Mercurial > hg > vamp-build-and-test
diff DEPENDENCIES/mingw32/Python27/Lib/site-packages/numpy/doc/subclassing.py @ 87:2a2c65a20a8b
Add Python libs and headers
author | Chris Cannam |
---|---|
date | Wed, 25 Feb 2015 14:05:22 +0000 |
parents | |
children |
line wrap: on
line diff
--- /dev/null Thu Jan 01 00:00:00 1970 +0000 +++ b/DEPENDENCIES/mingw32/Python27/Lib/site-packages/numpy/doc/subclassing.py Wed Feb 25 14:05:22 2015 +0000 @@ -0,0 +1,560 @@ +""" +============================= +Subclassing ndarray in python +============================= + +Credits +------- + +This page is based with thanks on the wiki page on subclassing by Pierre +Gerard-Marchant - http://www.scipy.org/Subclasses. + +Introduction +------------ + +Subclassing ndarray is relatively simple, but it has some complications +compared to other Python objects. On this page we explain the machinery +that allows you to subclass ndarray, and the implications for +implementing a subclass. + +ndarrays and object creation +============================ + +Subclassing ndarray is complicated by the fact that new instances of +ndarray classes can come about in three different ways. These are: + +#. Explicit constructor call - as in ``MySubClass(params)``. This is + the usual route to Python instance creation. +#. View casting - casting an existing ndarray as a given subclass +#. New from template - creating a new instance from a template + instance. Examples include returning slices from a subclassed array, + creating return types from ufuncs, and copying arrays. See + :ref:`new-from-template` for more details + +The last two are characteristics of ndarrays - in order to support +things like array slicing. The complications of subclassing ndarray are +due to the mechanisms numpy has to support these latter two routes of +instance creation. + +.. _view-casting: + +View casting +------------ + +*View casting* is the standard ndarray mechanism by which you take an +ndarray of any subclass, and return a view of the array as another +(specified) subclass: + +>>> import numpy as np +>>> # create a completely useless ndarray subclass +>>> class C(np.ndarray): pass +>>> # create a standard ndarray +>>> arr = np.zeros((3,)) +>>> # take a view of it, as our useless subclass +>>> c_arr = arr.view(C) +>>> type(c_arr) +<class 'C'> + +.. _new-from-template: + +Creating new from template +-------------------------- + +New instances of an ndarray subclass can also come about by a very +similar mechanism to :ref:`view-casting`, when numpy finds it needs to +create a new instance from a template instance. The most obvious place +this has to happen is when you are taking slices of subclassed arrays. +For example: + +>>> v = c_arr[1:] +>>> type(v) # the view is of type 'C' +<class 'C'> +>>> v is c_arr # but it's a new instance +False + +The slice is a *view* onto the original ``c_arr`` data. So, when we +take a view from the ndarray, we return a new ndarray, of the same +class, that points to the data in the original. + +There are other points in the use of ndarrays where we need such views, +such as copying arrays (``c_arr.copy()``), creating ufunc output arrays +(see also :ref:`array-wrap`), and reducing methods (like +``c_arr.mean()``. + +Relationship of view casting and new-from-template +-------------------------------------------------- + +These paths both use the same machinery. We make the distinction here, +because they result in different input to your methods. Specifically, +:ref:`view-casting` means you have created a new instance of your array +type from any potential subclass of ndarray. :ref:`new-from-template` +means you have created a new instance of your class from a pre-existing +instance, allowing you - for example - to copy across attributes that +are particular to your subclass. + +Implications for subclassing +---------------------------- + +If we subclass ndarray, we need to deal not only with explicit +construction of our array type, but also :ref:`view-casting` or +:ref:`new-from-template`. Numpy has the machinery to do this, and this +machinery that makes subclassing slightly non-standard. + +There are two aspects to the machinery that ndarray uses to support +views and new-from-template in subclasses. + +The first is the use of the ``ndarray.__new__`` method for the main work +of object initialization, rather then the more usual ``__init__`` +method. The second is the use of the ``__array_finalize__`` method to +allow subclasses to clean up after the creation of views and new +instances from templates. + +A brief Python primer on ``__new__`` and ``__init__`` +===================================================== + +``__new__`` is a standard Python method, and, if present, is called +before ``__init__`` when we create a class instance. See the `python +__new__ documentation +<http://docs.python.org/reference/datamodel.html#object.__new__>`_ for more detail. + +For example, consider the following Python code: + +.. testcode:: + + class C(object): + def __new__(cls, *args): + print 'Cls in __new__:', cls + print 'Args in __new__:', args + return object.