Mercurial > hg > vamp-build-and-test
diff DEPENDENCIES/generic/include/boost/math/distributions/fisher_f.hpp @ 16:2665513ce2d3
Add boost headers
author | Chris Cannam |
---|---|
date | Tue, 05 Aug 2014 11:11:38 +0100 |
parents | |
children |
line wrap: on
line diff
--- /dev/null Thu Jan 01 00:00:00 1970 +0000 +++ b/DEPENDENCIES/generic/include/boost/math/distributions/fisher_f.hpp Tue Aug 05 11:11:38 2014 +0100 @@ -0,0 +1,387 @@ +// Copyright John Maddock 2006. + +// Use, modification and distribution are subject to the +// Boost Software License, Version 1.0. +// (See accompanying file LICENSE_1_0.txt +// or copy at http://www.boost.org/LICENSE_1_0.txt) + +#ifndef BOOST_MATH_DISTRIBUTIONS_FISHER_F_HPP +#define BOOST_MATH_DISTRIBUTIONS_FISHER_F_HPP + +#include <boost/math/distributions/fwd.hpp> +#include <boost/math/special_functions/beta.hpp> // for incomplete beta. +#include <boost/math/distributions/complement.hpp> // complements +#include <boost/math/distributions/detail/common_error_handling.hpp> // error checks +#include <boost/math/special_functions/fpclassify.hpp> + +#include <utility> + +namespace boost{ namespace math{ + +template <class RealType = double, class Policy = policies::policy<> > +class fisher_f_distribution +{ +public: + typedef RealType value_type; + typedef Policy policy_type; + + fisher_f_distribution(const RealType& i, const RealType& j) : m_df1(i), m_df2(j) + { + static const char* function = "fisher_f_distribution<%1%>::fisher_f_distribution"; + RealType result; + detail::check_df( + function, m_df1, &result, Policy()); + detail::check_df( + function, m_df2, &result, Policy()); + } // fisher_f_distribution + + RealType degrees_of_freedom1()const + { + return m_df1; + } + RealType degrees_of_freedom2()const + { + return m_df2; + } + +private: + // + // Data members: + // + RealType m_df1; // degrees of freedom are a real number. + RealType m_df2; // degrees of freedom are a real number. +}; + +typedef fisher_f_distribution<double> fisher_f; + +template <class RealType, class Policy> +inline const std::pair<RealType, RealType> range(const fisher_f_distribution<RealType, Policy>& /*dist*/) +{ // Range of permissible values for random variable x. + using boost::math::tools::max_value; + return std::pair<RealType, RealType>(static_cast<RealType>(0), max_value<RealType>()); +} + +template <class RealType, class Policy> +inline const std::pair<RealType, RealType> support(const fisher_f_distribution<RealType, Policy>& /*dist*/) +{ // Range of supported values for random variable x. + // This is range where cdf rises from 0 to 1, and outside it, the pdf is zero. + using boost::math::tools::max_value; + return std::pair<RealType, RealType>(static_cast<RealType>(0), max_value<RealType>()); +} + +template <class RealType, class Policy> +RealType pdf(const fisher_f_distribution<RealType, Policy>& dist, const RealType& x) +{ + BOOST_MATH_STD_USING // for ADL of std functions + RealType df1 = dist.degrees_of_freedom1(); + RealType df2 = dist.degrees_of_freedom2(); + // Error check: + RealType error_result = 0; + static const char* function = "boost::math::pdf(fisher_f_distribution<%1%> const&, %1%)"; + if(false == detail::check_df( + function, df1, &error_result, Policy()) + && detail::check_df( + function, df2, &error_result, Policy())) + return error_result; + + if((x < 0) || !(boost::math::isfinite)(x)) + { + return policies::raise_domain_error<RealType>( + function, "Random variable parameter was %1%, but must be > 0 !", x, Policy()); + } + + if(x == 0) + { + // special cases: + if(df1 < 2) + return policies::raise_overflow_error<RealType>( + function, 0, Policy()); + else if(df1 == 2) + return 1; + else + return 0; + } + + // + // You reach this formula by direct differentiation of the + // cdf expressed in terms of the incomplete beta. + // + // There are two versions so we don't pass a value of z + // that is very close to 1 to ibeta_derivative: for some values + // of df1 and df2, all the change takes place in this area. + // + RealType v1x = df1 * x; + RealType result; + if(v1x > df2) + { + result = (df2 * df1) / ((df2 + v1x) * (df2 + v1x)); + result *= ibeta_derivative(df2 / 2, df1 / 2, df2 / (df2 + v1x), Policy()); + } + else + { + result = df2 + df1 * x; + result = (result * df1 - x * df1 * df1) / (result * result); + result *= ibeta_derivative(df1 / 2, df2 / 2, v1x / (df2 + v1x), Policy()); + } + return result; +} // pdf + +template <class RealType, class Policy> +inline RealType cdf(const fisher_f_distribution<RealType, Policy>& dist, const RealType& x) +{ + static const char* function = "boost::math::cdf(fisher_f_distribution<%1%> const&, %1%)"; + RealType df1 = dist.degrees_of_freedom1(); + RealType df2 = dist.degrees_of_freedom2(); + // Error check: + RealType error_result = 0; + if(false == detail::check_df( + function, df1, &error_result, Policy()) + && detail::check_df( + function, df2, &error_result, Policy())) + return error_result; + + if((x < 0) || !