diff DEPENDENCIES/mingw32/Python27/Lib/site-packages/numpy/f2py/src/fortranobject.c @ 87:2a2c65a20a8b

Add Python libs and headers
author Chris Cannam
date Wed, 25 Feb 2015 14:05:22 +0000
parents
children
line wrap: on
line diff
--- /dev/null	Thu Jan 01 00:00:00 1970 +0000
+++ b/DEPENDENCIES/mingw32/Python27/Lib/site-packages/numpy/f2py/src/fortranobject.c	Wed Feb 25 14:05:22 2015 +0000
@@ -0,0 +1,972 @@
+#define FORTRANOBJECT_C
+#include "fortranobject.h"
+
+#ifdef __cplusplus
+extern "C" {
+#endif
+
+/*
+  This file implements: FortranObject, array_from_pyobj, copy_ND_array
+
+  Author: Pearu Peterson <pearu@cens.ioc.ee>
+  $Revision: 1.52 $
+  $Date: 2005/07/11 07:44:20 $
+*/
+
+int
+F2PyDict_SetItemString(PyObject *dict, char *name, PyObject *obj)
+{
+    if (obj==NULL) {
+        fprintf(stderr, "Error loading %s\n", name);
+        if (PyErr_Occurred()) {
+            PyErr_Print();
+            PyErr_Clear();
+        }
+        return -1;
+    }
+    return PyDict_SetItemString(dict, name, obj);
+}
+
+/************************* FortranObject *******************************/
+
+typedef PyObject *(*fortranfunc)(PyObject *,PyObject *,PyObject *,void *);
+
+PyObject *
+PyFortranObject_New(FortranDataDef* defs, f2py_void_func init) {
+    int i;
+    PyFortranObject *fp = NULL;
+    PyObject *v = NULL;
+    if (init!=NULL)                           /* Initialize F90 module objects */
+        (*(init))();
+    if ((fp = PyObject_New(PyFortranObject, &PyFortran_Type))==NULL) return NULL;
+    if ((fp->dict = PyDict_New())==NULL) return NULL;
+    fp->len = 0;
+    while (defs[fp->len].name != NULL) fp->len++;
+    if (fp->len == 0) goto fail;
+    fp->defs = defs;
+    for (i=0;i<fp->len;i++)
+        if (fp->defs[i].rank == -1) {                      /* Is Fortran routine */
+            v = PyFortranObject_NewAsAttr(&(fp->defs[i]));
+            if (v==NULL) return NULL;
+            PyDict_SetItemString(fp->dict,fp->defs[i].name,v);
+        } else
+            if ((fp->defs[i].data)!=NULL) { /* Is Fortran variable or array (not allocatable) */
+                if (fp->defs[i].type == NPY_STRING) {
+                    int n = fp->defs[i].rank-1;
+                    v = PyArray_New(&PyArray_Type, n, fp->defs[i].dims.d,
+                                    NPY_STRING, NULL, fp->defs[i].data, fp->defs[i].dims.d[n],
+                                    NPY_FARRAY, NULL);
+                }
+                else {
+                    v = PyArray_New(&PyArray_Type, fp->defs[i].rank, fp->defs[i].dims.d,
+                                    fp->defs[i].type, NULL, fp->defs[i].data, 0, NPY_FARRAY,
+                                    NULL);
+                }
+                if (v==NULL) return NULL;
+                PyDict_SetItemString(fp->dict,fp->defs[i].name,v);
+            }
+    Py_XDECREF(v);
+    return (PyObject *)fp;
+ fail:
+    Py_XDECREF(v);
+    return NULL;
+}
+
+PyObject *
+PyFortranObject_NewAsAttr(FortranDataDef* defs) { /* used for calling F90 module routines */
+    PyFortranObject *fp = NULL;
+    fp = PyObject_New(PyFortranObject, &PyFortran_Type);
+    if (fp == NULL) return NULL;
+    if ((fp->dict = PyDict_New())==NULL) return NULL;
+    fp->len = 1;
+    fp->defs = defs;
+    return (PyObject *)fp;
+}
+
+/* Fortran methods */
+
+static void
+fortran_dealloc(PyFortranObject *fp) {
+    Py_XDECREF(fp->dict);
+    PyMem_Del(fp);
+}
+
+
+#if PY_VERSION_HEX >= 0x03000000
+#else
+static PyMethodDef fortran_methods[] = {
+    {NULL,          NULL}           /* sentinel */
+};
+#endif
+
+
+static PyObject *
+fortran_doc (FortranDataDef def) {
+    char *p;
+    /*
+      p is used as a buffer to hold generated documentation strings.
+      A common operation in generating the documentation strings, is
+      appending a string to the buffer p. Earlier, the following
+      idiom was:
+
+        sprintf(p, "%s<string to be appended>", p);
+
+      but this does not work when _FORTIFY_SOURCE=2 is enabled: instead
+      of appending the string, the string is inserted.
