diff DEPENDENCIES/generic/include/boost/math/special_functions/expm1.hpp @ 16:2665513ce2d3

Add boost headers
author Chris Cannam
date Tue, 05 Aug 2014 11:11:38 +0100
parents
children
line wrap: on
line diff
--- /dev/null	Thu Jan 01 00:00:00 1970 +0000
+++ b/DEPENDENCIES/generic/include/boost/math/special_functions/expm1.hpp	Tue Aug 05 11:11:38 2014 +0100
@@ -0,0 +1,343 @@
+//  (C) Copyright John Maddock 2006.
+//  Use, modification and distribution are subject to the
+//  Boost Software License, Version 1.0. (See accompanying file
+//  LICENSE_1_0.txt or copy at http://www.boost.org/LICENSE_1_0.txt)
+
+#ifndef BOOST_MATH_EXPM1_INCLUDED
+#define BOOST_MATH_EXPM1_INCLUDED
+
+#ifdef _MSC_VER
+#pragma once
+#endif
+
+#include <boost/config/no_tr1/cmath.hpp>
+#include <math.h> // platform's ::expm1
+#include <boost/limits.hpp>
+#include <boost/math/tools/config.hpp>
+#include <boost/math/tools/series.hpp>
+#include <boost/math/tools/precision.hpp>
+#include <boost/math/tools/big_constant.hpp>
+#include <boost/math/policies/error_handling.hpp>
+#include <boost/math/tools/rational.hpp>
+#include <boost/math/special_functions/math_fwd.hpp>
+#include <boost/mpl/less_equal.hpp>
+
+#ifndef BOOST_NO_LIMITS_COMPILE_TIME_CONSTANTS
+#  include <boost/static_assert.hpp>
+#else
+#  include <boost/assert.hpp>
+#endif
+
+namespace boost{ namespace math{
+
+namespace detail
+{
+  // Functor expm1_series returns the next term in the Taylor series
+  // x^k / k!
+  // each time that operator() is invoked.
+  //
+  template <class T>
+  struct expm1_series
+  {
+     typedef T result_type;
+
+     expm1_series(T x)
+        : k(0), m_x(x), m_term(1) {}
+
+     T operator()()
+     {
+        ++k;
+        m_term *= m_x;
+        m_term /= k;
+        return m_term;
+     }
+
+     int count()const
+     {
+        return k;
+     }
+
+  private:
+     int k;
+     const T m_x;
+     T m_term;
+     expm1_series(const expm1_series&);
+     expm1_series& operator=(const expm1_series&);
+  };
+
+template <class T, class Policy, class tag>
+struct expm1_initializer
+{
+   struct init
+   {
+      init()
+      {
+         do_init(tag());
+      }
+      template <int N>
+      static void do_init(const mpl::int_<N>&){}
+      static void do_init(const mpl::int_<64>&)
+      {
+         expm1(T(0.5));
+      }
+      static void do_init(const mpl::int_<113>&)
+      {
+         expm1(T(0.5));
+      }
+      void force_instantiate()const{}
+   };
+   static const init initializer;
+   static void force_instantiate()
+   {
+      initializer.force_instantiate();
+   }
+};
+
+template <class T, class Policy, class tag>
+const typename expm1_initializer<T, Policy, tag>::init expm1_initializer<T, Policy, tag>::initializer;
+
+//
+// Algorithm expm1 is part of C99, but is not yet provided by many compilers.
+//
+// This version uses a Taylor series expansion for 0.5 > |x| > epsilon.
+//
+template <class T, class Policy>
+T expm1_imp(T x, const mpl::int_<0>&, const Policy& pol)
+{
+   BOOST_MATH_STD_USING
+
+   T a = fabs(x);
+   if(a > T(0.5f))
+   {
+      if(a >= tools::log_max_value<T>())
+      {
+         if(x > 0)
+            return policies::raise_overflow_error<T>("boost::math::expm1<%1%>(%1%)", 0, pol);
+         return -1;
+      }
+      return exp(x) - T(1);
+   }
+   if(a < tools::epsilon<T>())
+      return x;
+   detail::expm1_series<T> s(x);
+   boost::uintmax_t max_iter = policies::get_max_series_iterations<Policy>();
+#if !BOOST_WORKAROUND(__BORLANDC__, BOOST_TESTED_AT(0x582)) && !BOOST_WORKAROUND(__EDG_VERSION__, <= 245)
+   T result = tools::sum_series(s, policies::get_epsilon<T, Policy>(), max_iter);
+#else
+   T zero = 0;
+   T result = tools::sum_series(s, policies::get_epsilon<T, Policy>(), max_iter, zero);
+#endif
+   policies::check_series_iterations<T>("boost::math::expm1<%1%>(%1%)", max_iter, pol);
+   return result;
+}
+
+template <class T, class P>
+T expm1_imp(T x, const mpl::int_<53>&, const P& pol)
+{
