Mercurial > hg > vamp-build-and-test
diff DEPENDENCIES/generic/include/boost/container/flat_set.hpp @ 16:2665513ce2d3
Add boost headers
author | Chris Cannam |
---|---|
date | Tue, 05 Aug 2014 11:11:38 +0100 |
parents | |
children | c530137014c0 |
line wrap: on
line diff
--- /dev/null Thu Jan 01 00:00:00 1970 +0000 +++ b/DEPENDENCIES/generic/include/boost/container/flat_set.hpp Tue Aug 05 11:11:38 2014 +0100 @@ -0,0 +1,1428 @@ +////////////////////////////////////////////////////////////////////////////// +// +// (C) Copyright Ion Gaztanaga 2005-2012. Distributed under the Boost +// Software License, Version 1.0. (See accompanying file +// LICENSE_1_0.txt or copy at http://www.boost.org/LICENSE_1_0.txt) +// +// See http://www.boost.org/libs/container for documentation. +// +////////////////////////////////////////////////////////////////////////////// + +#ifndef BOOST_CONTAINER_FLAT_SET_HPP +#define BOOST_CONTAINER_FLAT_SET_HPP + +#if defined(_MSC_VER) +# pragma once +#endif + +#include <boost/container/detail/config_begin.hpp> +#include <boost/container/detail/workaround.hpp> + +#include <boost/container/container_fwd.hpp> +#include <utility> +#include <functional> +#include <memory> +#include <boost/container/detail/flat_tree.hpp> +#include <boost/container/detail/mpl.hpp> +#include <boost/container/allocator_traits.hpp> +#include <boost/move/utility.hpp> +#include <boost/move/detail/move_helpers.hpp> + +namespace boost { +namespace container { + +/// @cond +// Forward declarations of operators < and ==, needed for friend declaration. + +#ifdef BOOST_CONTAINER_DOXYGEN_INVOKED +template <class Key, class Compare = std::less<Key>, class Allocator = std::allocator<Key> > +#else +template <class Key, class Compare, class Allocator> +#endif +class flat_set; + +template <class Key, class Compare, class Allocator> +inline bool operator==(const flat_set<Key,Compare,Allocator>& x, + const flat_set<Key,Compare,Allocator>& y); + +template <class Key, class Compare, class Allocator> +inline bool operator<(const flat_set<Key,Compare,Allocator>& x, + const flat_set<Key,Compare,Allocator>& y); +/// @endcond + +//! flat_set is a Sorted Associative Container that stores objects of type Key. +//! It is also a Unique Associative Container, meaning that no two elements are the same. +//! +//! flat_set is similar to std::set but it's implemented like an ordered vector. +//! This means that inserting a new element into a flat_set invalidates +//! previous iterators and references +//! +//! Erasing an element of a flat_set invalidates iterators and references +//! pointing to elements that come after (their keys are bigger) the erased element. +//! +//! This container provides random-access iterators. +#ifdef BOOST_CONTAINER_DOXYGEN_INVOKED +template <class Key, class Compare = std::less<Key>, class Allocator = std::allocator<Key> > +#else +template <class Key, class Compare, class Allocator> +#endif +class flat_set +{ + /// @cond + private: + BOOST_COPYABLE_AND_MOVABLE(flat_set) + typedef container_detail::flat_tree<Key, Key, container_detail::identity<Key>, Compare, Allocator> tree_t; + tree_t m_flat_tree; // flat tree representing flat_set + /// @endcond + + public: + ////////////////////////////////////////////// + // + // types + // + ////////////////////////////////////////////// + typedef Key key_type; + typedef Key value_type; + typedef Compare key_compare; + typedef Compare value_compare; + typedef typename ::boost::container::allocator_traits<Allocator>::pointer pointer; + typedef typename ::boost::container::allocator_traits<Allocator>::const_pointer const_pointer; + typedef typename ::boost::container::allocator_traits<Allocator>::reference reference; + typedef typename ::boost::container::allocator_traits<Allocator>::const_reference const_reference; + typedef typename ::boost::container::allocator_traits<Allocator>::size_type size_type; + typedef typename ::boost::container::allocator_traits<Allocator>::difference_type difference_type; + typedef Allocator allocator_type; + typedef typename BOOST_CONTAINER_IMPDEF(tree_t::stored_allocator_type) stored_allocator_type; + typedef typename BOOST_CONTAINER_IMPDEF(tree_t::iterator) iterator; + typedef typename BOOST_CONTAINER_IMPDEF(tree_t::const_iterator) const_iterator; + typedef typename BOOST_CONTAINER_IMPDEF(tree_t::reverse_iterator) reverse_iterator; + typedef typename BOOST_CONTAINER_IMPDEF(tree_t::const_reverse_iterator) const_reverse_iterator; + + public: + ////////////////////////////////////////////// + // + // construct/copy/destroy + // + ////////////////////////////////////////////// + + //! <b>Effects</b>: Default constructs an empty flat_set. + //! + //! <b>Complexity</b>: Constant. + explicit flat_set() + : m_flat_tree() + {} + + //! <b>Effects</b>: Constructs an empty flat_set using the specified + //! comparison object and allocator. + //! + //! <b>Complexity</b>: Constant. + explicit flat_set(const Compare& comp, + const allocator_type& a = allocator_type()) + : m_flat_tree(comp, a) + {} + + //! <b>Effects</b>: Constructs an empty flat_set using the specified allocator. + //! + //! <b>Complexity</b>: Constant. + explicit flat_set(const allocator_type& a) + : m_flat_tree(a) + {} + + //! <b>Effects</b>: Constructs an empty set using the specified comparison object and + //! allocator, and inserts elements from the range [first ,last ). + //! + //! <b>Complexity</b>: Linear in N if the range [first ,last ) is already sorted using + //! comp and otherwise N logN, where N is last - first. + template <class InputIterator> + flat_set(InputIterator first, InputIterator last, + const Compare& comp = Compare(), + const allocator_type& a = allocator_type()) + : m_flat_tree(true, first, last, comp, a) + {} + + //! <b>Effects</b>: Constructs an empty flat_set using the specified comparison object and + //! allocator, and inserts elements from the ordered unique range [first ,last). This function + //! is more efficient than the normal range creation for ordered ranges. + //! + //! <b>Requires</b>: [first ,last) must be ordered according to the predicate and must be + //! unique values. + //! + //! <b>Complexity</b>: Linear in N. + //! + //! <b>Note</b>: Non-standard extension. + template <class InputIterator> + flat_set(ordered_unique_range_t, InputIterator first, InputIterator last, + const Compare& comp = Compare(), + const allocator_type& a = allocator_type()) + : m_flat_tree(ordered_range, first, last, comp, a) + {} + + //! <b>Effects</b>: Copy constructs a set. + //! + //! <b>Complexity</b>: Linear in x.size(). + flat_set(const flat_set& x) + : m_flat_tree(x.m_flat_tree) + {} + + //! <b>Effects</b>: Move constructs a set. Constructs *this using x's resources. + //! + //! <b>Complexity</b>: Constant. + //! + //! <b>Postcondition</b>: x is emptied. + flat_set(BOOST_RV_REF(flat_set) mx) + : m_flat_tree(boost::move(mx.m_flat_tree)) + {} + + //! <b>Effects</b>: Copy constructs a set using the specified allocator. + //! + //! <b>Complexity</b>: Linear in x.size(). + flat_set(const flat_set& x, const allocator_type &a) + : m_flat_tree(x.m_flat_tree, a) + {} + + //! <b>Effects</b>: Move constructs a set using the specified allocator. + //! Constructs *this using x's resources. + //! + //! <b>Complexity</b>: Constant if a == mx.get_allocator(), linear