diff DEPENDENCIES/generic/include/boost/gil/locator.hpp @ 16:2665513ce2d3

Add boost headers
author Chris Cannam
date Tue, 05 Aug 2014 11:11:38 +0100
parents
children
line wrap: on
line diff
--- /dev/null	Thu Jan 01 00:00:00 1970 +0000
+++ b/DEPENDENCIES/generic/include/boost/gil/locator.hpp	Tue Aug 05 11:11:38 2014 +0100
@@ -0,0 +1,362 @@
+/*
+    Copyright 2005-2007 Adobe Systems Incorporated
+   
+    Use, modification and distribution are subject to the Boost Software License,
+    Version 1.0. (See accompanying file LICENSE_1_0.txt or copy at
+    http://www.boost.org/LICENSE_1_0.txt).
+
+    See http://opensource.adobe.com/gil for most recent version including documentation.
+*/
+
+/*************************************************************************************************/
+
+#ifndef GIL_LOCATOR_H
+#define GIL_LOCATOR_H
+
+
+////////////////////////////////////////////////////////////////////////////////////////
+/// \file               
+/// \brief pixel 2D locator
+/// \author Lubomir Bourdev and Hailin Jin \n
+///         Adobe Systems Incorporated
+/// \date   2005-2007 \n September 20, 2006
+///
+////////////////////////////////////////////////////////////////////////////////////////
+
+#include <cstddef>
+#include <cassert>
+#include "pixel_iterator.hpp"
+
+////////////////////////////////////////////////////////////////////////////////////////
+///                 Pixel 2D LOCATOR
+////////////////////////////////////////////////////////////////////////////////////////
+
+
+namespace boost { namespace gil {
+
+//forward declarations
+template <typename P> ptrdiff_t memunit_step(const P*);
+template <typename P> P* memunit_advanced(const P* p, ptrdiff_t diff);
+template <typename P> P& memunit_advanced_ref(P* p, ptrdiff_t diff);
+template <typename Iterator, typename D> struct iterator_add_deref;
+template <typename T> class point2;
+namespace detail {
+    // helper class specialized for each axis of pixel_2d_locator
+    template <std::size_t D, typename Loc>  class locator_axis;
+}
+template <typename T> struct dynamic_x_step_type;
+template <typename T> struct dynamic_y_step_type;
+
+template <typename T> struct channel_type;
+template <typename T> struct color_space_type;
+template <typename T> struct channel_mapping_type;
+template <typename T> struct is_planar;
+template <typename T> struct num_channels;
+
+// The type of a locator or a view that has X and Y swapped. By default it is the same
+template <typename T> struct transposed_type {
+    typedef T type;
+};
+
+/// \class pixel_2d_locator_base
+/// \brief base class for models of PixelLocatorConcept
+/// \ingroup PixelLocatorModel PixelBasedModel
+///
+/// Pixel locator is similar to a pixel iterator, but allows for 2D navigation of pixels within an image view. 
+/// It has a 2D difference_type and supports random access operations like:
+/// \code
+///     difference_type offset2(2,3);
+///     locator+=offset2;
+///     locator[offset2]=my_pixel;
+/// \endcode
+///
+/// In addition, each coordinate acts as a random-access iterator that can be modified separately:
+/// "++locator.x()" or "locator.y()+=10" thereby moving the locator horizontally or vertically.
+///
+/// It is called a locator because it doesn't implement the complete interface of a random access iterator.
+/// For example, increment and decrement operations don't make sense (no way to specify dimension).
+/// Also 2D difference between two locators cannot be computed without knowledge of the X position within the image.
+/// 
+/// This base class provides most of the methods and typedefs needed to create a model of a locator. GIL provides two
+/// locator models as subclasses of \p pixel_2d_locator_base. A memory-based locator, \p memory_based_2d_locator and a virtual
+/// locator, \p virtual_2d_locator.