+
+      As a fix, the following idiom should be used for appending
+      strings to a buffer p:
+
+        sprintf(p + strlen(p), "<string to be appended>");
+     */
+    PyObject *s = NULL;
+    int i;
+    unsigned size=100;
+    if (def.doc!=NULL)
+        size += strlen(def.doc);
+    p = (char*)malloc (size);
+    p[0] = '\0'; /* make sure that the buffer has zero length */
+    if (def.rank==-1) {
+        if (def.doc==NULL) {
+            if (sprintf(p,"%s - ",def.name)==0) goto fail;
+            if (sprintf(p+strlen(p),"no docs available")==0)
+                goto fail;
+        } else {
+            if (sprintf(p+strlen(p),"%s",def.doc)==0)
+                goto fail;
+        }
+    } else {
+        PyArray_Descr *d = PyArray_DescrFromType(def.type);
+        if (sprintf(p+strlen(p),"'%c'-",d->type)==0) {
+	  Py_DECREF(d);
+	  goto fail;
+	}
+        Py_DECREF(d);
+        if (def.data==NULL) {
+            if (sprintf(p+strlen(p),"array(%" NPY_INTP_FMT,def.dims.d[0])==0)
+	      goto fail;
+            for(i=1;i<def.rank;++i)
+                if (sprintf(p+strlen(p),",%" NPY_INTP_FMT,def.dims.d[i])==0)
+		  goto fail;
+            if (sprintf(p+strlen(p),"), not allocated")==0)
+	      goto fail;
+        } else {
+            if (def.rank>0) {
+                if (sprintf(p+strlen(p),"array(%"NPY_INTP_FMT,def.dims.d[0])==0)
+		  goto fail;
+                for(i=1;i<def.rank;i++)
+                    if (sprintf(p+strlen(p),",%" NPY_INTP_FMT,def.dims.d[i])==0)
+		      goto fail;
+                if (sprintf(p+strlen(p),")")==0) goto fail;
+            } else {
+                if (sprintf(p+strlen(p),"scalar")==0) goto fail;
+            }
+        }
+    }
+    if (sprintf(p+strlen(p),"\n")==0) goto fail;
+    if (strlen(p)>size) {
+        fprintf(stderr,"fortranobject.c:fortran_doc:len(p)=%zd>%d(size):"\
+		" too long doc string required, increase size\n",\
+		strlen(p),size);
+        goto fail;
+    }
+#if PY_VERSION_HEX >= 0x03000000
+    s = PyUnicode_FromString(p);
+#else
+    s = PyString_FromString(p);
+#endif
+ fail:
+    free(p);
+    return s;
+}
+
+static FortranDataDef *save_def; /* save pointer of an allocatable array */
+static void set_data(char *d,npy_intp *f) {  /* callback from Fortran */
+    if (*f)                               /* In fortran f=allocated(d) */
+        save_def->data = d;
+    else
+        save_def->data = NULL;
+    /* printf("set_data: d=%p,f=%d\n",d,*f); */
+}
+
+static PyObject *
+fortran_getattr(PyFortranObject *fp, char *name) {
+    int i,j,k,flag;
+    if (fp->dict != NULL) {
+        PyObject *v = PyDict_GetItemString(fp->dict, name);
+        if (v != NULL) {
+            Py_INCREF(v);
+            return v;
+        }
+    }
+    for (i=0,j=1;i<fp->len && (j=strcmp(name,fp->defs[i].name));i++);
+    if (j==0)
+        if (fp->defs[i].rank!=-1) {                   /* F90 allocatable array */
+            if (fp->defs[i].func==NULL) return NULL;
+            for(k=0;k<fp->defs[i].rank;++k)
+                fp->defs[i].dims.d[k]=-1;
+            save_def = &fp->defs[i];
+            (*(fp->defs[i].func))(&fp->defs[i].rank,fp->defs[i].dims.d,set_data,&flag);
+            if (flag==2)
+                k = fp->defs[i].rank + 1;
+            else
+                k = fp->defs[i].rank;
+            if (fp->defs[i].data !=NULL) {              /* array is allocated */
+                PyObject *v = PyArray_New(&PyArray_Type, k, fp->defs[i].dims.d,
+                                          fp->defs[i].type, NULL, fp->defs[i].data, 0, NPY_FARRAY,
+                                          NULL);
+                if (v==NULL) return NULL;
+                /* Py_INCREF(v); */
+                return v;
+            } else {                                    /* array is not allocated */
+                Py_INCREF(Py_None);
+                return Py_None;
+            }
+        }
+    if (strcmp(name,"__dict__")==0) {
+        Py_INCREF(fp->dict);
+        return fp->dict;
+    }
+    if (strcmp(name,"__doc__")==0) {
+#if PY_VERSION_HEX >= 0x03000000
+        PyObject *s = PyUnicode_FromString(""), *s2, *s3;
+        for (i=0;i<fp->len;i++) {
+            s2 = fortran_doc(fp->defs[i]);
+            s3 = PyUnicode_Concat(s, s2);
+            Py_DECREF(s2);
+            Py_DECREF(s);
+            s = s3;
+        }
+#else
