Mercurial > hg > vamp-build-and-test
diff DEPENDENCIES/mingw32/Python27/Lib/site-packages/numpy/lib/financial.py @ 87:2a2c65a20a8b
Add Python libs and headers
author | Chris Cannam |
---|---|
date | Wed, 25 Feb 2015 14:05:22 +0000 |
parents | |
children |
line wrap: on
line diff
--- /dev/null Thu Jan 01 00:00:00 1970 +0000 +++ b/DEPENDENCIES/mingw32/Python27/Lib/site-packages/numpy/lib/financial.py Wed Feb 25 14:05:22 2015 +0000 @@ -0,0 +1,737 @@ +"""Some simple financial calculations + +patterned after spreadsheet computations. + +There is some complexity in each function +so that the functions behave like ufuncs with +broadcasting and being able to be called with scalars +or arrays (or other sequences). + +""" +from __future__ import division, absolute_import, print_function + +import numpy as np + +__all__ = ['fv', 'pmt', 'nper', 'ipmt', 'ppmt', 'pv', 'rate', + 'irr', 'npv', 'mirr'] + +_when_to_num = {'end':0, 'begin':1, + 'e':0, 'b':1, + 0:0, 1:1, + 'beginning':1, + 'start':1, + 'finish':0} + +def _convert_when(when): + #Test to see if when has already been converted to ndarray + #This will happen if one function calls another, for example ppmt + if isinstance(when, np.ndarray): + return when + try: + return _when_to_num[when] + except (KeyError, TypeError): + return [_when_to_num[x] for x in when] + + +def fv(rate, nper, pmt, pv, when='end'): + """ + Compute the future value. + + Given: + * a present value, `pv` + * an interest `rate` compounded once per period, of which + there are + * `nper` total + * a (fixed) payment, `pmt`, paid either + * at the beginning (`when` = {'begin', 1}) or the end + (`when` = {'end', 0}) of each period + + Return: + the value at the end of the `nper` periods + + Parameters + ---------- + rate : scalar or array_like of shape(M, ) + Rate of interest as decimal (not per cent) per period + nper : scalar or array_like of shape(M, ) + Number of compounding periods + pmt : scalar or array_like of shape(M, ) + Payment + pv : scalar or array_like of shape(M, ) + Present value + when : {{'begin', 1}, {'end', 0}}, {string, int}, optional + When payments are due ('begin' (1) or 'end' (0)). + Defaults to {'end', 0}. + + Returns + ------- + out : ndarray + Future values. If all input is scalar, returns a scalar float. If + any input is array_like, returns future values for each input element. + If multiple inputs are array_like, they all must have the same shape. + + Notes + ----- + The future value is computed by solving the equation:: + + fv + + pv*(1+rate)**nper + + pmt*(1 + rate*when)/rate*((1 + rate)**nper - 1) == 0 + + or, when ``rate == 0``:: + + fv + pv + pmt * nper == 0 + + References + ---------- + .. [WRW] Wheeler, D. A., E. Rathke, and R. Weir (Eds.) (2009, May). + Open Document Format for Office Applications (OpenDocument)v1.2, + Part 2: Recalculated Formula (OpenFormula) Format - Annotated Version, + Pre-Draft 12. Organization for the Advancement of Structured Information + Standards (OASIS). Billerica, MA, USA. [ODT Document]. + Available: + http://www.oasis-open.org/committees/documents.php?wg_abbrev=office-formula + OpenDocument-formula-20090508.odt + + Examples + -------- + What is the future value after 10 years of saving $100 now, with + an additional monthly savings of $100. Assume the interest rate is + 5% (annually) compounded monthly? + + >>> np.fv(0.05/12, 10*12, -100, -100) + 15692.928894335748 + + By convention, the negative sign represents cash flow out (i.e. money not + available today). Thus, saving $100 a month at 5% annual interest leads + to $15,692.93 available to spend in 10 years. + + If any input is array_like, returns an array of equal shape. Let's + compare different interest rates from the example