(boost::math::isfinite)(x)) + { + return policies::raise_domain_error<RealType>( + function, "Random Variable parameter was %1%, but must be > 0 !", x, Policy()); + } + + RealType v1x = df1 * x; + // + // There are two equivalent formulas used here, the aim is + // to prevent the final argument to the incomplete beta + // from being too close to 1: for some values of df1 and df2 + // the rate of change can be arbitrarily large in this area, + // whilst the value we're passing will have lost information + // content as a result of being 0.999999something. Better + // to switch things around so we're passing 1-z instead. + // + return v1x > df2 + ? boost::math::ibetac(df2 / 2, df1 / 2, df2 / (df2 + v1x), Policy()) + : boost::math::ibeta(df1 / 2, df2 / 2, v1x / (df2 + v1x), Policy()); +} // cdf + +template <class RealType, class Policy> +inline RealType quantile(const fisher_f_distribution<RealType, Policy>& dist, const RealType& p) +{ + static const char* function = "boost::math::quantile(fisher_f_distribution<%1%> const&, %1%)"; + RealType df1 = dist.degrees_of_freedom1(); + RealType df2 = dist.degrees_of_freedom2(); + // Error check: + RealType error_result = 0; + if(false == (detail::check_df( + function, df1, &error_result, Policy()) + && detail::check_df( + function, df2, &error_result, Policy()) + && detail::check_probability( + function, p, &error_result, Policy()))) + return error_result; + + // With optimizations turned on, gcc wrongly warns about y being used + // uninitializated unless we initialize it to something: + RealType x, y(0); + + x = boost::math::ibeta_inv(df1 / 2, df2 / 2, p, &y, Policy()); + + return df2 * x / (df1 * y); +} // quantile + +template <class RealType, class Policy> +inline RealType cdf(const complemented2_type<fisher_f_distribution<RealType, Policy>, RealType>& c) +{ + static const char* function = "boost::math::cdf(fisher_f_distribution<%1%> const&, %1%)"; + RealType df1 = c.dist.degrees_of_freedom1(); + RealType df2 = c.dist.degrees_of_freedom2(); + RealType x = c.param; + // Error check: + RealType error_result = 0; + if(false == detail::check_df( + function, df1, &error_result, Policy()) + && detail::check_df( + function, df2, &error_result, Policy())) + return error_result; + + if((x < 0) || !(boost::math::isfinite)(x)) + { + return policies::raise_domain_error<RealType>( + function, "Random Variable parameter was %1%, but must be > 0 !", x, Policy()); + } + + RealType v1x = df1 * x; + // + // There are two equivalent formulas used here, the aim is + // to prevent the final argument to the incomplete beta + // from being too close to 1: for some values of df1 and df2 + // the rate of change can be arbitrarily large in this area, + // whilst the value we're passing will have lost information + // content as a result of being 0.999999something. Better + // to switch things around so we're passing 1-z instead. + // + return v1x > df2 + ? boost::math::ibeta(df2 / 2, df1 / 2, df2 / (df2 + v1x), Policy()) + : boost::math::ibetac(df1 / 2, df2 / 2, v1x / (df2 + v1x), Policy()); +} + +template <class RealType, class Policy> +inline RealType quantile(const complemented2_type<fisher_f_distribution<RealType, Policy>, RealType>& c) +{ + static const char* function = "boost::math::quantile(fisher_f_distribution<%1%> const&, %1%)"; + RealType df1 = c.dist.degrees_of_freedom1(); + RealType df2 = c.dist.degrees_of_freedom2(); + RealType p = c.param; + // Error check: + RealType error_result = 0; + if(false == (detail::check_df( + function, df1, &error_result, Policy()) + && detail::check_df( + function, df2, &error_result, Policy()) + && detail::check_probability( + function, p, &error_result, Policy()))) + return error_result; + + RealType x, y; + + x = boost::math::ibetac_inv(df1 / 2, df2 / 2, p, &y, Policy()); + + return df2 * x / (df1 * y); +} + +template <class RealType, class Policy> +inline RealType mean(const fisher_f_distribution<RealType, Policy>& dist) +{ // Mean of F distribution = v. + static const char* function = "boost::math::mean(fisher_f_distribution<%1%> const&)"; + RealType df1 = dist.degrees_of_freedom1(); + RealType df2 = dist.degrees_of_freedom2(); + // Error check: + RealType error_result = 0; + if(false == detail::check_df( + function, df1, &error_result, Policy()) + && detail::check_df( + function, df2, &error_result, Policy())) + return error_result; + if(df2 <= 2) + { + return policies::raise_domain_error<RealType>( + function, "Second degree of freedom was %1% but must be > 2 