+/// The minimum functionality a subclass must provide is this:
+/// \code
+/// class my_locator : public pixel_2d_locator_base<my_locator, ..., ...> {  // supply the types for x-iterator and y-iterator
+///        typedef ... const_t;                      // read-only locator
+///
+///        template <typename Deref> struct add_deref {
+///            typedef ... type;                     // locator that invokes the Deref dereference object upon pixel access
+///            static type make(const my_locator& loc, const Deref& d);
+///        };
+///
+///        my_locator();
+///        my_locator(const my_locator& pl);
+///
+///        // constructors with dynamic step in y (and x). Only valid for locators with dynamic steps
+///        my_locator(const my_locator& loc, coord_t y_step);
+///        my_locator(const my_locator& loc, coord_t x_step, coord_t y_step, bool transpose);
+///
+///        bool              operator==(const my_locator& p) const;
+///
+///        // return _references_ to horizontal/vertical iterators. Advancing them moves this locator
+///        x_iterator&       x();
+///        y_iterator&       y();
+///        x_iterator const& x() const;
+///        y_iterator const& y() const;
+///
+///        // return the vertical distance to another locator. Some models need the horizontal distance to compute it
+///        y_coord_t         y_distance_to(const my_locator& loc2, x_coord_t xDiff) const;
+///
+///        // return true iff incrementing an x-iterator located at the last column will position it at the first 
+///        // column of the next row. Some models need the image width to determine that.
+///        bool              is_1d_traversable(x_coord_t width) const;
+/// };
+/// \endcode
+///
+/// Models may choose to override some of the functions in the base class with more efficient versions.
+///
+
+template <typename Loc, typename XIterator, typename YIterator>    // The concrete subclass, the X-iterator and the Y-iterator
+class pixel_2d_locator_base {
+public:
+    typedef XIterator           x_iterator;
+    typedef YIterator           y_iterator;
+
+    // typedefs required by ConstRandomAccessNDLocatorConcept
+    static const std::size_t num_dimensions=2;
+    typedef typename std::iterator_traits<x_iterator>::value_type       value_type;
+    typedef typename std::iterator_traits<x_iterator>::reference        reference;    // result of dereferencing
+    typedef typename std::iterator_traits<x_iterator>::difference_type  coord_t;      // 1D difference type (same for all dimensions)
+    typedef point2<coord_t>                                             difference_type; // result of operator-(locator,locator)
+    typedef difference_type                                             point_t;
+    template <std::size_t D> struct axis {
+        typedef typename detail::locator_axis<D,Loc>::coord_t           coord_t;
+        typedef typename detail::locator_axis<D,Loc>::iterator          iterator;
+    };
+
+// typedefs required by ConstRandomAccess2DLocatorConcept
+    typedef typename point_t::template axis<0>::coord_t                 x_coord_t;
+    typedef typename point_t::template axis<1>::coord_t                 y_coord_t;
+
+    bool              operator!=(const Loc& p)          const { return !(concrete()==p); }
+
+    x_iterator        x_at(x_coord_t dx, y_coord_t dy)  const { Loc tmp=concrete(); tmp+=point_t(dx,dy); return tmp.x(); }
+    x_iterator        x_at(const difference_type& d)    const { Loc tmp=concrete(); tmp+=d;              return tmp.x(); }
+    y_iterator        y_at(x_coord_t dx, y_coord_t dy)  const { Loc tmp=concrete(); tmp+=point_t(dx,dy); return tmp.y(); }
+    y_iterator        y_at(const difference_type& d)    const { Loc tmp=concrete(); tmp+=d;              return tmp.y(); }
+    Loc               xy_at(x_coord_t dx, y_coord_t dy) const { Loc tmp=concrete(); tmp+=point_t(dx,dy); return tmp; }
+    Loc               xy_at(const difference_type& d)   const { Loc tmp=concrete(); tmp+=d;              return tmp; }
+
+    template <std::size_t D> typename axis<D>::iterator&       axis_iterator()                       { return detail::locator_axis<D,Loc>()(concrete()); }