above. + + >>> a = np.array((0.05, 0.06, 0.07))/12 + >>> np.fv(a, 10*12, -100, -100) + array([ 15692.92889434, 16569.87435405, 17509.44688102]) + + """ + when = _convert_when(when) + (rate, nper, pmt, pv, when) = map(np.asarray, [rate, nper, pmt, pv, when]) + temp = (1+rate)**nper + miter = np.broadcast(rate, nper, pmt, pv, when) + zer = np.zeros(miter.shape) + fact = np.where(rate == zer, nper + zer, + (1 + rate*when)*(temp - 1)/rate + zer) + return -(pv*temp + pmt*fact) + +def pmt(rate, nper, pv, fv=0, when='end'): + """ + Compute the payment against loan principal plus interest. + + Given: + * a present value, `pv` (e.g., an amount borrowed) + * a future value, `fv` (e.g., 0) + * an interest `rate` compounded once per period, of which + there are + * `nper` total + * and (optional) specification of whether payment is made + at the beginning (`when` = {'begin', 1}) or the end + (`when` = {'end', 0}) of each period + + Return: + the (fixed) periodic payment. + + Parameters + ---------- + rate : array_like + Rate of interest (per period) + nper : array_like + Number of compounding periods + pv : array_like + Present value + fv : array_like (optional) + Future value (default = 0) + when : {{'begin', 1}, {'end', 0}}, {string, int} + When payments are due ('begin' (1) or 'end' (0)) + + Returns + ------- + out : ndarray + Payment against loan plus interest. If all input is scalar, returns a + scalar float. If any input is array_like, returns payment for each + input element. If multiple inputs are array_like, they all must have + the same shape. + + Notes + ----- + The payment is computed by solving the equation:: + + fv + + pv*(1 + rate)**nper + + pmt*(1 + rate*when)/rate*((1 + rate)**nper - 1) == 0 + + or, when ``rate == 0``:: + + fv + pv + pmt * nper == 0 + + for ``pmt``. + + Note that computing a monthly mortgage payment is only + one use for this function. For example, pmt returns the + periodic deposit one must make to achieve a specified + future balance given an initial deposit, a fixed, + periodically compounded interest rate, and the total + number of periods. + + References + ---------- + .. [WRW] Wheeler, D. A., E. Rathke, and R. Weir (Eds.) (2009, May). + Open Document Format for Office Applications (OpenDocument)v1.2, + Part 2: Recalculated Formula (OpenFormula) Format - Annotated Version, + Pre-Draft 12. Organization for the Advancement of Structured Information + Standards (OASIS). Billerica, MA, USA. [ODT Document]. + Available: + http://www.oasis-open.org/committees/documents.php + ?wg_abbrev=office-formulaOpenDocument-formula-20090508.odt + + Examples + -------- + What is the monthly payment needed to pay off a $200,000 loan in 15 + years at an annual interest rate of 7.5%? + + >>> np.pmt(0.075/12, 12*15, 200000) + -1854.0247200054619 + + In order to pay-off (i.e., have a future-value of 0) the $200,000 obtained + today, a monthly payment of $1,854.02 would be required. Note that this + example illustrates usage of `fv` having a default value of 0. + + """ + when = _convert_when(when) + (rate, nper, pv, fv, when) = map(np.asarray, [rate, nper, pv, fv, when]) + temp = (1+rate)**nper + miter = np.broadcast(rate, nper, pv, fv, when) + zer = np.zeros(miter.shape) + fact = np.where(rate == zer, nper + zer, + (1 + rate*when)*(temp - 1)/rate + zer) + return -(fv + pv*temp) / fact + +def nper(rate, pmt, pv, fv=0, when='end'): + """ + Compute the number of periodic payments. + + Parameters + ---------- + rate : array_like + Rate of interest (per period) + pmt : array_like + Payment + pv : array_like + Present value + fv : array_like, optional + Future value + when : {{'begin', 1}, {'end', 0}}, {string, int}, optional + When payments are due ('begin' (1) or 'end' (0)) + + Notes + ----- + The number of periods ``nper`` is computed by solving the equation:: + + fv + pv*(1+rate)**nper + pmt*(1+rate*when)/rate*((1+rate)**nper-1) = 0 + + but if ``rate = 0`` then:: + + fv + pv + pmt*nper = 0 + + Examples + -------- + If you only had $150/month to pay towards the loan, how long would it take + to pay-off a loan of $8,000 at 7% annual interest? + + >>> print round(np.nper(0.07/12, -150, 8000), 5) + 64.07335 + + So, over 64 months would be required to pay off the loan. + + The same analysis could be done with several different interest rates + and/or payments and/or total amounts to produce an entire table. + + >>> np.nper(*(np.ogrid[0.07/12: 0.08/12: 0.01/12, + ... -150 : -99 : 50 , + ... 8000 : 9001 : 1000])) + array([[[ 64.07334877, 74.06368256], + [ 108.07548412, 127.99022654]], + [[ 66.12443902, 76.87897353], + [ 114.70165583, 137.90124779]]]) + + """ + when = _convert_when(when) + (rate, pmt, pv, fv, when) = map(np.asarray, [rate, pmt, pv, fv, when]) + + use_zero_rate = False + with np.errstate(divide="raise"): + try: + z = pmt*(1.0+rate*when)/rate + except FloatingPointError: + use_zero_rate = True + + if use_zero_rate: + return (-fv + pv) / (pmt + 0.0) + else: + A = -(fv + pv)/(pmt+0.0) + B = np.log((-fv+z) / (pv+z))/np.log(1.0+rate) + miter = np.broadcast(rate, pmt, pv, fv, when) + zer = np.zeros(miter.shape) + return np.where(rate == zer, A + zer, B + zer) + 0.0 + +def ipmt(rate, per, nper, pv, fv=0.0, when='end'): + """ + Compute the interest portion of a payment. + + Parameters + ---------- + rate : scalar or array_like of shape(M, ) + Rate of interest as decimal (not per cent) per period + per : scalar or array_like of shape(M, ) + Interest paid against the loan changes during the life or the loan. + The `per` is the payment period to calculate the interest amount. + nper : scalar or array_like of shape(M, ) + Number of compounding periods + pv : scalar or array_like of shape(M, ) + Present value + fv : scalar or array_like of shape(M, ), optional + Future value + when : {{'begin', 1}, {'end', 0}}, {string, int}, optional + When payments are due ('begin' (1) or 'end' (0)). + Defaults to {'end', 0}. + + Returns + ------- + out : ndarray + Interest portion of payment. If all input is scalar, returns a scalar + float. If any input is array_like, returns interest payment for each + input element. If multiple inputs are array_like, they all must have + the same shape. + + See Also + -------- + ppmt, pmt, pv + + Notes + ----- + The total payment is made up of payment against principal plus interest. + + ``pmt = ppmt + ipmt`` + + Examples + -------- + What is the amortization schedule for a 1 year loan of $2500 at + 8.24% interest per year compounded monthly? + + >>> principal = 2500.00 + + The 'per' variable represents the periods of the loan. Remember that + financial equations start the period count at 1! + + >>> per = np.arange(1*12) + 1 + >>> ipmt = np.ipmt(0.0824/12, per, 1*12, principal) + >>> ppmt = np.ppmt(0.0824/12, per, 1*12, principal) + + Each element of the sum of the 'ipmt' and 'ppmt' arrays should equal + 'pmt'. + + >>> pmt = np.pmt(0.0824/12, 1*12, principal) + >>> np.allclose(ipmt + ppmt, pmt) + True + + >>> fmt = '{0:2d} {1:8.2f} {2:8.2f} {3:8.2f}' + >>> for payment in per: + ... index = payment - 1 + ... principal = principal + ppmt[index] + ... print fmt.format(payment, ppmt[index], ipmt[index], principal) + 1 -200.58 -17.17 2299.42 + 2 -201.96 -15.79 2097.46 + 3 -203.35 -14.40 1894.11 + 4 -204.74 -13.01 1689.37 + 5 -206.15 -11.60 1483.22 + 6 -207.56 -10.18 1275.66 + 7 -208.99 -8.76 1066.67 + 8 -210.42 -7.32 856.25 + 9 -211.87 -5.88 644.38 + 10 -213.32 -4.42 431.05 + 11 -214.79 -2.96 