otherwise + flat_set(BOOST_RV_REF(flat_set) mx, const allocator_type &a) + : m_flat_tree(boost::move(mx.m_flat_tree), a) + {} + + //! <b>Effects</b>: Makes *this a copy of x. + //! + //! <b>Complexity</b>: Linear in x.size(). + flat_set& operator=(BOOST_COPY_ASSIGN_REF(flat_set) x) + { m_flat_tree = x.m_flat_tree; return *this; } + + //! <b>Effects</b>: Makes *this a copy of the previous value of xx. + //! + //! <b>Complexity</b>: Linear in x.size(). + flat_set& operator=(BOOST_RV_REF(flat_set) mx) + { m_flat_tree = boost::move(mx.m_flat_tree); return *this; } + + //! <b>Effects</b>: Returns a copy of the Allocator that + //! was passed to the object's constructor. + //! + //! <b>Complexity</b>: Constant. + allocator_type get_allocator() const BOOST_CONTAINER_NOEXCEPT + { return m_flat_tree.get_allocator(); } + + //! <b>Effects</b>: Returns a reference to the internal allocator. + //! + //! <b>Throws</b>: Nothing + //! + //! <b>Complexity</b>: Constant. + //! + //! <b>Note</b>: Non-standard extension. + stored_allocator_type &get_stored_allocator() BOOST_CONTAINER_NOEXCEPT + { return m_flat_tree.get_stored_allocator(); } + + //! <b>Effects</b>: Returns a reference to the internal allocator. + //! + //! <b>Throws</b>: Nothing + //! + //! <b>Complexity</b>: Constant. + //! + //! <b>Note</b>: Non-standard extension. + const stored_allocator_type &get_stored_allocator() const BOOST_CONTAINER_NOEXCEPT + { return m_flat_tree.get_stored_allocator(); } + + ////////////////////////////////////////////// + // + // iterators + // + ////////////////////////////////////////////// + + //! <b>Effects</b>: Returns an iterator to the first element contained in the container. + //! + //! <b>Throws</b>: Nothing. + //! + //! <b>Complexity</b>: Constant. + iterator begin() BOOST_CONTAINER_NOEXCEPT + { return m_flat_tree.begin(); } + + //! <b>Effects</b>: Returns a const_iterator to the first element contained in the container. + //! + //! <b>Throws</b>: Nothing. + //! + //! <b>Complexity</b>: Constant. + const_iterator begin() const BOOST_CONTAINER_NOEXCEPT + { return m_flat_tree.begin(); } + + //! <b>Effects</b>: Returns an iterator to the end of the container. + //! + //! <b>Throws</b>: Nothing. + //! + //! <b>Complexity</b>: Constant. + iterator end() BOOST_CONTAINER_NOEXCEPT + { return m_flat_tree.end(); } + + //! <b>Effects</b>: Returns a const_iterator to the end of the container. + //! + //! <b>Throws</b>: Nothing. + //! + //! <b>Complexity</b>: Constant. + const_iterator end() const BOOST_CONTAINER_NOEXCEPT + { return m_flat_tree.end(); } + + //! <b>Effects</b>: Returns a reverse_iterator pointing to the beginning + //! of the reversed container. + //! + //! <b>Throws</b>: Nothing. + //! + //! <b>Complexity</b>: Constant. + reverse_iterator rbegin() BOOST_CONTAINER_NOEXCEPT + { return m_flat_tree.rbegin(); } + + //! <b>Effects</b>: Returns a const_reverse_iterator pointing to the beginning + //! of the reversed container. + //! + //! <b>Throws</b>: Nothing. + //! + //! <b>Complexity</b>: Constant. + const_reverse_iterator rbegin() const BOOST_CONTAINER_NOEXCEPT + { return m_flat_tree.rbegin(); } + + //! <b>Effects</b>: Returns a reverse_iterator pointing to the end + //! of the reversed container. + //! + //! <b>Throws</b>: Nothing. + //! + //! <b>Complexity</b>: Constant. + reverse_iterator rend() BOOST_CONTAINER_NOEXCEPT + { return m_flat_tree.rend(); } + + //! <b>Effects</b>: Returns a const_reverse_iterator pointing to the end + //! of the reversed container. + //! + //! <b>Throws</b>: Nothing. + //! + //! <b>Complexity</b>: Constant. + const_reverse_iterator rend() const BOOST_CONTAINER_NOEXCEPT + { return m_flat_tree.rend(); } + + //! <b>Effects</b>: Returns a const_iterator to the first element contained in the container. + //! + //! <b>Throws</b>: Nothing. + //! + //! <b>Complexity</b>: Constant. + const_iterator cbegin() const BOOST_CONTAINER_NOEXCEPT + { return m_flat_tree.cbegin(); } + + //! <b>Effects</b>: Returns a const_iterator to the end of the container. + //! + //! <b>Throws</b>: Nothing. + //! + //! <b>Complexity</b>: Constant. + const_iterator cend() const BOOST_CONTAINER_NOEXCEPT + { return m_flat_tree.cend(); } + + //! <b>Effects</b>: Returns a const_reverse_iterator pointing to the beginning + //! of the reversed container. + //! + //! <b>Throws</b>: Nothing. + //! + //! <b>Complexity</b>: Constant. + const_reverse_iterator crbegin() const BOOST_CONTAINER_NOEXCEPT + { return m_flat_tree.crbegin(); } + + //! <b>Effects</b>: Returns a const_reverse_iterator pointing to the end + //! of the reversed container. + //! + //! <b>Throws</b>: Nothing. + //! + //! <b>Complexity</b>: Constant. + const_reverse_iterator crend() const BOOST_CONTAINER_NOEXCEPT + { return m_flat_tree.crend(); } + + + ////////////////////////////////////////////// + // + // capacity + // + ////////////////////////////////////////////// + + //! <b>Effects</b>: Returns true if the container contains no elements. + //! + //! <b>Throws</b>: Nothing. + //! + //! <b>Complexity</b>: Constant. + bool empty() const BOOST_CONTAINER_NOEXCEPT + { return m_flat_tree.empty(); } + + //! <b>Effects</b>: Returns the number of the elements contained in the container. + //! + //! <b>Throws</b>: Nothing. + //! + //! <b>Complexity</b>: Constant. + size_type size() const BOOST_CONTAINER_NOEXCEPT + { return m_flat_tree.size(); } + + //! <b>Effects</b>: Returns the largest possible size of the container. + //! + //! <b>Throws</b>: Nothing. + //! + //! <b>Complexity</b>: Constant. + size_type max_size() const BOOST_CONTAINER_NOEXCEPT + { return m_flat_tree.max_size(); } + + //! <b>Effects</b>: Number of elements for which memory has been allocated. + //! capacity() is always greater than or equal to size(). + //! + //! <b>Throws</b>: Nothing. + //! + //! <b>Complexity</b>: Constant. + size_type capacity() const BOOST_CONTAINER_NOEXCEPT + { return m_flat_tree.capacity(); } + + //! <b>Effects</b>: If n is less than or equal to capacity(), this call has no + //! effect. Otherwise, it is a request for allocation of additional memory. + //! If the request is successful, then capacity() is greater than or equal to + //! n; otherwise, capacity() is unchanged. In either case, size() is unchanged. + //! + //! <b>Throws</b>: If memory allocation allocation throws or Key's copy constructor throws. + //! + //! <b>Note</b>: If capacity() is less than "cnt", iterators and references to + //! to values might be invalidated. + void reserve(size_type cnt) + { m_flat_tree.reserve(cnt); } + + //! <b>Effects</b>: Tries to deallocate the excess of memory created + // with previous allocations. The size of the vector is unchanged + //! + //! <b>Throws</b>: If memory allocation throws, or Key's copy constructor throws. + //! + //! <b>Complexity</b>: Linear to size(). + void shrink_to_fit() + { m_flat_tree.shrink_to_fit(); } + + ////////////////////////////////////////////// + // + // modifiers + // + ////////////////////////////////////////////// + + #if defined(BOOST_CONTAINER_PERFECT_FORWARDING) || defined(BOOST_CONTAINER_DOXYGEN_INVOKED) + + //! <b>Effects</b>: Inserts an object x of type Key constructed with + //! std::forward<Args>(args)... if and only if there is no element in the container + //! with key equivalent to the key of