+        PyObject *s = PyString_FromString("");
+        for (i=0;i<fp->len;i++)
+            PyString_ConcatAndDel(&s,fortran_doc(fp->defs[i]));
+#endif
+        if (PyDict_SetItemString(fp->dict, name, s))
+            return NULL;
+        return s;
+    }
+    if ((strcmp(name,"_cpointer")==0) && (fp->len==1)) {
+        PyObject *cobj = F2PyCapsule_FromVoidPtr((void *)(fp->defs[0].data),NULL);
+        if (PyDict_SetItemString(fp->dict, name, cobj))
+            return NULL;
+        return cobj;
+    }
+#if PY_VERSION_HEX >= 0x03000000
+    if (1) {
+        PyObject *str, *ret;
+        str = PyUnicode_FromString(name);
+        ret = PyObject_GenericGetAttr((PyObject *)fp, str);
+        Py_DECREF(str);
+        return ret;
+    }
+#else
+    return Py_FindMethod(fortran_methods, (PyObject *)fp, name);
+#endif
+}
+
+static int
+fortran_setattr(PyFortranObject *fp, char *name, PyObject *v) {
+    int i,j,flag;
+    PyArrayObject *arr = NULL;
+    for (i=0,j=1;i<fp->len && (j=strcmp(name,fp->defs[i].name));i++);
+    if (j==0) {
+        if (fp->defs[i].rank==-1) {
+            PyErr_SetString(PyExc_AttributeError,"over-writing fortran routine");
+            return -1;
+        }
+        if (fp->defs[i].func!=NULL) { /* is allocatable array */
+            npy_intp dims[F2PY_MAX_DIMS];
+            int k;
+            save_def = &fp->defs[i];
+            if (v!=Py_None) {     /* set new value (reallocate if needed --
+                                     see f2py generated code for more
+                                     details ) */
+                for(k=0;k<fp->defs[i].rank;k++) dims[k]=-1;
+                if ((arr = array_from_pyobj(fp->defs[i].type,dims,fp->defs[i].rank,F2PY_INTENT_IN,v))==NULL)
+                    return -1;
+                (*(fp->defs[i].func))(&fp->defs[i].rank,arr->dimensions,set_data,&flag);
+            } else {             /* deallocate */
+                for(k=0;k<fp->defs[i].rank;k++) dims[k]=0;
+                (*(fp->defs[i].func))(&fp->defs[i].rank,dims,set_data,&flag);
+                for(k=0;k<fp->defs[i].rank;k++) dims[k]=-1;
+            }
+            memcpy(fp->defs[i].dims.d,dims,fp->defs[i].rank*sizeof(npy_intp));
+        } else {                     /* not allocatable array */
+            if ((arr = array_from_pyobj(fp->defs[i].type,fp->defs[i].dims.d,fp->defs[i].rank,F2PY_INTENT_IN,v))==NULL)
+                return -1;
+        }
+        if (fp->defs[i].data!=NULL) { /* copy Python object to Fortran array */
+            npy_intp s = PyArray_MultiplyList(fp->defs[i].dims.d,arr->nd);
+            if (s==-1)
+                s = PyArray_MultiplyList(arr->dimensions,arr->nd);
+            if (s<0 ||
+                (memcpy(fp->defs[i].data,arr->data,s*PyArray_ITEMSIZE(arr)))==NULL) {
+                if ((PyObject*)arr!=v) {
+                    Py_DECREF(arr);
+                }
+                return -1;
+            }
+            if ((PyObject*)arr!=v) {
+                Py_DECREF(arr);
+            }
+        } else return (fp->defs[i].func==NULL?-1:0);
+        return 0; /* succesful */
+    }
+    if (fp->dict == NULL) {
+        fp->dict = PyDict_New();
+        if (fp->dict == NULL)
+            return -1;
+    }
+    if (v == NULL) {
+        int rv = PyDict_DelItemString(fp->dict, name);
+        if (rv < 0)
+            PyErr_SetString(PyExc_AttributeError,"delete non-existing fortran attribute");
+        return rv;
+    }
+    else
+        return PyDict_SetItemString(fp->dict, name, v);
+}
+
+static PyObject*
+fortran_call(PyFortranObject *fp, PyObject *arg, PyObject *kw) {
+    int i = 0;
+    /*  printf("fortran call
+        name=%s,func=%p,data=%p,%p\n",fp->defs[i].name,
+        fp->defs[i].func,fp->defs[i].data,&fp->defs[i].data); */
+    if (fp->defs[i].rank==-1) {/* is Fortran routine */
+        if (fp->defs[i].func==NULL) {
+            PyErr_Format(PyExc_RuntimeError, "no function to call");
+            return NULL;
+        }
+        else if (fp->defs[i].data==NULL)
+            /* dummy routine */
+            return (*((fortranfunc)(fp->defs[i].func)))((PyObject *)fp,arg,kw,NULL);
+        else
+            return (*((fortranfunc)(fp->defs[i].func)))((PyObject *)fp,arg,kw,
+                                                        (void *)fp->defs[i].data);
+    }
+    PyErr_Format(PyExc_TypeError, "this fortran object is not callable");