216.26 + 12 -216.26 -1.49 -0.00 + + >>> interestpd = np.sum(ipmt) + >>> np.round(interestpd, 2) + -112.98 + + """ + when = _convert_when(when) + rate, per, nper, pv, fv, when = np.broadcast_arrays(rate, per, nper, + pv, fv, when) + total_pmt = pmt(rate, nper, pv, fv, when) + ipmt = _rbl(rate, per, total_pmt, pv, when)*rate + try: + ipmt = np.where(when == 1, ipmt/(1 + rate), ipmt) + ipmt = np.where(np.logical_and(when == 1, per == 1), 0.0, ipmt) + except IndexError: + pass + return ipmt + +def _rbl(rate, per, pmt, pv, when): + """ + This function is here to simply have a different name for the 'fv' + function to not interfere with the 'fv' keyword argument within the 'ipmt' + function. It is the 'remaining balance on loan' which might be useful as + it's own function, but is easily calculated with the 'fv' function. + """ + return fv(rate, (per - 1), pmt, pv, when) + +def ppmt(rate, per, nper, pv, fv=0.0, when='end'): + """ + Compute the payment against loan principal. + + Parameters + ---------- + rate : array_like + Rate of interest (per period) + per : array_like, int + Amount paid against the loan changes. The `per` is the period of + interest. + nper : array_like + Number of compounding periods + pv : array_like + Present value + fv : array_like, optional + Future value + when : {{'begin', 1}, {'end', 0}}, {string, int} + When payments are due ('begin' (1) or 'end' (0)) + + See Also + -------- + pmt, pv, ipmt + + """ + total = pmt(rate, nper, pv, fv, when) + return total - ipmt(rate, per, nper, pv, fv, when) + +def pv(rate, nper, pmt, fv=0.0, when='end'): + """ + Compute the present value. + + Given: + * a future value, `fv` + * an interest `rate` compounded once per period, of which + there are + * `nper` total + * a (fixed) payment, `pmt`, paid either + * at the beginning (`when` = {'begin', 1}) or the end + (`when` = {'end', 0}) of each period + + Return: + the value now + + Parameters + ---------- + rate : array_like + Rate of interest (per period) + nper : array_like + Number of compounding periods + pmt : array_like + Payment + fv : array_like, optional + Future value + when : {{'begin', 1}, {'end', 0}}, {string, int}, optional + When payments are due ('begin' (1) or 'end' (0)) + + Returns + ------- + out : ndarray, float + Present value of a series of payments or investments. + + Notes + ----- + The present value is computed by solving the equation:: + + fv + + pv*(1 + rate)**nper + + pmt*(1 + rate*when)/rate*((1 + rate)**nper - 1) = 0 + + or, when ``rate = 0``:: + + fv + pv + pmt * nper = 0 + + for `pv`, which is then returned. + + References + ---------- + .. [WRW] Wheeler, D. A., E. Rathke, and R. Weir (Eds.) (2009, May). + Open Document Format for Office Applications (OpenDocument)v1.2, + Part 2: Recalculated Formula (OpenFormula) Format - Annotated Version, + Pre-Draft 12. Organization for the Advancement of Structured Information + Standards (OASIS). Billerica, MA, USA. [ODT Document]. + Available: + http://www.oasis-open.org/committees/documents.php?wg_abbrev=office-formula + OpenDocument-formula-20090508.odt + + Examples + -------- + What is the present value (e.g., the initial investment) + of an investment that needs to total $15692.93 + after 10 years of saving $100 every month? Assume the + interest rate is 5% (annually) compounded monthly. + + >>> np.pv(0.05/12, 10*12, -100, 15692.93) + -100.00067131625819 + + By convention, the negative sign represents cash flow out + (i.e., money not available today). Thus, to end up with + $15,692.93 in 10 years saving $100 a month at 5% annual + interest, one's initial deposit should also be $100. + + If any input is array_like, ``pv`` returns an array of equal shape. + Let's compare different