+   BOOST_MATH_STD_USING
+
+   T a = fabs(x);
+   if(a > T(0.5L))
+   {
+      if(a >= tools::log_max_value<T>())
+      {
+         if(x > 0)
+            return policies::raise_overflow_error<T>("boost::math::expm1<%1%>(%1%)", 0, pol);
+         return -1;
+      }
+      return exp(x) - T(1);
+   }
+   if(a < tools::epsilon<T>())
+      return x;
+
+   static const float Y = 0.10281276702880859e1f;
+   static const T n[] = { static_cast<T>(-0.28127670288085937e-1), static_cast<T>(0.51278186299064534e0), static_cast<T>(-0.6310029069350198e-1), static_cast<T>(0.11638457975729296e-1), static_cast<T>(-0.52143390687521003e-3), static_cast<T>(0.21491399776965688e-4) };
+   static const T d[] = { 1, static_cast<T>(-0.45442309511354755e0), static_cast<T>(0.90850389570911714e-1), static_cast<T>(-0.10088963629815502e-1), static_cast<T>(0.63003407478692265e-3), static_cast<T>(-0.17976570003654402e-4) };
+
+   T result = x * Y + x * tools::evaluate_polynomial(n, x) / tools::evaluate_polynomial(d, x);
+   return result;
+}
+
+template <class T, class P>
+T expm1_imp(T x, const mpl::int_<64>&, const P& pol)
+{
+   BOOST_MATH_STD_USING
+
+   T a = fabs(x);
+   if(a > T(0.5L))
+   {
+      if(a >= tools::log_max_value<T>())
+      {
+         if(x > 0)
+            return policies::raise_overflow_error<T>("boost::math::expm1<%1%>(%1%)", 0, pol);
+         return -1;
+      }
+      return exp(x) - T(1);
+   }
+   if(a < tools::epsilon<T>())
+      return x;
+
+   static const float Y = 0.10281276702880859375e1f;
+   static const T n[] = { 
+      BOOST_MATH_BIG_CONSTANT(T, 64, -0.281276702880859375e-1), 
+       BOOST_MATH_BIG_CONSTANT(T, 64, 0.512980290285154286358e0), 
+       BOOST_MATH_BIG_CONSTANT(T, 64, -0.667758794592881019644e-1),
+       BOOST_MATH_BIG_CONSTANT(T, 64, 0.131432469658444745835e-1),
+       BOOST_MATH_BIG_CONSTANT(T, 64, -0.72303795326880286965e-3),
+       BOOST_MATH_BIG_CONSTANT(T, 64, 0.447441185192951335042e-4),
+       BOOST_MATH_BIG_CONSTANT(T, 64, -0.714539134024984593011e-6)
+   };
+   static const T d[] = { 
+      BOOST_MATH_BIG_CONSTANT(T, 64, 1.0),
+      BOOST_MATH_BIG_CONSTANT(T, 64, -0.461477618025562520389e0),
+      BOOST_MATH_BIG_CONSTANT(T, 64, 0.961237488025708540713e-1),
+      BOOST_MATH_BIG_CONSTANT(T, 64, -0.116483957658204450739e-1),
+      BOOST_MATH_BIG_CONSTANT(T, 64, 0.873308008461557544458e-3),
+      BOOST_MATH_BIG_CONSTANT(T, 64, -0.387922804997682392562e-4),
+      BOOST_MATH_BIG_CONSTANT(T, 64, 0.807473180049193557294e-6)
+   };
+
+   T result = x * Y + x * tools::evaluate_polynomial(n, x) / tools::evaluate_polynomial(d, x);
+   return result;
+}
+
+template <class T, class P>
+T expm1_imp(T x, const mpl::int_<113>&, const P& pol)
+{
+   BOOST_MATH_STD_USING
+
+   T a = fabs(x);
+   if(a > T(0.5L))
+   {
+      if(a >= tools::log_max_value<T>())
+      {
+         if(x > 0)
+            return policies::raise_overflow_error<T>("boost::math::expm1<%1%>(%1%)", 0, pol);
+         return -1;
+      }
+      return exp(x) - T(1);
+   }
+   if(a < tools::epsilon<T>())
+      return x;
+
+   static const float Y = 0.10281276702880859375e1f;
+   static const T n[] = { 
+      BOOST_MATH_BIG_CONSTANT(T, 113, -0.28127670288085937499999999999999999854e-1),
+      BOOST_MATH_BIG_CONSTANT(T, 113, 0.51278156911210477556524452177540792214e0),
+      BOOST_MATH_BIG_CONSTANT(T, 113, -0.63263178520747096729500254678819588223e-1),
+      BOOST_MATH_BIG_CONSTANT(T, 113, 0.14703285606874250425508446801230572252e-1),
+      BOOST_MATH_BIG_CONSTANT(T, 113, -0.8675686051689527802425310407898459386e-3),
+      BOOST_MATH_BIG_CONSTANT(T, 113, 0.88126359618291165384647080266133492399e-4),
+      BOOST_MATH_BIG_CONSTANT(T, 113, -0.25963087867706310844432390015463138953e-5),
+      BOOST_MATH_BIG_CONSTANT(T, 113, 0.14226691087800461778631773363204081194e-6),
+      BOOST_MATH_BIG_CONSTANT(T, 113, -0.15995603306536496772374181066765665596e-8),
+      BOOST_MATH_BIG_CONSTANT(T, 113, 0.45261820069007790520447958280473183582e-10)