+    template <std::size_t D> typename axis<D>::iterator const& axis_iterator()                 const { return detail::locator_axis<D,Loc>()(concrete()); }
+    template <std::size_t D> typename axis<D>::iterator        axis_iterator(const point_t& p) const { return detail::locator_axis<D,Loc>()(concrete(),p); }
+
+    reference         operator()(x_coord_t dx, y_coord_t dy) const { return *x_at(dx,dy); }
+    reference         operator[](const difference_type& d)   const { return *x_at(d.x,d.y); }
+
+    reference         operator*()                            const { return *concrete().x(); }
+
+    Loc&              operator+=(const difference_type& d)         { concrete().x()+=d.x; concrete().y()+=d.y; return concrete(); }
+    Loc&              operator-=(const difference_type& d)         { concrete().x()-=d.x; concrete().y()-=d.y; return concrete(); }
+    
+    Loc               operator+(const difference_type& d)    const { return xy_at(d); }
+    Loc               operator-(const difference_type& d)    const { return xy_at(-d); }
+
+    // Some locators can cache 2D coordinates for faster subsequent access. By default there is no caching
+    typedef difference_type    cached_location_t;    
+    cached_location_t cache_location(const difference_type& d)  const { return d; }
+    cached_location_t cache_location(x_coord_t dx, y_coord_t dy)const { return difference_type(dx,dy); }
+
+private:
+    Loc&              concrete()       { return (Loc&)*this; }
+    const Loc&        concrete() const { return (const Loc&)*this; }
+
+    template <typename X> friend class pixel_2d_locator;
+};
+
+// helper classes for each axis of pixel_2d_locator_base
+namespace detail {
+    template <typename Loc> 
+    class locator_axis<0,Loc> {
+        typedef typename Loc::point_t                       point_t;
+    public:
+        typedef typename point_t::template axis<0>::coord_t coord_t;
+        typedef typename Loc::x_iterator                    iterator;
+
+        inline iterator&        operator()(      Loc& loc)                   const { return loc.x(); }
+        inline iterator  const& operator()(const Loc& loc)                   const { return loc.x(); }
+        inline iterator         operator()(      Loc& loc, const point_t& d) const { return loc.x_at(d); }
+        inline iterator         operator()(const Loc& loc, const point_t& d) const { return loc.x_at(d); }
+    };
+
+    template <typename Loc> 
+    class locator_axis<1,Loc> {
+        typedef typename Loc::point_t                       point_t;
+    public:
+        typedef typename point_t::template axis<1>::coord_t coord_t;
+        typedef typename Loc::y_iterator                    iterator;
+
+        inline iterator&        operator()(      Loc& loc)               const { return loc.y(); }
+        inline iterator const&  operator()(const Loc& loc)               const { return loc.y(); }
+        inline iterator     operator()(      Loc& loc, const point_t& d) const { return loc.y_at(d); }
+        inline iterator     operator()(const Loc& loc, const point_t& d) const { return loc.y_at(d); }
+    };
+}
+
+template <typename Loc, typename XIt, typename YIt>
+struct channel_type<pixel_2d_locator_base<Loc,XIt,YIt> > : public channel_type<XIt> {};
+
+template <typename Loc, typename XIt, typename YIt>
+struct color_space_type<pixel_2d_locator_base<Loc,XIt,YIt> > : public color_space_type<XIt> {};
+
+template <typename Loc, typename XIt, typename YIt>
+struct channel_mapping_type<pixel_2d_locator_base<Loc,XIt,YIt> > : public channel_mapping_type<XIt> {};
+
+template <typename Loc, typename XIt, typename YIt>
+struct is_planar<pixel_2d_locator_base<Loc,XIt,YIt> > : public is_planar<XIt> {};
+
+/// \class memory_based_2d_locator
+/// \brief Memory-based pixel locator. Models: PixelLocatorConcept,HasDynamicXStepTypeConcept,HasDynamicYStepTypeConcept,HasTransposedTypeConcept
+/// \ingroup PixelLocatorModel PixelBasedModel
+///
+/// The class takes a step iterator as a parameter. The step iterator provides navigation along the vertical axis
+/// while its base iterator provides horizontal navigation.
+///
+/// Each instantiation is optimal in terms of size and efficiency.