__new__(cls, *args) + + def __init__(self, *args): + print 'type(self) in __init__:', type(self) + print 'Args in __init__:', args + +meaning that we get: + +>>> c = C('hello') +Cls in __new__: <class 'C'> +Args in __new__: ('hello',) +type(self) in __init__: <class 'C'> +Args in __init__: ('hello',) + +When we call ``C('hello')``, the ``__new__`` method gets its own class +as first argument, and the passed argument, which is the string +``'hello'``. After python calls ``__new__``, it usually (see below) +calls our ``__init__`` method, with the output of ``__new__`` as the +first argument (now a class instance), and the passed arguments +following. + +As you can see, the object can be initialized in the ``__new__`` +method or the ``__init__`` method, or both, and in fact ndarray does +not have an ``__init__`` method, because all the initialization is +done in the ``__new__`` method. + +Why use ``__new__`` rather than just the usual ``__init__``? Because +in some cases, as for ndarray, we want to be able to return an object +of some other class. Consider the following: + +.. testcode:: + + class D(C): + def __new__(cls, *args): + print 'D cls is:', cls + print 'D args in __new__:', args + return C.__new__(C, *args) + + def __init__(self, *args): + # we never get here + print 'In D __init__' + +meaning that: + +>>> obj = D('hello') +D cls is: <class 'D'> +D args in __new__: ('hello',) +Cls in __new__: <class 'C'> +Args in __new__: ('hello',) +>>> type(obj) +<class 'C'> + +The definition of ``C`` is the same as before, but for ``D``, the +``__new__`` method returns an instance of class ``C`` rather than +``D``. Note that the ``__init__`` method of ``D`` does not get +called. In general, when the ``__new__`` method returns an object of +class other than the class in which it is defined, the ``__init__`` +method of that class is not called. + +This is how subclasses of the ndarray class are able to return views +that preserve the class type. When taking a view, the standard +ndarray machinery creates the new ndarray object with something +like:: + + obj = ndarray.__new__(subtype, shape, ... + +where ``subdtype`` is the subclass. Thus the returned view is of the +same class as the subclass, rather than being of class ``ndarray``. + +That solves the problem of returning views of the same type, but now +we have a new problem. The machinery of ndarray can set the class +this way, in its standard methods for taking views, but the ndarray +``__new__`` method knows nothing of what we have done in our own +``__new__`` method in order to set attributes, and so on. (Aside - +why not call ``obj = subdtype.__new__(...`` then? Because we may not +have a ``__new__`` method with the same call signature). + +The role of ``__array_finalize__`` +================================== + +``__array_finalize__`` is the mechanism that numpy provides to allow +subclasses to handle the various ways that new instances get created. + +Remember that subclass instances can come about in these three ways: + +#. explicit constructor call (``obj = MySubClass(params)``). This will + call the usual sequence of ``MySubClass.__new__`` then (if it exists) + ``MySubClass.__init__``. +#. :ref:`view-casting` +#. :ref:`new-from-template` + +Our ``MySubClass.__new__`` method only gets called in the case of the +explicit constructor call, so we can't rely on ``MySubClass.__new__`` or +``MySubClass.__init__`` to deal with the view casting and +new-from-template. It turns out that ``MySubClass.__array_finalize__`` +*does* get called for all three methods of object creation, so this is +where our object creation housekeeping usually goes. + +* For the explicit constructor call, our subclass will need to create a + new ndarray instance of its own class. In practice this means that + we, the authors of the code, will need to make a call to + ``ndarray.__new__(MySubClass,...)``, or do view casting of an existing + array (see below) +* For view casting and new-from-template, the equivalent of + ``ndarray.__new__(MySubClass,...`` is called, at the C level. + +The arguments that ``__array_finalize__`` recieves differ for the three +methods of instance creation above. + +The following code allows us to look at the call sequences and arguments: + +.. testcode:: + + import numpy as np + + class C(np.ndarray): + def __new__(cls, *args, **kwargs): + print 'In __new__ with class %s' % cls + return np.ndarray.__new__(cls, *args, **kwargs) + + def __init__(self, *args, **kwargs): + # in practice you probably will not need or want an __init__ + # method for your subclass + print 'In __init__ with class %s' % self.__class__ + + def __array_finalize__(self, obj): + print 'In array_finalize:' + print ' self type is %s' % type(self) + print ' obj type is %s' % type(obj) + + +Now: + +>>> # Explicit constructor +>>> c = C((10,)) +In __new__ with class <class 'C'> +In array_finalize: + self type is <class 'C'> + obj type is <type 'NoneType'> +In __init__ with class <class 'C'> +>>> # View casting +>>> a = np.arange(10) +>>> cast_a = a.view(C) +In array_finalize: + self type is <class 'C'> + obj type is <type 'numpy.ndarray'> +>>> # Slicing (example of new-from-template) +>>> cv = c[:1] +In array_finalize: + self type is <class 'C'> + obj type is <class 'C'> + +The signature of ``__array_finalize__`` is:: + + def __array_finalize__(self, obj): + +``ndarray.