+    return NULL;
+}
+
+static PyObject *
+fortran_repr(PyFortranObject *fp)
+{
+    PyObject *name = NULL, *repr = NULL;
+    name = PyObject_GetAttrString((PyObject *)fp, "__name__");
+    PyErr_Clear();
+#if PY_VERSION_HEX >= 0x03000000
+    if (name != NULL && PyUnicode_Check(name)) {
+        repr = PyUnicode_FromFormat("<fortran %U>", name);
+    }
+    else {
+        repr = PyUnicode_FromString("<fortran object>");
+    }
+#else
+    if (name != NULL && PyString_Check(name)) {
+        repr = PyString_FromFormat("<fortran %s>", PyString_AsString(name));
+    }
+    else {
+        repr = PyString_FromString("<fortran object>");
+    }
+#endif
+    Py_XDECREF(name);
+    return repr;
+}
+
+
+PyTypeObject PyFortran_Type = {
+#if PY_VERSION_HEX >= 0x03000000
+    PyVarObject_HEAD_INIT(NULL, 0)
+#else
+    PyObject_HEAD_INIT(0)
+    0,                    /*ob_size*/
+#endif
+    "fortran",                    /*tp_name*/
+    sizeof(PyFortranObject),      /*tp_basicsize*/
+    0,                    /*tp_itemsize*/
+    /* methods */
+    (destructor)fortran_dealloc, /*tp_dealloc*/
+    0,                    /*tp_print*/
+    (getattrfunc)fortran_getattr, /*tp_getattr*/
+    (setattrfunc)fortran_setattr, /*tp_setattr*/
+    0,                    /*tp_compare/tp_reserved*/
+    (reprfunc)fortran_repr, /*tp_repr*/
+    0,                    /*tp_as_number*/
+    0,                    /*tp_as_sequence*/
+    0,                    /*tp_as_mapping*/
+    0,                    /*tp_hash*/
+    (ternaryfunc)fortran_call,                    /*tp_call*/
+};
+
+/************************* f2py_report_atexit *******************************/
+
+#ifdef F2PY_REPORT_ATEXIT
+static int passed_time = 0;
+static int passed_counter = 0;
+static int passed_call_time = 0;
+static struct timeb start_time;
+static struct timeb stop_time;
+static struct timeb start_call_time;
+static struct timeb stop_call_time;
+static int cb_passed_time = 0;
+static int cb_passed_counter = 0;
+static int cb_passed_call_time = 0;
+static struct timeb cb_start_time;
+static struct timeb cb_stop_time;
+static struct timeb cb_start_call_time;
+static struct timeb cb_stop_call_time;
+
+extern void f2py_start_clock(void) { ftime(&start_time); }
+extern
+void f2py_start_call_clock(void) {
+    f2py_stop_clock();
+    ftime(&start_call_time);
+}
+extern
+void f2py_stop_clock(void) {
+    ftime(&stop_time);
+    passed_time += 1000*(stop_time.time - start_time.time);
+    passed_time += stop_time.millitm - start_time.millitm;
+}
+extern
+void f2py_stop_call_clock(void) {
+    ftime(&stop_call_time);
+    passed_call_time += 1000*(stop_call_time.time - start_call_time.time);
+    passed_call_time += stop_call_time.millitm - start_call_time.millitm;
+    passed_counter += 1;
+    f2py_start_clock();
+}
+
+extern void f2py_cb_start_clock(void) { ftime(&cb_start_time); }
+extern
+void f2py_cb_start_call_clock(void) {
+    f2py_cb_stop_clock();
+    ftime(&cb_start_call_time);
+}
+extern
+void f2py_cb_stop_clock(void) {
+    ftime(&cb_stop_time);
+    cb_passed_time += 1000*(cb_stop_time.time - cb_start_time.time);
+    cb_passed_time += cb_stop_time.millitm - cb_start_time.millitm;
+}
+extern
+void f2py_cb_stop_call_clock(void) {
+    ftime(&cb_stop_call_time);
+    cb_passed_call_time += 1000*(cb_stop_call_time.time - cb_start_call_time.time);
+    cb_passed_call_time += cb_stop_call_time.millitm - cb_start_call_time.millitm;
+    cb_passed_counter += 1;
+    f2py_cb_start_clock();
+}
+
+static int f2py_report_on_exit_been_here = 0;
+extern
+void f2py_report_on_exit(int exit_flag,void *name) {
+    if (f2py_report_on_exit_been_here) {
+        fprintf(stderr,"             %s\n",(char*)name);
+        return;
+    }
+    f2py_report_on_exit_been_here = 1;
+    fprintf(stderr,"                      /-----------------------\\\n");
+    fprintf(stderr,"                     < F2PY performance report >\n");
+    fprintf(stderr,"                      \\-----------------------/\n");
+    fprintf(stderr,"Overall time spent in ...\n");
+    fprintf(stderr,"(a) wrapped (Fortran/C) functions           : %8d msec\n",
+            passed_call_time);
+    fprintf(stderr,"(b) f2py interface,           %6d calls  : %8d msec\n",
+            passed_counter,passed_time);
+    fprintf(stderr,"(c) call-back (Python) functions            : %8d msec\n",