interest rates in the example above: + + >>> a = np.array((0.05, 0.04, 0.03))/12 + >>> np.pv(a, 10*12, -100, 15692.93) + array([ -100.00067132, -649.26771385, -1273.78633713]) + + So, to end up with the same $15692.93 under the same $100 per month + "savings plan," for annual interest rates of 4% and 3%, one would + need initial investments of $649.27 and $1273.79, respectively. + + """ + when = _convert_when(when) + (rate, nper, pmt, fv, when) = map(np.asarray, [rate, nper, pmt, fv, when]) + temp = (1+rate)**nper + miter = np.broadcast(rate, nper, pmt, fv, when) + zer = np.zeros(miter.shape) + fact = np.where(rate == zer, nper+zer, (1+rate*when)*(temp-1)/rate+zer) + return -(fv + pmt*fact)/temp + +# Computed with Sage +# (y + (r + 1)^n*x + p*((r + 1)^n - 1)*(r*w + 1)/r)/(n*(r + 1)^(n - 1)*x - +# p*((r + 1)^n - 1)*(r*w + 1)/r^2 + n*p*(r + 1)^(n - 1)*(r*w + 1)/r + +# p*((r + 1)^n - 1)*w/r) + +def _g_div_gp(r, n, p, x, y, w): + t1 = (r+1)**n + t2 = (r+1)**(n-1) + return ((y + t1*x + p*(t1 - 1)*(r*w + 1)/r) / + (n*t2*x - p*(t1 - 1)*(r*w + 1)/(r**2) + n*p*t2*(r*w + 1)/r + + p*(t1 - 1)*w/r)) + +# Use Newton's iteration until the change is less than 1e-6 +# for all values or a maximum of 100 iterations is reached. +# Newton's rule is +# r_{n+1} = r_{n} - g(r_n)/g'(r_n) +# where +# g(r) is the formula +# g'(r) is the derivative with respect to r. +def rate(nper, pmt, pv, fv, when='end', guess=0.10, tol=1e-6, maxiter=100): + """ + Compute the rate of interest per period. + + Parameters + ---------- + nper : array_like + Number of compounding periods + pmt : array_like + Payment + pv : array_like + Present value + fv : array_like + Future value + when : {{'begin', 1}, {'end', 0}}, {string, int}, optional + When payments are due ('begin' (1) or 'end' (0)) + guess : float, optional + Starting guess for solving the rate of interest + tol : float, optional + Required tolerance for the solution + maxiter : int, optional + Maximum iterations in finding the solution + + Notes + ----- + The rate of interest is computed by iteratively solving the + (non-linear) equation:: + + fv + pv*(1+rate)**nper + pmt*(1+rate*when)/rate * ((1+rate)**nper - 1) = 0 + + for ``rate``. + + References + ---------- + Wheeler, D. A., E. Rathke, and R. Weir (Eds.) (2009, May). Open Document + Format for Office Applications (OpenDocument)v1.2, Part 2: Recalculated + Formula (OpenFormula) Format - Annotated Version, Pre-Draft 12. + Organization for the Advancement of Structured Information Standards + (OASIS). Billerica, MA, USA. [ODT Document]. Available: + http://www.oasis-open.org/committees/documents.php?wg_abbrev=office-formula + OpenDocument-formula-20090508.odt + + """ + when = _convert_when(when) + (nper, pmt, pv, fv, when) = map(np.asarray, [nper, pmt, pv, fv, when]) + rn = guess + iter = 0 + close = False + while (iter < maxiter) and not close: + rnp1 = rn - _g_div_gp(rn, nper, pmt, pv, fv, when) + diff = abs(rnp1-rn) + close = np.all(diff < tol) + iter += 1 + rn = rnp1 + if not close: + # Return nan's in array of the same shape as rn + return np.nan + rn + else: + return rn + +def irr(values): + """ + Return the Internal Rate of Return (IRR). + + This is the "average" periodically compounded rate of return + that gives a net present value of 0.0; for a more complete explanation, + see Notes below. + + Parameters + ---------- + values : array_like, shape(N,) + Input cash flows per time period. By convention, net "deposits" + are negative and net "withdrawals" are positive. Thus, for + example, at least the first element of `values`, which represents + the initial investment, will typically be negative. + + Returns + ------- + out : float + Internal Rate of Return for periodic input