+   };
+   static const T d[] = { 
+      BOOST_MATH_BIG_CONSTANT(T, 113, 1.0),
+      BOOST_MATH_BIG_CONSTANT(T, 113, -0.45441264709074310514348137469214538853e0),
+      BOOST_MATH_BIG_CONSTANT(T, 113, 0.96827131936192217313133611655555298106e-1),
+      BOOST_MATH_BIG_CONSTANT(T, 113, -0.12745248725908178612540554584374876219e-1),
+      BOOST_MATH_BIG_CONSTANT(T, 113, 0.11473613871583259821612766907781095472e-2),
+      BOOST_MATH_BIG_CONSTANT(T, 113, -0.73704168477258911962046591907690764416e-4),
+      BOOST_MATH_BIG_CONSTANT(T, 113, 0.34087499397791555759285503797256103259e-5),
+      BOOST_MATH_BIG_CONSTANT(T, 113, -0.11114024704296196166272091230695179724e-6),
+      BOOST_MATH_BIG_CONSTANT(T, 113, 0.23987051614110848595909588343223896577e-8),
+      BOOST_MATH_BIG_CONSTANT(T, 113, -0.29477341859111589208776402638429026517e-10),
+      BOOST_MATH_BIG_CONSTANT(T, 113, 0.13222065991022301420255904060628100924e-12)
+   };
+
+   T result = x * Y + x * tools::evaluate_polynomial(n, x) / tools::evaluate_polynomial(d, x);
+   return result;
+}
+
+} // namespace detail
+
+template <class T, class Policy>
+inline typename tools::promote_args<T>::type expm1(T x, const Policy& /* pol */)
+{
+   typedef typename tools::promote_args<T>::type result_type;
+   typedef typename policies::evaluation<result_type, Policy>::type value_type;
+   typedef typename policies::precision<result_type, Policy>::type precision_type;
+   typedef typename policies::normalise<
+      Policy, 
+      policies::promote_float<false>, 
+      policies::promote_double<false>, 
+      policies::discrete_quantile<>,
+      policies::assert_undefined<> >::type forwarding_policy;
+
+   typedef typename mpl::if_c<
+      ::std::numeric_limits<result_type>::is_specialized == 0,
+      mpl::int_<0>,  // no numeric_limits, use generic solution
+      typename mpl::if_<
+         typename mpl::less_equal<precision_type, mpl::int_<53> >::type,
+         mpl::int_<53>,  // double
+         typename mpl::if_<
+            typename mpl::less_equal<precision_type, mpl::int_<64> >::type,
+            mpl::int_<64>, // 80-bit long double
+            typename mpl::if_<
+               typename mpl::less_equal<precision_type, mpl::int_<113> >::type,
+               mpl::int_<113>, // 128-bit long double
+               mpl::int_<0> // too many bits, use generic version.
+            >::type
+         >::type
+      >::type
+   >::type tag_type;
+
+   detail::expm1_initializer<value_type, forwarding_policy, tag_type>::force_instantiate();
+   
+   return policies::checked_narrowing_cast<result_type, forwarding_policy>(detail::expm1_imp(
+      static_cast<value_type>(x),
+      tag_type(), forwarding_policy()), "boost::math::expm1<%1%>(%1%)");
+}
+
+#ifdef expm1
+#  ifndef BOOST_HAS_expm1
+#     define BOOST_HAS_expm1
+#  endif
+#  undef expm1
+#endif
+
+#if defined(BOOST_HAS_EXPM1) && !(defined(__osf__) && defined(__DECCXX_VER))
+#  ifdef BOOST_MATH_USE_C99
+inline float expm1(float x, const policies::policy<>&){ return ::expm1f(x); }
+#     ifndef BOOST_MATH_NO_LONG_DOUBLE_MATH_FUNCTIONS
+inline long double expm1(long double x, const policies::policy<>&){ return ::expm1l(x); }
+#     endif
+#  else
+inline float expm1(float x, const policies::policy<>&){ return static_cast<float>(::expm1(x)); }
+#  endif
+inline double expm1(double x, const policies::policy<>&){ return ::expm1(x); }
+#endif
+
+template <class T>
+inline typename tools::promote_args<T>::type expm1(T x)
+{
+   return expm1(x, policies::policy<>());
+}
+
+#if BOOST_WORKAROUND(__BORLANDC__, BOOST_TESTED_AT(0x564))
+inline float expm1(float z)
+{
+   return expm1<float>(z);
+}
+inline double expm1(double z)
+{
+   return expm1<double>(z);
+}
+#ifndef BOOST_MATH_NO_LONG_DOUBLE_MATH_FUNCTIONS
+inline long double expm1(long double z)
+{
+   return expm1<long double>(z);
+}
+#endif
+#endif
+
+} // namespace math
+} // namespace boost
+
+#endif // BOOST_MATH_HYPOT_INCLUDED
+
+
+
+