+            cb_passed_call_time);
+    fprintf(stderr,"(d) f2py call-back interface, %6d calls  : %8d msec\n",
+            cb_passed_counter,cb_passed_time);
+
+    fprintf(stderr,"(e) wrapped (Fortran/C) functions (acctual) : %8d msec\n\n",
+            passed_call_time-cb_passed_call_time-cb_passed_time);
+    fprintf(stderr,"Use -DF2PY_REPORT_ATEXIT_DISABLE to disable this message.\n");
+    fprintf(stderr,"Exit status: %d\n",exit_flag);
+    fprintf(stderr,"Modules    : %s\n",(char*)name);
+}
+#endif
+
+/********************** report on array copy ****************************/
+
+#ifdef F2PY_REPORT_ON_ARRAY_COPY
+static void f2py_report_on_array_copy(PyArrayObject* arr) {
+    const long arr_size = PyArray_Size((PyObject *)arr);
+    if (arr_size>F2PY_REPORT_ON_ARRAY_COPY) {
+        fprintf(stderr,"copied an array: size=%ld, elsize=%d\n",
+                arr_size, PyArray_ITEMSIZE(arr));
+    }
+}
+static void f2py_report_on_array_copy_fromany(void) {
+    fprintf(stderr,"created an array from object\n");
+}
+
+#define F2PY_REPORT_ON_ARRAY_COPY_FROMARR f2py_report_on_array_copy((PyArrayObject *)arr)
+#define F2PY_REPORT_ON_ARRAY_COPY_FROMANY f2py_report_on_array_copy_fromany()
+#else
+#define F2PY_REPORT_ON_ARRAY_COPY_FROMARR
+#define F2PY_REPORT_ON_ARRAY_COPY_FROMANY
+#endif
+
+
+/************************* array_from_obj *******************************/
+
+/*
+ * File: array_from_pyobj.c
+ *
+ * Description:
+ * ------------
+ * Provides array_from_pyobj function that returns a contigious array
+ * object with the given dimensions and required storage order, either
+ * in row-major (C) or column-major (Fortran) order. The function
+ * array_from_pyobj is very flexible about its Python object argument
+ * that can be any number, list, tuple, or array.
+ *
+ * array_from_pyobj is used in f2py generated Python extension
+ * modules.
+ *
+ * Author: Pearu Peterson <pearu@cens.ioc.ee>
+ * Created: 13-16 January 2002
+ * $Id: fortranobject.c,v 1.52 2005/07/11 07:44:20 pearu Exp $
+ */
+
+static int
+count_nonpos(const int rank,
+             const npy_intp *dims) {
+    int i=0,r=0;
+    while (i<rank) {
+        if (dims[i] <= 0) ++r;
+        ++i;
+    }
+    return r;
+}
+
+static int check_and_fix_dimensions(const PyArrayObject* arr,
+                                    const int rank,
+                                    npy_intp *dims);
+
+#ifdef DEBUG_COPY_ND_ARRAY
+void dump_dims(int rank, npy_intp* dims) {
+    int i;
+    printf("[");
+    for(i=0;i<rank;++i) {
+        printf("%3" NPY_INTP_FMT, dims[i]);
+    }
+    printf("]\n");
+}
+void dump_attrs(const PyArrayObject* arr) {
+    int rank = arr->nd;
+    npy_intp size = PyArray_Size((PyObject *)arr);
+    printf("\trank = %d, flags = %d, size = %" NPY_INTP_FMT  "\n",
+           rank,arr->flags,size);
+    printf("\tstrides = ");
+    dump_dims(rank,arr->strides);
+    printf("\tdimensions = ");
+    dump_dims(rank,arr->dimensions);
+}
+#endif
+
+#define SWAPTYPE(a,b,t) {t c; c = (a); (a) = (b); (b) = c; }
+
+static int swap_arrays(PyArrayObject* arr1, PyArrayObject* arr2) {
+    SWAPTYPE(arr1->data,arr2->data,char*);
+    SWAPTYPE(arr1->nd,arr2->nd,int);
+    SWAPTYPE(arr1->dimensions,arr2->dimensions,npy_intp*);
+    SWAPTYPE(arr1->strides,arr2->strides,npy_intp*);
+    SWAPTYPE(arr1->base,arr2->base,PyObject*);
+    SWAPTYPE(arr1->descr,arr2->descr,PyArray_Descr*);
+    SWAPTYPE(arr1->flags,arr2->flags,int);
+    /* SWAPTYPE(arr1->weakreflist,arr2->weakreflist,PyObject*); */
+    return 0;
+}
+
+#define ARRAY_ISCOMPATIBLE(arr,type_num)                                \
+    (  (PyArray_ISINTEGER(arr) && PyTypeNum_ISINTEGER(type_num))        \
+       ||(PyArray_ISFLOAT(arr) && PyTypeNum_ISFLOAT(type_num))          \
+       ||(PyArray_ISCOMPLEX(arr) && PyTypeNum_ISCOMPLEX(type_num))      \
+       ||(PyArray_ISBOOL(arr) && PyTypeNum_ISBOOL(type_num))            \
+       )
+
+extern
+PyArrayObject* array_from_pyobj(const int type_num,
+                                npy_intp *dims,
+                                const int rank,
+                                const int intent,
+                                PyObject *obj) {
+    /* Note about reference counting
+       -----------------------------
+       If the caller returns the array to Python, it must be done with
+       Py_BuildValue("N",arr).