__new__`` passes ``__array_finalize__`` the new object, of our +own class (``self``) as well as the object from which the view has been +taken (``obj``). As you can see from the output above, the ``self`` is +always a newly created instance of our subclass, and the type of ``obj`` +differs for the three instance creation methods: + +* When called from the explicit constructor, ``obj`` is ``None`` +* When called from view casting, ``obj`` can be an instance of any + subclass of ndarray, including our own. +* When called in new-from-template, ``obj`` is another instance of our + own subclass, that we might use to update the new ``self`` instance. + +Because ``__array_finalize__`` is the only method that always sees new +instances being created, it is the sensible place to fill in instance +defaults for new object attributes, among other tasks. + +This may be clearer with an example. + +Simple example - adding an extra attribute to ndarray +----------------------------------------------------- + +.. testcode:: + + import numpy as np + + class InfoArray(np.ndarray): + + def __new__(subtype, shape, dtype=float, buffer=None, offset=0, + strides=None, order=None, info=None): + # Create the ndarray instance of our type, given the usual + # ndarray input arguments. This will call the standard + # ndarray constructor, but return an object of our type. + # It also triggers a call to InfoArray.__array_finalize__ + obj = np.ndarray.__new__(subtype, shape, dtype, buffer, offset, strides, + order) + # set the new 'info' attribute to the value passed + obj.info = info + # Finally, we must return the newly created object: + return obj + + def __array_finalize__(self, obj): + # ``self`` is a new object resulting from + # ndarray.__new__(InfoArray, ...), therefore it only has + # attributes that the ndarray.__new__ constructor gave it - + # i.e. those of a standard ndarray. + # + # We could have got to the ndarray.__new__ call in 3 ways: + # From an explicit constructor - e.g. InfoArray(): + # obj is None + # (we're in the middle of the InfoArray.__new__ + # constructor, and self.info will be set when we return to + # InfoArray.__new__) + if obj is None: return + # From view casting - e.g arr.view(InfoArray): + # obj is arr + # (type(obj) can be InfoArray) + # From new-from-template - e.g infoarr[:3] + # type(obj) is InfoArray + # + # Note that it is here, rather than in the __new__ method, + # that we set the default value for 'info', because this + # method sees all creation of default objects - with the + # InfoArray.__new__ constructor, but also with + # arr.view(InfoArray). + self.info = getattr(obj, 'info', None) + # We do not need to return anything + + +Using the object looks like this: + + >>> obj = InfoArray(shape=(3,)) # explicit constructor + >>> type(obj) + <class 'InfoArray'> + >>> obj.info is None + True + >>> obj = InfoArray(shape=(3,), info='information') + >>> obj.info + 'information' + >>> v = obj[1:] # new-from-template - here - slicing + >>> type(v) + <class 'InfoArray'> + >>> v.info + 'information' + >>> arr = np.arange(10) + >>> cast_arr = arr.view(InfoArray) # view casting + >>> type(cast_arr) + <class 'InfoArray'> + >>> cast_arr.info is None + True + +This class isn't very useful, because it has the same constructor as the +bare ndarray object, including passing in buffers and shapes and so on. +We would probably prefer the constructor to be able to take an already +formed ndarray from the usual numpy calls to ``np.array`` and return an +object. + +Slightly more realistic example - attribute added to existing array +------------------------------------------------------------------- + +Here is a class that takes a standard ndarray that already exists, casts +as our type, and adds an extra attribute. + +.. testcode:: + + import numpy as np + + class RealisticInfoArray(np.ndarray): + + def __new__(cls, input_array, info=None): + # Input array is an already formed ndarray instance + # We first cast to be our class type + obj = np.asarray(input_array).view(cls) + # add the new attribute to the created instance + obj.info = info + # Finally, we must return the newly created object: + return obj + + def __array_finalize__(self, obj): + # see InfoArray.