum, cumsum + + Notes + ----- + Image [2]_ illustrates trapezoidal rule -- y-axis locations of points + will be taken from `y` array, by default x-axis distances between + points will be 1.0, alternatively they can be provided with `x` array + or with `dx` scalar. Return value will be equal to combined area under + the red lines. + + + References + ---------- + .. [1] Wikipedia page: http://en.wikipedia.org/wiki/Trapezoidal_rule + + .. [2] Illustration image: + http://en.wikipedia.org/wiki/File:Composite_trapezoidal_rule_illustration.png + + Examples + -------- + >>> np.trapz([1,2,3]) + 4.0 + >>> np.trapz([1,2,3], x=[4,6,8]) + 8.0 + >>> np.trapz([1,2,3], dx=2) + 8.0 + >>> a = np.arange(6).reshape(2, 3) + >>> a + array([[0, 1, 2], + [3, 4, 5]]) + >>> np.trapz(a, axis=0) + array([ 1.5, 2.5, 3.5]) + >>> np.trapz(a, axis=1) + array([ 2., 8.]) + + """ + y = asanyarray(y) + if x is None: + d = dx + else: + x = asanyarray(x) + if x.ndim == 1: + d = diff(x) + # reshape to correct shape + shape = [1]*y.ndim + shape[axis] = d.shape[0] + d = d.reshape(shape) + else: + d = diff(x, axis=axis) + nd = len(y.shape) + slice1 = [slice(None)]*nd + slice2 = [slice(None)]*nd + slice1[axis] = slice(1, None) + slice2[axis] = slice(None, -1) + try: + ret = (d * (y[slice1] + y[slice2]) / 2.0).sum(axis) + except ValueError: + # Operations didn't work, cast to ndarray + d = np.asarray(d) + y = np.asarray(y) + ret = add.reduce(d * (y[slice1]+y[slice2])/2.0, axis) + return ret + + +#always succeed +def add_newdoc(place, obj, doc): + """Adds documentation to obj which is in module place. + + If doc is a string add it to obj as a docstring + + If doc is a tuple, then the first element is interpreted as + an attribute of obj and the second as the docstring + (method, docstring) + + If doc is a list, then each element of the list should be a + sequence of length two --> [(method1, docstring1), + (method2, docstring2), ...] + + This routine never raises an error. + + This routine cannot modify read-only docstrings, as appear + in new-style classes or built-in functions. Because this + routine never raises an error the caller must check manually + that the docstrings were changed. + """ + try: + new = getattr(__import__(place, globals(), {}, [obj]), obj) + if isinstance(doc, str): + add_docstring(new, doc.strip()) + elif isinstance(doc, tuple): + add_docstring(getattr(new, doc[0]), doc[1].strip()) + elif isinstance(doc, list): + for val in doc: + add_docstring(getattr(new, val[0]), val[1].strip()) + except: + pass + + +# Based on scitools meshgrid +def meshgrid(*xi, **kwargs): + """ + Return coordinate matrices from coordinate vectors. + + Make N-D coordinate arrays for vectorized evaluations of + N-D scalar/vector fields over N-D grids, given + one-dimensional coordinate arrays x1, x2,..., xn. + + .. versionchanged:: 1.9 + 1-D and 0-D cases are allowed. + + Parameters + ---------- + x1, x2,..., xn : array_like + 1-D arrays representing the coordinates of a grid. + indexing : {'xy', 'ij'}, optional + Cartesian ('xy', default) or matrix ('ij') indexing of output. + See Notes for more details. + + .. versionadded:: 1.7.0 + sparse : bool, optional + If True a sparse grid is returned in order to conserve memory. + Default is False. + + .. versionadded:: 1.7.0 + copy : bool, optional + If False, a view into the original arrays are returned in order to + conserve memory. Default is True. Please note that + ``sparse=False, copy=False`` will likely return non-contiguous + arrays. Furthermore, more than one element of a broadcast array + may refer to a single memory location. If you need to write to the + arrays, make copies first. + + .. versionadded:: 1.7.0 + + Returns + ------- + X1, X2,..., XN : ndarray + For vectors `x1`, `x2`,..., 'xn' with lengths ``Ni=len(xi)`` , + return ``(N1, N2, N3,...Nn)`` shaped arrays if indexing='ij' + or ``(N2, N1, N3,...Nn)`` shaped arrays if indexing='xy' + with the elements of `xi` repeated to fill the matrix along + the first dimension for `x1`, the second for `x2` and so on. + + Notes + ----- + This function supports both indexing conventions through the indexing + keyword argument. Giving the string 'ij' returns a meshgrid with + matrix indexing, while 'xy' returns a meshgrid with Cartesian indexing. + In the 2-D case with inputs of length M and N, the outputs are of shape + (N, M) for 'xy' indexing and (M, N) for 'ij' indexing. In the 3-D case + with inputs of length M, N and P, outputs are of shape (N, M, P) for + 'xy' indexing and (M, N, P) for 'ij' indexing. The difference is + illustrated by the following code snippet:: + + xv, yv = meshgrid(x, y, sparse=False, indexing='ij') + for i in range(nx): + for j in range(ny): + # treat xv[i,j], yv[i,j] + + xv, yv = meshgrid(x, y, sparse=False, indexing='xy') + for i in range(nx): + for j in range(ny): + # treat xv[j,i], yv[j,i] + + In the 1-D and 0-D case, the indexing and sparse keywords have no effect. + + See Also + -------- + index_tricks.mgrid : Construct a multi-dimensional "meshgrid" + using indexing notation. + index_tricks.ogrid : Construct an open multi-dimensional "meshgrid" + using indexing notation. + + Examples + -------- + >>> nx, ny = (3, 2) + >>> x = np.linspace(0, 1, nx) + >>> y = np.linspace(0, 1, ny) + >>> xv, yv = meshgrid(x, y) + >>> xv + array([[ 0. , 0.5, 1. ], + [ 0. , 0.5, 1. ]]) + >>> yv + array([[ 0., 0., 0.], + [ 1., 1., 1.]]) + >>> xv, yv = meshgrid(x, y, sparse=True) # make sparse output arrays + >>> xv + array([[ 0. , 0.5, 1. ]]) + >>> yv + array([[ 0.], + [ 1.]]) + + `meshgrid` is very useful to evaluate functions on a grid. + + >>> x = np.arange(-5, 5, 0.1) + >>> y = np.arange(-5, 5, 0.1) + >>> xx, yy = meshgrid(x, y, sparse=True) + >>> z = np.sin(xx**2 + yy**2) / (xx**2 + yy**2) + >>> h = plt.contourf(x,y,z) + + """ + ndim = len(xi) + + copy_ = kwargs.pop('copy', True) + sparse = kwargs.pop('sparse', False) + indexing = kwargs.pop('indexing', 'xy') + + if kwargs: + raise TypeError("meshgrid() got an unexpected keyword argument '%s'" + % (list(kwargs)[0],)) + + if indexing not in ['xy', 'ij']: + raise ValueError( + "Valid values for `indexing` are 'xy' and 'ij'.") + + s0 = (1,) * ndim + output = [np.asanyarray(x).reshape(s0[:i] + (-1,) + s0[i + 1::]) + for i, x in enumerate(xi)] + + shape = [x.size for x in output] + + if indexing == 'xy' and ndim > 1: + # switch first and second axis + output[0].shape = (1, -1) + (1,)*(ndim - 2) + output[1].shape = (-1, 1) + (1,)*(ndim - 2) + shape[0], shape[1] = shape[1], shape[0] + + if sparse: + if copy_: + return [x.copy() for x in output] + else: + return output + else: + # Return the full N-D matrix (not only the 1-D vector) + if copy_: + mult_fact = np.ones(shape, dtype=int) + return [x * mult_fact for x in output] + else: + return np.broadcast_arrays(*output) + + +def delete(arr, obj, axis=None): + """ + Return a new array with sub-arrays along an axis deleted. For a one + dimensional array, this returns those entries not returned by + `arr[obj]`. + + Parameters + ---------- + arr : array_like + Input array. + obj : slice, int or array of ints + Indicate which sub-arrays to remove. + axis : int, optional + The axis along which to delete the subarray defined by `obj`. + If `axis` is None, `obj` is applied to the flattened array. + + Returns + ------- + out : ndarray + A copy of `arr` with the elements specified by `obj` removed. Note + that `delete` does not occur in-place. If `axis` is None, `out` is + a flattened array. + + See Also + -------- + insert : Insert elements into an array. + append : Append elements at the end of an array. + + Notes + ----- + Often