+       Otherwise, if obj!=arr then the caller must call Py_DECREF(arr).
+
+       Note on intent(cache,out,..)
+       ---------------------
+       Don't expect correct data when returning intent(cache) array.
+
+    */
+    char mess[200];
+    PyArrayObject *arr = NULL;
+    PyArray_Descr *descr;
+    char typechar;
+    int elsize;
+
+    if ((intent & F2PY_INTENT_HIDE)
+        || ((intent & F2PY_INTENT_CACHE) && (obj==Py_None))
+        || ((intent & F2PY_OPTIONAL) && (obj==Py_None))
+        ) {
+        /* intent(cache), optional, intent(hide) */
+        if (count_nonpos(rank,dims)) {
+            int i;
+            sprintf(mess,"failed to create intent(cache|hide)|optional array"
+                    "-- must have defined dimensions but got (");
+            for(i=0;i<rank;++i)
+                sprintf(mess+strlen(mess),"%" NPY_INTP_FMT ",",dims[i]);
+            sprintf(mess+strlen(mess),")");
+            PyErr_SetString(PyExc_ValueError,mess);
+            return NULL;
+        }
+        arr = (PyArrayObject *)
+            PyArray_New(&PyArray_Type, rank, dims, type_num,
+                        NULL,NULL,0,
+                        !(intent&F2PY_INTENT_C),
+                        NULL);
+        if (arr==NULL) return NULL;
+        if (!(intent & F2PY_INTENT_CACHE))
+            PyArray_FILLWBYTE(arr, 0);
+        return arr;
+    }
+
+    descr = PyArray_DescrFromType(type_num);
+    elsize = descr->elsize;
+    typechar = descr->type;
+    Py_DECREF(descr);
+    if (PyArray_Check(obj)) {
+        arr = (PyArrayObject *)obj;
+
+        if (intent & F2PY_INTENT_CACHE) {
+            /* intent(cache) */
+            if (PyArray_ISONESEGMENT(obj)
+                && PyArray_ITEMSIZE((PyArrayObject *)obj)>=elsize) {
+                if (check_and_fix_dimensions((PyArrayObject *)obj,rank,dims)) {
+                    return NULL; /*XXX: set exception */
+                }
+                if (intent & F2PY_INTENT_OUT)
+                    Py_INCREF(obj);
+                return (PyArrayObject *)obj;
+            }
+            sprintf(mess,"failed to initialize intent(cache) array");
+            if (!PyArray_ISONESEGMENT(obj))
+                sprintf(mess+strlen(mess)," -- input must be in one segment");
+            if (PyArray_ITEMSIZE(arr)<elsize)
+                sprintf(mess+strlen(mess)," -- expected at least elsize=%d but got %d",
+                        elsize,PyArray_ITEMSIZE(arr)
+                        );
+            PyErr_SetString(PyExc_ValueError,mess);
+            return NULL;
+        }
+
+        /* here we have always intent(in) or intent(inout) or intent(inplace) */
+
+        if (check_and_fix_dimensions(arr,rank,dims)) {
+            return NULL; /*XXX: set exception */
+        }
+	/*
+	printf("intent alignement=%d\n", F2PY_GET_ALIGNMENT(intent));
+	printf("alignement check=%d\n", F2PY_CHECK_ALIGNMENT(arr, intent));
+	int i;
+	for (i=1;i<=16;i++)
+	  printf("i=%d isaligned=%d\n", i, ARRAY_ISALIGNED(arr, i));
+	*/
+        if ((! (intent & F2PY_INTENT_COPY))
+            && PyArray_ITEMSIZE(arr)==elsize
+            && ARRAY_ISCOMPATIBLE(arr,type_num)
+	    && F2PY_CHECK_ALIGNMENT(arr, intent)
+            ) {
+            if ((intent & F2PY_INTENT_C)?PyArray_ISCARRAY(arr):PyArray_ISFARRAY(arr)) {
+                if ((intent & F2PY_INTENT_OUT)) {
+                    Py_INCREF(arr);
+                }
+                /* Returning input array */
+                return arr;
+            }
+        }
+
+        if (intent & F2PY_INTENT_INOUT) {
+            sprintf(mess,"failed to initialize intent(inout) array");
+            if ((intent & F2PY_INTENT_C) && !PyArray_ISCARRAY(arr))
+                sprintf(mess+strlen(mess)," -- input not contiguous");
+            if (!(intent & F2PY_INTENT_C) && !PyArray_ISFARRAY(arr))
+                sprintf(mess+strlen(mess)," -- input not fortran contiguous");
+            if (PyArray_ITEMSIZE(arr)!=elsize)
+                sprintf(mess+strlen(mess)," -- expected elsize=%d but got %d",
+                        elsize,
+                        PyArray_ITEMSIZE(arr)
+                        );
+            if (!(ARRAY_ISCOMPATIBLE(arr,type_num)))
+                sprintf(mess+strlen(mess)," -- input '%c' not compatible to '%c'",