+/// For example, xy locator over interleaved rgb image results in a step iterator consisting of 
+/// one std::ptrdiff_t for the row size and one native pointer (8 bytes total). ++locator.x() resolves to pointer 
+/// increment. At the other extreme, a 2D navigation of the even pixels of a planar CMYK image results in a step 
+/// iterator consisting of one std::ptrdiff_t for the doubled row size, and one step iterator consisting of 
+/// one std::ptrdiff_t for the horizontal step of two and a CMYK planar_pixel_iterator consisting of 4 pointers (24 bytes).
+/// In this case ++locator.x() results in four native pointer additions.
+///
+/// Note also that \p memory_based_2d_locator does not require that its element type be a pixel. It could be
+/// instantiated with an iterator whose \p value_type models only \p Regular. In this case the locator
+/// models the weaker RandomAccess2DLocatorConcept, and does not model PixelBasedConcept.
+/// Many generic algorithms don't require the elements to be pixels.
+////////////////////////////////////////////////////////////////////////////////////////
+
+template <typename StepIterator>
+class memory_based_2d_locator : public pixel_2d_locator_base<memory_based_2d_locator<StepIterator>, typename iterator_adaptor_get_base<StepIterator>::type, StepIterator> {
+    typedef memory_based_2d_locator<StepIterator>  this_t;
+    GIL_CLASS_REQUIRE(StepIterator, boost::gil, StepIteratorConcept)
+public:
+    typedef pixel_2d_locator_base<memory_based_2d_locator<StepIterator>, typename iterator_adaptor_get_base<StepIterator>::type, StepIterator> parent_t;
+    typedef memory_based_2d_locator<typename const_iterator_type<StepIterator>::type> const_t; // same as this type, but over const values
+
+    typedef typename parent_t::coord_t          coord_t;
+    typedef typename parent_t::x_coord_t        x_coord_t;
+    typedef typename parent_t::y_coord_t        y_coord_t;
+    typedef typename parent_t::x_iterator       x_iterator;
+    typedef typename parent_t::y_iterator       y_iterator;
+    typedef typename parent_t::difference_type  difference_type;
+    typedef typename parent_t::reference        reference;
+
+    template <typename Deref> struct add_deref {
+        typedef memory_based_2d_locator<typename iterator_add_deref<StepIterator,Deref>::type> type;
+        static type make(const memory_based_2d_locator<StepIterator>& loc, const Deref& nderef) { 
+            return type(iterator_add_deref<StepIterator,Deref>::make(loc.y(),nderef)); 
+        }
+    };
+
+    memory_based_2d_locator() {}
+    memory_based_2d_locator(const StepIterator& yit) : _p(yit) {}
+    template <typename SI> memory_based_2d_locator(const memory_based_2d_locator<SI>& loc, coord_t y_step) : _p(loc.x(), loc.row_size()*y_step) {}
+    template <typename SI> memory_based_2d_locator(const memory_based_2d_locator<SI>& loc, coord_t x_step, coord_t y_step, bool transpose=false)
+        : _p(make_step_iterator(loc.x(),(transpose ? loc.row_size() : loc.pixel_size())*x_step),
+                                        (transpose ? loc.pixel_size() : loc.row_size())*y_step ) {}
+
+    memory_based_2d_locator(x_iterator xit, std::ptrdiff_t row_bytes) : _p(xit,row_bytes) {}
+    template <typename X> memory_based_2d_locator(const memory_based_2d_locator<X>& pl) : _p(pl._p) {}
+    memory_based_2d_locator(const memory_based_2d_locator& pl) : _p(pl._p) {}
+
+    bool                  operator==(const this_t& p)  const { return _p==p._p; }
+
+    x_iterator const&     x()                          const { return _p.base(); }
+    y_iterator const&     y()                          const { return _p; }
+    x_iterator&           x()                                { return _p.base(); }
+    y_iterator&           y()                                { return _p; }
+
+    // These are faster versions of functions already provided in the superclass 
+    x_iterator x_at      (x_coord_t dx, y_coord_t dy)  const { return memunit_advanced(x(), offset(dx,dy)); }    