it is preferable to use a boolean mask. For example: + + >>> mask = np.ones(len(arr), dtype=bool) + >>> mask[[0,2,4]] = False + >>> result = arr[mask,...] + + Is equivalent to `np.delete(arr, [0,2,4], axis=0)`, but allows further + use of `mask`. + + Examples + -------- + >>> arr = np.array([[1,2,3,4], [5,6,7,8], [9,10,11,12]]) + >>> arr + array([[ 1, 2, 3, 4], + [ 5, 6, 7, 8], + [ 9, 10, 11, 12]]) + >>> np.delete(arr, 1, 0) + array([[ 1, 2, 3, 4], + [ 9, 10, 11, 12]]) + + >>> np.delete(arr, np.s_[::2], 1) + array([[ 2, 4], + [ 6, 8], + [10, 12]]) + >>> np.delete(arr, [1,3,5], None) + array([ 1, 3, 5, 7, 8, 9, 10, 11, 12]) + + """ + wrap = None + if type(arr) is not ndarray: + try: + wrap = arr.__array_wrap__ + except AttributeError: + pass + + arr = asarray(arr) + ndim = arr.ndim + if axis is None: + if ndim != 1: + arr = arr.ravel() + ndim = arr.ndim + axis = ndim - 1 + if ndim == 0: + warnings.warn( + "in the future the special handling of scalars will be removed " + "from delete and raise an error", DeprecationWarning) + if wrap: + return wrap(arr) + else: + return arr.copy() + + slobj = [slice(None)]*ndim + N = arr.shape[axis] + newshape = list(arr.shape) + + if isinstance(obj, slice): + start, stop, step = obj.indices(N) + xr = range(start, stop, step) + numtodel = len(xr) + + if numtodel <= 0: + if wrap: + return wrap(arr.copy()) + else: + return arr.copy() + + # Invert if step is negative: + if step < 0: + step = -step + start = xr[-1] + stop = xr[0] + 1 + + newshape[axis] -= numtodel + new = empty(newshape, arr.dtype, arr.flags.fnc) + # copy initial chunk + if start == 0: + pass + else: + slobj[axis] = slice(None, start) + new[slobj] = arr[slobj] + # copy end chunck + if stop == N: + pass + else: + slobj[axis] = slice(stop-numtodel, None) + slobj2 = [slice(None)]*ndim + slobj2[axis] = slice(stop, None) + new[slobj] = arr[slobj2] + # copy middle pieces + if step == 1: + pass + else: # use array indexing. + keep = ones(stop-start, dtype=bool) + keep[:stop-start:step] = False + slobj[axis] = slice(start, stop-numtodel) + slobj2 = [slice(None)]*ndim + slobj2[axis] = slice(start, stop) + arr = arr[slobj2] + slobj2[axis] = keep + new[slobj] = arr[slobj2] + if wrap: + return wrap(new) + else: + return new + + _obj = obj + obj = np.asarray(obj) + # After removing the special handling of booleans and out of + # bounds values, the conversion to the array can be removed. + if obj.dtype == bool: + warnings.warn( + "in the future insert will treat boolean arrays and array-likes " + "as boolean index instead of casting it to integer", FutureWarning) + obj = obj.astype(intp) + if isinstance(_obj, (int, long, integer)): + # optimization for a single value + obj = obj.item() + if (obj < -N or obj >= N): + raise IndexError( + "index %i is out of bounds for axis %i with " + "size %i" % (obj, axis, N)) + if (obj < 0): + obj += N + newshape[axis] -= 1 + new = empty(newshape, arr.dtype, arr.flags.fnc) + slobj[axis] = slice(None, obj) + new[slobj] = arr[slobj] + slobj[axis] = slice(obj, None) + slobj2 = [slice(None)]*ndim + slobj2[axis] = slice(obj+1, None) + new[slobj] = arr[slobj2] + else: + if obj.size == 0 and not isinstance(_obj, np.ndarray): + obj = obj.astype(intp) + if not np.can_cast(obj, intp, 'same_kind'): + # obj.size = 1 special case always failed and would just + # give superfluous warnings. + warnings.warn( + "using a non-integer array as obj in delete will result in an " + "error in the future", DeprecationWarning) + obj = obj.astype(intp) + keep = ones(N, dtype=bool) + + # Test if there are out of bound indices, this is deprecated + inside_bounds = (obj < N) & (obj >= -N) + if not inside_bounds.all(): + warnings.warn( + "in the future out of bounds indices will raise an error " + "instead of being ignored by `numpy.delete`.", + DeprecationWarning) + obj = obj[inside_bounds] + positive_indices = obj >= 0 + if not positive_indices.all(): + warnings.warn( + "in the future negative indices will not be ignored by " + "`numpy.delete`.", FutureWarning) + obj = obj[positive_indices] + + keep[obj, ] = False + slobj[axis] = keep + new = arr[slobj] + + if wrap: + return wrap(new) + else: + return new + + +def insert(arr, obj, values, axis=None): + """ + Insert values along the given axis before the given indices. + + Parameters + ---------- + arr : array_like + Input array. + obj : int, slice or sequence of ints + Object that defines the index or indices before which `values` is + inserted. + + .. versionadded:: 1.8.0 + + Support for multiple insertions when `obj` is a single scalar or a + sequence with one element (similar to calling insert multiple + times). + values : array_like + Values to insert into `arr`. If the type of `values` is different + from that of `arr`, `values` is converted to the type of `arr`. + `values` should be shaped so that ``arr[...,obj,...] = values`` + is legal. + axis : int, optional + Axis along which to insert `values`. If `axis` is None then `arr` + is flattened first. + + Returns + ------- + out : ndarray + A copy of `arr` with `values` inserted. Note that `insert` + does not occur in-place: a new array is returned. If + `axis` is None, `out` is a flattened array. + + See Also + -------- + append : Append elements at the end of an array. + concatenate : Join a sequence of arrays together. + delete : Delete elements from an array. + + Notes + ----- + Note that for higher dimensional inserts `obj=0` behaves very different + from `obj=[0]` just like `arr[:,0,:] = values` is different from + `arr[:,[0],:] = values`. + + Examples + -------- + >>> a = np.array([[1, 1], [2, 2], [3, 3]]) + >>> a + array([[1, 1], + [2, 2], + [3, 3]]) + >>> np.insert(a, 1, 5) + array([1, 5, 1, 2, 2, 3, 3]) + >>> np.insert(a, 1, 5, axis=1) + array([[1, 5, 1], + [2, 5, 2], + [3, 5, 3]]) + + Difference between sequence and scalars: + >>> np.insert(a, [1], [[1],[2],[3]], axis=1) + array([[1, 1, 1], + [2, 2, 2], + [3, 3, 3]]) + >>> np.array_equal(np.insert(a, 1, [1, 2, 3], axis=1), + ... np.insert(a, [1], [[1],[2],[3]], axis=1)) + True + + >>> b = a.flatten() + >>> b + array([1, 1, 2, 2, 3, 3]) + >>> np.insert(b, [2, 2], [5, 6]) + array([1, 1, 5, 6, 2, 2, 3, 3]) + + >>> np.insert(b, slice(2, 4), [5, 6]) + array([1, 1, 5, 2, 6, 2, 3, 3]) + + >>> np.insert(b, [2, 2], [7.13, False]) # type casting + array([1, 1, 7, 0, 2, 2, 3, 3]) + + >>> x = np.arange(8).reshape(2, 4) + >>> idx = (1, 3) + >>> np.insert(x, idx, 999, axis=1) + array([[ 0, 999, 1, 2, 999, 3], + [ 4, 999, 5, 6, 999, 7]]) + + """ + wrap = None + if type(arr) is not ndarray: + try: + wrap = arr.__array_wrap__ + except AttributeError: + pass + + arr = asarray(arr) + ndim = arr.ndim + if axis is None: + if ndim != 1: + arr = arr.ravel() + ndim = arr.ndim + axis = ndim - 1 + else: + if ndim > 0 and (axis < -ndim or axis >= ndim): + raise IndexError( + "axis %i is out of bounds for an array of " + "dimension %i" % (axis, ndim)) + if (axis < 0): + axis += ndim + if (ndim == 0): + warnings.warn( + "in the future the special handling of scalars will be removed " + "from insert and raise an error", DeprecationWarning) + arr = arr.copy() + arr[...] = values + if wrap: + return wrap(arr) + else: + return arr + slobj = [slice(None)]*ndim + N = arr.shape[axis] + newshape = list(arr.shape) + + if isinstance(obj, slice): + # turn it into a range object + indices = arange(*obj.indices(N), **{'dtype': intp}) + else: + # need to copy obj, because indices will be changed in-place + indices = np.array(obj) + if indices.dtype == bool: + # See also delete + warnings.warn( + "in the future insert will treat boolean arrays and " + "array-likes as a