+                        arr->descr->type,typechar);
+	    if (!(F2PY_CHECK_ALIGNMENT(arr, intent)))
+	      sprintf(mess+strlen(mess)," -- input not %d-aligned", F2PY_GET_ALIGNMENT(intent));
+            PyErr_SetString(PyExc_ValueError,mess);
+            return NULL;
+        }
+
+        /* here we have always intent(in) or intent(inplace) */
+
+        {
+            PyArrayObject *retarr = (PyArrayObject *) \
+                PyArray_New(&PyArray_Type, arr->nd, arr->dimensions, type_num,
+                            NULL,NULL,0,
+                            !(intent&F2PY_INTENT_C),
+                            NULL);
+            if (retarr==NULL)
+                return NULL;
+            F2PY_REPORT_ON_ARRAY_COPY_FROMARR;
+            if (PyArray_CopyInto(retarr, arr)) {
+                Py_DECREF(retarr);
+                return NULL;
+            }
+            if (intent & F2PY_INTENT_INPLACE) {
+                if (swap_arrays(arr,retarr))
+                    return NULL; /* XXX: set exception */
+                Py_XDECREF(retarr);
+                if (intent & F2PY_INTENT_OUT)
+                    Py_INCREF(arr);
+            } else {
+                arr = retarr;
+            }
+        }
+        return arr;
+    }
+
+    if ((intent & F2PY_INTENT_INOUT) ||
+            (intent & F2PY_INTENT_INPLACE) ||
+            (intent & F2PY_INTENT_CACHE)) {
+        PyErr_SetString(PyExc_TypeError,
+                        "failed to initialize intent(inout|inplace|cache) "
+                        "array, input not an array");
+        return NULL;
+    }
+
+    {
+        F2PY_REPORT_ON_ARRAY_COPY_FROMANY;
+        arr = (PyArrayObject *) \
+            PyArray_FromAny(obj,PyArray_DescrFromType(type_num), 0,0,
+                            ((intent & F2PY_INTENT_C)?NPY_CARRAY:NPY_FARRAY) \
+                            | NPY_FORCECAST, NULL);
+        if (arr==NULL)
+            return NULL;
+        if (check_and_fix_dimensions(arr,rank,dims))
+            return NULL; /*XXX: set exception */
+        return arr;
+    }
+
+}
+
+/*****************************************/
+/* Helper functions for array_from_pyobj */
+/*****************************************/
+
+static
+int check_and_fix_dimensions(const PyArrayObject* arr,const int rank,npy_intp *dims) {
+    /*
+      This function fills in blanks (that are -1\'s) in dims list using
+      the dimensions from arr. It also checks that non-blank dims will
+      match with the corresponding values in arr dimensions.
+    */
+    const npy_intp arr_size = (arr->nd)?PyArray_Size((PyObject *)arr):1;
+#ifdef DEBUG_COPY_ND_ARRAY
+    dump_attrs(arr);
+    printf("check_and_fix_dimensions:init: dims=");
+    dump_dims(rank,dims);
+#endif
+    if (rank > arr->nd) { /* [1,2] -> [[1],[2]]; 1 -> [[1]]  */
+        npy_intp new_size = 1;
+        int free_axe = -1;
+        int i;
+        npy_intp d;
+        /* Fill dims where -1 or 0; check dimensions; calc new_size; */
+        for(i=0;i<arr->nd;++i) {
+            d = arr->dimensions[i];
+            if (dims[i] >= 0) {
+                if (d>1 && dims[i]!=d) {
+                    fprintf(stderr,"%d-th dimension must be fixed to %" NPY_INTP_FMT
+                            " but got %" NPY_INTP_FMT "\n",
+                            i,dims[i], d);
+                    return 1;
+                }
+                if (!dims[i]) dims[i] = 1;
+            } else {
+                dims[i] = d ? d : 1;
+            }
+            new_size *= dims[i];
+        }
+        for(i=arr->nd;i<rank;++i)
+            if (dims[i]>1) {
+                fprintf(stderr,"%d-th dimension must be %" NPY_INTP_FMT
+                        " but got 0 (not defined).\n",
+                        i,dims[i]);
+                return 1;
+            } else if (free_axe<0)
+                free_axe = i;
+            else
+                dims[i] = 1;
+        if (free_axe>=0) {
+            dims[free_axe] = arr_size/new_size;
+            new_size *= dims[free_axe];
+        }
+        if (new_size != arr_size) {
+            fprintf(stderr,"unexpected array size: new_size=%" NPY_INTP_FMT
+                    ", got array with arr_size=%" NPY_INTP_FMT " (maybe too many free"
+                    " indices)\n", new_size,arr_size);
+            return 1;