values. + + Notes + ----- + The IRR is perhaps best understood through an example (illustrated + using np.irr in the Examples section below). Suppose one invests 100 + units and then makes the following withdrawals at regular (fixed) + intervals: 39, 59, 55, 20. Assuming the ending value is 0, one's 100 + unit investment yields 173 units; however, due to the combination of + compounding and the periodic withdrawals, the "average" rate of return + is neither simply 0.73/4 nor (1.73)^0.25-1. Rather, it is the solution + (for :math:`r`) of the equation: + + .. math:: -100 + \\frac{39}{1+r} + \\frac{59}{(1+r)^2} + + \\frac{55}{(1+r)^3} + \\frac{20}{(1+r)^4} = 0 + + In general, for `values` :math:`= [v_0, v_1, ... v_M]`, + irr is the solution of the equation: [G]_ + + .. math:: \\sum_{t=0}^M{\\frac{v_t}{(1+irr)^{t}}} = 0 + + References + ---------- + .. [G] L. J. Gitman, "Principles of Managerial Finance, Brief," 3rd ed., + Addison-Wesley, 2003, pg. 348. + + Examples + -------- + >>> round(irr([-100, 39, 59, 55, 20]), 5) + 0.28095 + >>> round(irr([-100, 0, 0, 74]), 5) + -0.0955 + >>> round(irr([-100, 100, 0, -7]), 5) + -0.0833 + >>> round(irr([-100, 100, 0, 7]), 5) + 0.06206 + >>> round(irr([-5, 10.5, 1, -8, 1]), 5) + 0.0886 + + (Compare with the Example given for numpy.lib.financial.npv) + + """ + res = np.roots(values[::-1]) + mask = (res.imag == 0) & (res.real > 0) + if res.size == 0: + return np.nan + res = res[mask].real + # NPV(rate) = 0 can have more than one solution so we return + # only the solution closest to zero. + rate = 1.0/res - 1 + rate = rate.item(np.argmin(np.abs(rate))) + return rate + +def npv(rate, values): + """ + Returns the NPV (Net Present Value) of a cash flow series. + + Parameters + ---------- + rate : scalar + The discount rate. + values : array_like, shape(M, ) + The values of the time series of cash flows. The (fixed) time + interval between cash flow "events" must be the same as that for + which `rate` is given (i.e., if `rate` is per year, then precisely + a year is understood to elapse between each cash flow event). By + convention, investments or "deposits" are negative, income or + "withdrawals" are positive; `values` must begin with the initial + investment, thus `values[0]` will typically be negative. + + Returns + ------- + out : float + The NPV of the input cash flow series `values` at the discount + `rate`. + + Notes + ----- + Returns the result of: [G]_ + + .. math :: \\sum_{t=0}^{M-1}{\\frac{values_t}{(1+rate)^{t}}} + + References + ---------- + .. [G] L. J. Gitman, "Principles of Managerial Finance, Brief," 3rd ed., + Addison-Wesley, 2003, pg. 346. + + Examples + -------- + >>> np.npv(0.281,[-100, 39, 59, 55, 20]) + -0.0084785916384548798 + + (Compare with the Example given for numpy.lib.financial.irr) + + """ + values = np.asarray(values) + return (values / (1+rate)**np.arange(0, len(values))).sum(axis=0) + +def mirr(values, finance_rate, reinvest_rate): + """ + Modified internal rate of return. + + Parameters + ---------- + values : array_like + Cash flows (must contain at least one positive and one negative + value) or nan is returned. The first value is considered a sunk + cost at time zero. + finance_rate : scalar + Interest rate paid on the cash flows + reinvest_rate : scalar + Interest rate received on the cash flows upon reinvestment + + Returns + ------- + out : float + Modified internal rate of return + + """ + values = np.asarray(values, dtype=np.double) + n = values.size + pos = values > 0 + neg = values < 0 + if not (pos.any() and neg.any()): + return np.nan + numer = np.abs(npv(reinvest_rate, values*pos)) + denom = np.abs(npv(finance_rate, values*neg)) + return (numer/denom)**(1.0/(n - 1))*(1 + reinvest_rate) - 1