+    x_iterator x_at      (const difference_type& d)    const { return memunit_advanced(x(), offset(d.x,d.y)); }
+    this_t     xy_at     (x_coord_t dx, y_coord_t dy)  const { return this_t(x_at( dx , dy ), row_size()); }
+    this_t     xy_at     (const difference_type& d)    const { return this_t(x_at( d.x, d.y), row_size()); }
+    reference  operator()(x_coord_t dx, y_coord_t dy)  const { return memunit_advanced_ref(x(),offset(dx,dy)); }
+    reference  operator[](const difference_type& d)    const { return memunit_advanced_ref(x(),offset(d.x,d.y)); }
+    this_t&    operator+=(const difference_type& d)          { memunit_advance(x(),offset(d.x,d.y)); return *this; }
+    this_t&    operator-=(const difference_type& d)          { memunit_advance(x(),offset(-d.x,-d.y)); return *this; }
+
+    // Memory-based locators can have 1D caching of 2D relative coordinates
+    typedef std::ptrdiff_t cached_location_t; // type used to store relative location (to allow for more efficient repeated access)
+    cached_location_t cache_location(const difference_type& d)  const { return offset(d.x,d.y); }
+    cached_location_t cache_location(x_coord_t dx, y_coord_t dy)const { return offset(dx,dy); }
+    reference         operator[](const cached_location_t& loc)  const { return memunit_advanced_ref(x(),loc); }
+
+    // Only make sense for memory-based locators
+    std::ptrdiff_t         row_size()                           const { return memunit_step(y()); }    // distance in mem units (bytes or bits) between adjacent rows
+    std::ptrdiff_t         pixel_size()                         const { return memunit_step(x()); }    // distance in mem units (bytes or bits) between adjacent pixels on the same row
+
+    bool                   is_1d_traversable(x_coord_t width)   const { return row_size()-pixel_size()*width==0; }   // is there no gap at the end of each row?
+
+    // Returns the vertical distance (it2.y-it1.y) between two x_iterators given the difference of their x positions
+    std::ptrdiff_t y_distance_to(const this_t& p2, x_coord_t xDiff) const { 
+        std::ptrdiff_t rowDiff=memunit_distance(x(),p2.x())-pixel_size()*xDiff;
+        assert(( rowDiff % row_size())==0);
+        return rowDiff / row_size();
+    }
+
+private:
+    template <typename X> friend class memory_based_2d_locator;
+    std::ptrdiff_t offset(x_coord_t x, y_coord_t y)        const { return y*row_size() + x*pixel_size(); }
+    StepIterator _p;
+};
+
+/////////////////////////////
+//  PixelBasedConcept
+/////////////////////////////
+
+template <typename SI>
+struct color_space_type<memory_based_2d_locator<SI> > : public color_space_type<typename memory_based_2d_locator<SI>::parent_t> {
+};
+
+template <typename SI>
+struct channel_mapping_type<memory_based_2d_locator<SI> > : public channel_mapping_type<typename memory_based_2d_locator<SI>::parent_t> {
+};
+
+template <typename SI>
+struct is_planar<memory_based_2d_locator<SI> > : public is_planar<typename memory_based_2d_locator<SI>::parent_t> {
+};
+
+template <typename SI>
+struct channel_type<memory_based_2d_locator<SI> > : public channel_type<typename memory_based_2d_locator<SI>::parent_t> {
+};
+
+/////////////////////////////
+//  HasDynamicXStepTypeConcept
+/////////////////////////////
+
+// Take the base iterator of SI (which is typically a step iterator) and change it to have a step in x
+template <typename SI>
+struct dynamic_x_step_type<memory_based_2d_locator<SI> > {
+private:
+    typedef typename iterator_adaptor_get_base<SI>::type                        base_iterator_t;
+    typedef typename dynamic_x_step_type<base_iterator_t>::type                 base_iterator_step_t;
+    typedef typename iterator_adaptor_rebind<SI, base_iterator_step_t>::type    dynamic_step_base_t;
+public:
+    typedef memory_based_2d_locator<dynamic_step_base_t> type;
+};
+
+/////////////////////////////
+//  HasDynamicYStepTypeConcept
+/////////////////////////////
+
+template <typename SI>
+struct dynamic_y_step_type<memory_based_2d_locator<SI> > {
+    typedef memory_based_2d_locator<SI> type;
+};
+
+} }  // namespace boost::gil
+
+#endif