+        }
+    } else if (rank==arr->nd) {
+        npy_intp new_size = 1;
+        int i;
+        npy_intp d;
+        for (i=0; i<rank; ++i) {
+	    d = arr->dimensions[i];
+            if (dims[i]>=0) {
+                if (d > 1 && d!=dims[i]) {
+                    fprintf(stderr,"%d-th dimension must be fixed to %" NPY_INTP_FMT
+                            " but got %" NPY_INTP_FMT "\n",
+                            i,dims[i],d);
+                    return 1;
+                }
+                if (!dims[i]) dims[i] = 1;
+            } else dims[i] = d;
+            new_size *= dims[i];
+        }
+        if (new_size != arr_size) {
+            fprintf(stderr,"unexpected array size: new_size=%" NPY_INTP_FMT
+                    ", got array with arr_size=%" NPY_INTP_FMT "\n", new_size,arr_size);
+            return 1;
+        }
+    } else { /* [[1,2]] -> [[1],[2]] */
+        int i,j;
+        npy_intp d;
+        int effrank;
+        npy_intp size;
+        for (i=0,effrank=0;i<arr->nd;++i)
+            if (arr->dimensions[i]>1) ++effrank;
+        if (dims[rank-1]>=0)
+            if (effrank>rank) {
+                fprintf(stderr,"too many axes: %d (effrank=%d), expected rank=%d\n",
+                        arr->nd,effrank,rank);
+                return 1;
+            }
+
+        for (i=0,j=0;i<rank;++i) {
+            while (j<arr->nd && arr->dimensions[j]<2) ++j;
+            if (j>=arr->nd) d = 1;
+            else d = arr->dimensions[j++];
+            if (dims[i]>=0) {
+                if (d>1 && d!=dims[i]) {
+                    fprintf(stderr,"%d-th dimension must be fixed to %" NPY_INTP_FMT
+                            " but got %" NPY_INTP_FMT " (real index=%d)\n",
+                            i,dims[i],d,j-1);
+                    return 1;
+                }
+                if (!dims[i]) dims[i] = 1;
+            } else
+                dims[i] = d;
+        }
+
+        for (i=rank;i<arr->nd;++i) { /* [[1,2],[3,4]] -> [1,2,3,4] */
+            while (j<arr->nd && arr->dimensions[j]<2) ++j;
+            if (j>=arr->nd) d = 1;
+            else d = arr->dimensions[j++];
+            dims[rank-1] *= d;
+        }
+        for (i=0,size=1;i<rank;++i) size *= dims[i];
+        if (size != arr_size) {
+            fprintf(stderr,"unexpected array size: size=%" NPY_INTP_FMT ", arr_size=%" NPY_INTP_FMT
+                    ", rank=%d, effrank=%d, arr.nd=%d, dims=[",
+                    size,arr_size,rank,effrank,arr->nd);
+            for (i=0;i<rank;++i) fprintf(stderr," %" NPY_INTP_FMT,dims[i]);
+            fprintf(stderr," ], arr.dims=[");
+            for (i=0;i<arr->nd;++i) fprintf(stderr," %" NPY_INTP_FMT,arr->dimensions[i]);
+            fprintf(stderr," ]\n");
+            return 1;
+        }
+    }
+#ifdef DEBUG_COPY_ND_ARRAY
+    printf("check_and_fix_dimensions:end: dims=");
+    dump_dims(rank,dims);
+#endif
+    return 0;
+}
+
+/* End of file: array_from_pyobj.c */
+
+/************************* copy_ND_array *******************************/
+
+extern
+int copy_ND_array(const PyArrayObject *arr, PyArrayObject *out)
+{
+    F2PY_REPORT_ON_ARRAY_COPY_FROMARR;
+    return PyArray_CopyInto(out, (PyArrayObject *)arr);
+}
+
+/*********************************************/
+/* Compatibility functions for Python >= 3.0 */
+/*********************************************/
+
+#if PY_VERSION_HEX >= 0x03000000
+
+PyObject *
+F2PyCapsule_FromVoidPtr(void *ptr, void (*dtor)(PyObject *))
+{
+    PyObject *ret = PyCapsule_New(ptr, NULL, dtor);
+    if (ret == NULL) {
+        PyErr_Clear();
+    }
+    return ret;
+}
+
+void *
+F2PyCapsule_AsVoidPtr(PyObject *obj)
+{
+    void *ret = PyCapsule_GetPointer(obj, NULL);
+    if (ret == NULL) {
+        PyErr_Clear();
+    }
+    return ret;
+}
+
+int
+F2PyCapsule_Check(PyObject *ptr)
+{
+    return PyCapsule_CheckExact(ptr);
+}
+
+#else
+
+PyObject *
+F2PyCapsule_FromVoidPtr(void *ptr, void (*dtor)(void *))
+{
+    return PyCObject_FromVoidPtr(ptr, dtor);
+}
+
+void *
+F2PyCapsule_AsVoidPtr(PyObject *ptr)
+{
+    return PyCObject_AsVoidPtr(ptr);
+}
+
+int
+F2PyCapsule_Check(PyObject *ptr)
+{
+    return PyCObject_Check(ptr);
+}
+
+#endif
+
+
+#ifdef __cplusplus
+}
+#endif
+/************************* EOF fortranobject.c *******************************/