boolean index instead of casting it to " + "integer", FutureWarning) + indices = indices.astype(intp) + # Code after warning period: + #if obj.ndim != 1: + # raise ValueError('boolean array argument obj to insert ' + # 'must be one dimensional') + #indices = np.flatnonzero(obj) + elif indices.ndim > 1: + raise ValueError( + "index array argument obj to insert must be one dimensional " + "or scalar") + if indices.size == 1: + index = indices.item() + if index < -N or index > N: + raise IndexError( + "index %i is out of bounds for axis %i with " + "size %i" % (obj, axis, N)) + if (index < 0): + index += N + + # There are some object array corner cases here, but we cannot avoid + # that: + values = array(values, copy=False, ndmin=arr.ndim, dtype=arr.dtype) + if indices.ndim == 0: + # broadcasting is very different here, since a[:,0,:] = ... behaves + # very different from a[:,[0],:] = ...! This changes values so that + # it works likes the second case. (here a[:,0:1,:]) + values = np.rollaxis(values, 0, (axis % values.ndim) + 1) + numnew = values.shape[axis] + newshape[axis] += numnew + new = empty(newshape, arr.dtype, arr.flags.fnc) + slobj[axis] = slice(None, index) + new[slobj] = arr[slobj] + slobj[axis] = slice(index, index+numnew) + new[slobj] = values + slobj[axis] = slice(index+numnew, None) + slobj2 = [slice(None)] * ndim + slobj2[axis] = slice(index, None) + new[slobj] = arr[slobj2] + if wrap: + return wrap(new) + return new + elif indices.size == 0 and not isinstance(obj, np.ndarray): + # Can safely cast the empty list to intp + indices = indices.astype(intp) + + if not np.can_cast(indices, intp, 'same_kind'): + warnings.warn( + "using a non-integer array as obj in insert will result in an " + "error in the future", DeprecationWarning) + indices = indices.astype(intp) + + indices[indices < 0] += N + + numnew = len(indices) + order = indices.argsort(kind='mergesort') # stable sort + indices[order] += np.arange(numnew) + + newshape[axis] += numnew + old_mask = ones(newshape[axis], dtype=bool) + old_mask[indices] = False + + new = empty(newshape, arr.dtype, arr.flags.fnc) + slobj2 = [slice(None)]*ndim + slobj[axis] = indices + slobj2[axis] = old_mask + new[slobj] = values + new[slobj2] = arr + + if wrap: + return wrap(new) + return new + + +def append(arr, values, axis=None): + """ + Append values to the end of an array. + + Parameters + ---------- + arr : array_like + Values are appended to a copy of this array. + values : array_like + These values are appended to a copy of `arr`. It must be of the + correct shape (the same shape as `arr`, excluding `axis`). If + `axis` is not specified, `values` can be any shape and will be + flattened before use. + axis : int, optional + The axis along which `values` are appended. If `axis` is not + given, both `arr` and `values` are flattened before use. + + Returns + ------- + append : ndarray + A copy of `arr` with `values` appended to `axis`. Note that + `append` does not occur in-place: a new array is allocated and + filled. If `axis` is None, `out` is a flattened array. + + See Also + -------- + insert : Insert elements into an array. + delete : Delete elements from an array. + + Examples + -------- + >>> np.append([1, 2, 3], [[4, 5, 6], [7, 8, 9]]) + array([1, 2, 3, 4, 5, 6, 7, 8, 9]) + + When `axis` is specified, `values` must have the correct shape. + + >>> np.append([[1, 2, 3], [4, 5, 6]], [[7, 8, 9]], axis=0) + array([[1, 2, 3], + [4, 5, 6], + [7, 8, 9]]) + >>> np.append([[1, 2, 3], [4, 5, 6]], [7, 8, 9], axis=0) + Traceback (most recent call last): + ... + ValueError: arrays must have same number of dimensions + + """ + arr = asanyarray(arr) + if axis is None: + if arr.ndim != 1: + arr = arr.ravel() + values = ravel(values) + axis = arr.ndim-1 + return concatenate((arr, values), axis=axis)