__array_finalize__ for comments + if obj is None: return + self.info = getattr(obj, 'info', None) + + +So: + + >>> arr = np.arange(5) + >>> obj = RealisticInfoArray(arr, info='information') + >>> type(obj) + <class 'RealisticInfoArray'> + >>> obj.info + 'information' + >>> v = obj[1:] + >>> type(v) + <class 'RealisticInfoArray'> + >>> v.info + 'information' + +.. _array-wrap: + +``__array_wrap__`` for ufuncs +------------------------------------------------------- + +``__array_wrap__`` gets called at the end of numpy ufuncs and other numpy +functions, to allow a subclass to set the type of the return value +and update attributes and metadata. Let's show how this works with an example. +First we make the same subclass as above, but with a different name and +some print statements: + +.. testcode:: + + import numpy as np + + class MySubClass(np.ndarray): + + def __new__(cls, input_array, info=None): + obj = np.asarray(input_array).view(cls) + obj.info = info + return obj + + def __array_finalize__(self, obj): + print 'In __array_finalize__:' + print ' self is %s' % repr(self) + print ' obj is %s' % repr(obj) + if obj is None: return + self.info = getattr(obj, 'info', None) + + def __array_wrap__(self, out_arr, context=None): + print 'In __array_wrap__:' + print ' self is %s' % repr(self) + print ' arr is %s' % repr(out_arr) + # then just call the parent + return np.ndarray.__array_wrap__(self, out_arr, context) + +We run a ufunc on an instance of our new array: + +>>> obj = MySubClass(np.arange(5), info='spam') +In __array_finalize__: + self is MySubClass([0, 1, 2, 3, 4]) + obj is array([0, 1, 2, 3, 4]) +>>> arr2 = np.arange(5)+1 +>>> ret = np.add(arr2, obj) +In __array_wrap__: + self is MySubClass([0, 1, 2, 3, 4]) + arr is array([1, 3, 5, 7, 9]) +In __array_finalize__: + self is MySubClass([1, 3, 5, 7, 9]) + obj is MySubClass([0, 1, 2, 3, 4]) +>>> ret +MySubClass([1, 3, 5, 7, 9]) +>>> ret.info +'spam' + +Note that the ufunc (``np.add``) has called the ``__array_wrap__`` method of the +input with the highest ``__array_priority__`` value, in this case +``MySubClass.__array_wrap__``, with arguments ``self`` as ``obj``, and +``out_arr`` as the (ndarray) result of the addition. In turn, the +default ``__array_wrap__`` (``ndarray.__array_wrap__``) has cast the +result to class ``MySubClass``, and called ``__array_finalize__`` - +hence the copying of the ``info`` attribute. This has all happened at the C level. + +But, we could do anything we wanted: + +.. testcode:: + + class SillySubClass(np.ndarray): + + def __array_wrap__(self, arr, context=None): + return 'I lost your data' + +>>> arr1 = np.arange(5) +>>> obj = arr1.view(SillySubClass) +>>> arr2 = np.arange(5) +>>> ret = np.multiply(obj, arr2) +>>> ret +'I lost your data' + +So, by defining a specific ``__array_wrap__`` method for our subclass, +we can tweak the output from ufuncs. The ``__array_wrap__`` method +requires ``self``, then an argument - which is the result of the ufunc - +and an optional parameter *context*. This parameter is returned by some +ufuncs as a 3-element tuple: (name of the ufunc, argument of the ufunc, +domain of the ufunc). ``__array_wrap__`` should return an instance of +its containing class. See the masked array subclass for an +implementation. + +In addition to ``__array_wrap__``, which is called on the way out of the +ufunc, there is also an ``__array_prepare__`` method which is called on +the way into the ufunc, after the output arrays are created but before any +computation has been performed. The default implementation does nothing +but pass through the array. ``__array_prepare__`` should not attempt to +access the array data or resize the array, it is intended for setting the +output array type, updating attributes and metadata, and performing any +checks based on the input that may be desired before computation begins. +Like ``__array_wrap__``, ``__array_prepare__`` must return an ndarray or +subclass thereof or raise an error. + +Extra gotchas - custom ``__del__`` methods and ndarray.base +----------------------------------------------------------- + +One of the problems that ndarray solves is keeping track of memory +ownership of ndarrays and their views. Consider the case where we have +created an ndarray, ``arr`` and have taken a slice with ``v = arr[1:]``. +The two objects are looking at the same memory. Numpy keeps track of +where the data came from for a particular array or view, with the +``base`` attribute: + +>>> # A normal ndarray, that owns its own data +>>> arr = np.zeros((4,)) +>>> # In this case, base is None +>>> arr.base is None +True +>>> # We take a view +>>> v1 = arr[1:] +>>> # base now points to the array that it derived from +>>> v1.base is arr +True +>>> # Take a view of a view +>>> v2 = v1[1:] +>>> # base points to the view it derived from +>>> v2.base is v1 +True + +In general, if the array owns its own memory, as for ``arr`` in this +case, then ``arr.base`` will be None - there are some exceptions to this +- see the numpy book for more details. + +The ``base`` attribute is useful in being able to tell whether we have +a view or the original array. This in turn can be useful if we need +to know whether or not to do some specific cleanup when the subclassed +array is deleted. For example, we may only want to do the cleanup if +the original array is deleted, but not the views. For an example of +how this can work, have a look at the ``memmap`` class in +``numpy.core``. + + +""" +from __future__ import division, absolute_import, print_function