Mercurial > hg > vamp-build-and-test
diff DEPENDENCIES/generic/include/boost/math/complex/asin.hpp @ 16:2665513ce2d3
Add boost headers
author | Chris Cannam |
---|---|
date | Tue, 05 Aug 2014 11:11:38 +0100 |
parents | |
children |
line wrap: on
line diff
--- /dev/null Thu Jan 01 00:00:00 1970 +0000 +++ b/DEPENDENCIES/generic/include/boost/math/complex/asin.hpp Tue Aug 05 11:11:38 2014 +0100 @@ -0,0 +1,252 @@ +// (C) Copyright John Maddock 2005. +// Distributed under the Boost Software License, Version 1.0. (See accompanying +// file LICENSE_1_0.txt or copy at http://www.boost.org/LICENSE_1_0.txt) + +#ifndef BOOST_MATH_COMPLEX_ASIN_INCLUDED +#define BOOST_MATH_COMPLEX_ASIN_INCLUDED + +#ifndef BOOST_MATH_COMPLEX_DETAILS_INCLUDED +# include <boost/math/complex/details.hpp> +#endif +#ifndef BOOST_MATH_LOG1P_INCLUDED +# include <boost/math/special_functions/log1p.hpp> +#endif +#include <boost/assert.hpp> + +#ifdef BOOST_NO_STDC_NAMESPACE +namespace std{ using ::sqrt; using ::fabs; using ::acos; using ::asin; using ::atan; using ::atan2; } +#endif + +namespace boost{ namespace math{ + +template<class T> +inline std::complex<T> asin(const std::complex<T>& z) +{ + // + // This implementation is a transcription of the pseudo-code in: + // + // "Implementing the complex Arcsine and Arccosine Functions using Exception Handling." + // T E Hull, Thomas F Fairgrieve and Ping Tak Peter Tang. + // ACM Transactions on Mathematical Software, Vol 23, No 3, Sept 1997. + // + + // + // These static constants should really be in a maths constants library, + // note that we have tweaked the value of a_crossover as per https://svn.boost.org/trac/boost/ticket/7290: + // + static const T one = static_cast<T>(1); + //static const T two = static_cast<T>(2); + static const T half = static_cast<T>(0.5L); + static const T a_crossover = static_cast<T>(10); + static const T b_crossover = static_cast<T>(0.6417L); + static const T s_pi = boost::math::constants::pi<T>(); + static const T half_pi = s_pi / 2; + static const T log_two = boost::math::constants::ln_two<T>(); + static const T quarter_pi = s_pi / 4; +#ifdef BOOST_MSVC +#pragma warning(push) +#pragma warning(disable:4127) +#endif + // + // Get real and imaginary parts, discard the signs as we can + // figure out the sign of the result later: + // + T x = std::fabs(z.real()); + T y = std::fabs(z.imag()); + T real, imag; // our results + + // + // Begin by handling the special cases for infinities and nan's + // specified in C99, most of this is handled by the regular logic + // below, but handling it as a special case prevents overflow/underflow + // arithmetic which may trip up some machines: + // + if((boost::math::isnan)(x)) + { + if((boost::math::isnan)(y)) + return std::complex<T>(x, x); + if((boost::math::isinf)(y)) + { + real = x; + imag = std::numeric_limits<T>::infinity(); + } + else + return std::complex<T>(x, x); + } + else if((boost::math::isnan)(y)) + { + if(x == 0) + { + real = 0; + imag = y; + } + else if((boost::math::isinf)(x)) + { + real = y; + imag = std::numeric_limits<T>::infinity(); + } + else + return std::complex<T>(y, y); + } + else if((boost::math::isinf)(x)) + { + if((boost::math::isinf)(y)) + { + real = quarter_pi; + imag = std::numeric_limits<T>::infinity(); + } + else + { + real = half_pi; + imag = std::numeric_limits<T>::infinity(); + } + } + else if((boost::math::isinf)(y)) + { + real = 0; + imag = std::numeric_limits<T>::infinity(); + } + else + { + // + // special case for real numbers: + // + if((y == 0) && (x <= one)) + return std::complex<T>(std::asin(z.real()), z.imag()); + // + // Figure out if our input is within the "safe area" identified by Hull et al. + // This would be more efficient with portable floating point exception handling; + // fortunately the quantities M and u identified by Hull et al (figure 3), + // match with the max and min methods of numeric_limits<T>. + // + T safe_max = detail::safe_max(static_cast<T>(8)); + T safe_min = detail::safe_min(static_cast<T>(4)); + + T xp1 = one + x; + T xm1 = x - one; + + if((x < safe_max) && (x > safe_min) && (y < safe_max) && (y > safe_min)) + { + T yy = y * y; + T r = std::sqrt(xp1*xp1 + yy); + T s = std::sqrt(xm1*xm1 + yy); + T a = half * (r + s); + T b = x / a; + + if(b <= b_crossover) + { + real = std::asin(b); + } + else + { + T apx = a + x; + if(x <= one) + { + real = std::atan(x/std::sqrt(half * apx * (yy /(r + xp1) + (s-xm1)))); + } + else + { + real = std::atan(x/(y * std::sqrt(half * (apx/(r + xp1) + apx/(s+xm1))))); + } + } + + if(a <= a_crossover) + { + T am1; + if(x < one) + { + am1 = half * (yy/(r + xp1) + yy/(s - xm1)); + } + else + { + am1 = half * (yy/(r + xp1) + (s + xm1)); + } + imag = boost::math::log1p(am1 + std::sqrt(am1 * (a + one))); + } + else + { + imag = std::log(a + std::sqrt(a*a - one)); + } + } + else + { + // + // This is the Hull et al exception handling code from Fig 3 of their paper: + // + if(y <= (std::numeric_limits<T>::epsilon() * std::fabs(xm1))) + { + if(x < one) + { + real = std::asin(x); + imag = y / std::sqrt(-xp1*xm1); + } + else + { + real = half_pi; + if(((std::numeric_limits<T>::max)() / xp1) > xm1) + { + // xp1 * xm1 won't overflow: + imag = boost::math::log1p(xm1 + std::sqrt(xp1*xm1)); + } + else + { + imag = log_two + std::log(x); + } + } + } + else if(y <= safe_min) + { + // There is an assumption in Hull et al's analysis that + // if we get here then x == 1. This is true for all "good" + // machines where : + // + // E^2 > 8*sqrt(u); with: + // + // E = std::numeric_limits<T>::epsilon() + // u = (std::numeric_limits<T>::min)() + // + // Hull et al provide alternative code for "bad" machines + // but we have no way to test that here, so for now just assert + // on the assumption: + // + BOOST_ASSERT(x == 1); + real = half_pi - std::sqrt(y); + imag = std::sqrt(y); + } + else if(std::numeric_limits<T>::epsilon() * y - one >= x) + { + real = x/y; // This can underflow! + imag = log_two + std::log(y); + } + else if(x > one) + { + real = std::atan(x/y); + T xoy = x/y; + imag = log_two + std::log(y) + half * boost::math::log1p(xoy*xoy); + } + else + { + T a = std::sqrt(one + y*y); + real = x/a; // This can underflow! + imag = half * boost::math::log1p(static_cast<T>(2)*y*(y+a)); + } + } + } + + // + // Finish off by working out the sign of the result: + // + if((boost::math::signbit)(z.real())) + real = (boost::math::changesign)(real); + if((boost::math::signbit)(z.imag())) + imag = (boost::math::changesign)(imag); + + return std::complex<T>(real, imag); +#ifdef BOOST_MSVC +#pragma warning(pop) +#endif +} + +} } // namespaces + +#endif // BOOST_MATH_COMPLEX_ASIN_INCLUDED