in order for the distribution to have a mean.", df2, Policy()); + } + return df2 / (df2 - 2); +} // mean + +template <class RealType, class Policy> +inline RealType variance(const fisher_f_distribution<RealType, Policy>& dist) +{ // Variance of F distribution. + static const char* function = "boost::math::variance(fisher_f_distribution<%1%> const&)"; + RealType df1 = dist.degrees_of_freedom1(); + RealType df2 = dist.degrees_of_freedom2(); + // Error check: + RealType error_result = 0; + if(false == detail::check_df( + function, df1, &error_result, Policy()) + && detail::check_df( + function, df2, &error_result, Policy())) + return error_result; + if(df2 <= 4) + { + return policies::raise_domain_error<RealType>( + function, "Second degree of freedom was %1% but must be > 4 in order for the distribution to have a valid variance.", df2, Policy()); + } + return 2 * df2 * df2 * (df1 + df2 - 2) / (df1 * (df2 - 2) * (df2 - 2) * (df2 - 4)); +} // variance + +template <class RealType, class Policy> +inline RealType mode(const fisher_f_distribution<RealType, Policy>& dist) +{ + static const char* function = "boost::math::mode(fisher_f_distribution<%1%> const&)"; + RealType df1 = dist.degrees_of_freedom1(); + RealType df2 = dist.degrees_of_freedom2(); + // Error check: + RealType error_result = 0; + if(false == detail::check_df( + function, df1, &error_result, Policy()) + && detail::check_df( + function, df2, &error_result, Policy())) + return error_result; + if(df2 <= 2) + { + return policies::raise_domain_error<RealType>( + function, "Second degree of freedom was %1% but must be > 2 in order for the distribution to have a mode.", df2, Policy()); + } + return df2 * (df1 - 2) / (df1 * (df2 + 2)); +} + +//template <class RealType, class Policy> +//inline RealType median(const fisher_f_distribution<RealType, Policy>& dist) +//{ // Median of Fisher F distribution is not defined. +// return tools::domain_error<RealType>(BOOST_CURRENT_FUNCTION, "Median is not implemented, result is %1%!", std::numeric_limits<RealType>::quiet_NaN()); +// } // median + +// Now implemented via quantile(half) in derived accessors. + +template <class RealType, class Policy> +inline RealType skewness(const fisher_f_distribution<RealType, Policy>& dist) +{ + static const char* function = "boost::math::skewness(fisher_f_distribution<%1%> const&)"; + BOOST_MATH_STD_USING // ADL of std names + // See http://mathworld.wolfram.com/F-Distribution.html + RealType df1 = dist.degrees_of_freedom1(); + RealType df2 = dist.degrees_of_freedom2(); + // Error check: + RealType error_result = 0; + if(false == detail::check_df( + function, df1, &error_result, Policy()) + && detail::check_df( + function, df2, &error_result, Policy())) + return error_result; + if(df2 <= 6) + { + return policies::raise_domain_error<RealType>( + function, "Second degree of freedom was %1% but must be > 6 in order for the distribution to have a skewness.", df2, Policy()); + } + return 2 * (df2 + 2 * df1 - 2) * sqrt((2 * df2 - 8) / (df1 * (df2 + df1 - 2))) / (df2 - 6); +} + +template <class RealType, class Policy> +RealType kurtosis_excess(const fisher_f_distribution<RealType, Policy>& dist); + +template <class RealType, class Policy> +inline RealType kurtosis(const fisher_f_distribution<RealType, Policy>& dist) +{ + return 3 + kurtosis_excess(dist); +} + +template <class RealType, class Policy> +inline RealType kurtosis_excess(const fisher_f_distribution<RealType, Policy>& dist) +{ + static const char* function = "boost::math::kurtosis_excess(fisher_f_distribution<%1%> const&)"; + // See http://mathworld.wolfram.com/F-Distribution.html + RealType df1 = dist.degrees_of_freedom1(); + RealType df2 = dist.degrees_of_freedom2(); + // Error check: + RealType error_result = 0; + if(false == detail::check_df( + function, df1, &error_result, Policy()) + && detail::check_df( + function, df2, &error_result, Policy())) + return error_result; + if(df2 <= 8) + { + return policies::raise_domain_error<RealType>( + function, "Second degree of freedom was %1% but must be > 8 in order for the distribution to have a kutosis.", df2, Policy()); + } + RealType df2_2 = df2 * df2; + RealType df1_2 = df1 * df1; + RealType n = -16 + 20 * df2 - 8 * df2_2 + df2_2 * df2 + 44 * df1 - 32 * df2 * df1 + 5 * df2_2 * df1 - 22 * df1_2 + 5 * df2 * df1_2; + n *= 12; + RealType d = df1 * (df2 - 6) * (df2 - 8) * (df1 + df2 - 2); + return n / d; +} + +} // namespace math +} // namespace boost + +// This include must be at the end, *after* the accessors +// for this distribution have been defined, in order to +// keep compilers that support two-phase lookup happy. +#include <boost/math/distributions/detail/derived_accessors.hpp> + +#endif // BOOST_MATH_DISTRIBUTIONS_FISHER_F_HPP