x. + //! + //! <b>Returns</b>: The bool component of the returned pair is true if and only + //! if the insertion takes place, and the iterator component of the pair + //! points to the element with key equivalent to the key of x. + //! + //! <b>Complexity</b>: Logarithmic search time plus linear insertion + //! to the elements with bigger keys than x. + //! + //! <b>Note</b>: If an element is inserted it might invalidate elements. + template <class... Args> + std::pair<iterator,bool> emplace(Args&&... args) + { return m_flat_tree.emplace_unique(boost::forward<Args>(args)...); } + + //! <b>Effects</b>: Inserts an object of type Key constructed with + //! std::forward<Args>(args)... in the container if and only if there is + //! no element in the container with key equivalent to the key of x. + //! p is a hint pointing to where the insert should start to search. + //! + //! <b>Returns</b>: An iterator pointing to the element with key equivalent + //! to the key of x. + //! + //! <b>Complexity</b>: Logarithmic search time (constant if x is inserted + //! right before p) plus insertion linear to the elements with bigger keys than x. + //! + //! <b>Note</b>: If an element is inserted it might invalidate elements. + template <class... Args> + iterator emplace_hint(const_iterator hint, Args&&... args) + { return m_flat_tree.emplace_hint_unique(hint, boost::forward<Args>(args)...); } + + #else //#ifdef BOOST_CONTAINER_PERFECT_FORWARDING + + #define BOOST_PP_LOCAL_MACRO(n) \ + BOOST_PP_EXPR_IF(n, template<) BOOST_PP_ENUM_PARAMS(n, class P) BOOST_PP_EXPR_IF(n, >) \ + std::pair<iterator,bool> emplace(BOOST_PP_ENUM(n, BOOST_CONTAINER_PP_PARAM_LIST, _)) \ + { return m_flat_tree.emplace_unique(BOOST_PP_ENUM(n, BOOST_CONTAINER_PP_PARAM_FORWARD, _)); } \ + \ + BOOST_PP_EXPR_IF(n, template<) BOOST_PP_ENUM_PARAMS(n, class P) BOOST_PP_EXPR_IF(n, >) \ + iterator emplace_hint(const_iterator hint \ + BOOST_PP_ENUM_TRAILING(n, BOOST_CONTAINER_PP_PARAM_LIST, _)) \ + { return m_flat_tree.emplace_hint_unique \ + (hint BOOST_PP_ENUM_TRAILING(n, BOOST_CONTAINER_PP_PARAM_FORWARD, _)); } \ + //! + #define BOOST_PP_LOCAL_LIMITS (0, BOOST_CONTAINER_MAX_CONSTRUCTOR_PARAMETERS) + #include BOOST_PP_LOCAL_ITERATE() + + #endif //#ifdef BOOST_CONTAINER_PERFECT_FORWARDING + + #if defined(BOOST_CONTAINER_DOXYGEN_INVOKED) + //! <b>Effects</b>: Inserts x if and only if there is no element in the container + //! with key equivalent to the key of x. + //! + //! <b>Returns</b>: The bool component of the returned pair is true if and only + //! if the insertion takes place, and the iterator component of the pair + //! points to the element with key equivalent to the key of x. + //! + //! <b>Complexity</b>: Logarithmic search time plus linear insertion + //! to the elements with bigger keys than x. + //! + //! <b>Note</b>: If an element is inserted it might invalidate elements. + std::pair<iterator, bool> insert(const value_type &x); + + //! <b>Effects</b>: Inserts a new value_type move constructed from the pair if and + //! only if there is no element in the container with key equivalent to the key of x. + //! + //! <b>Returns</b>: The bool component of the returned pair is true if and only + //! if the insertion takes place, and the iterator component of the pair + //! points to the element with key equivalent to the key of x. + //! + //! <b>Complexity</b>: Logarithmic search time plus linear insertion + //! to the elements with bigger keys than x. + //! + //! <b>Note</b>: If an element is inserted it might invalidate elements. + std::pair<iterator, bool> insert(value_type &&x); + #else + private: + typedef std::pair<iterator, bool> insert_return_pair; + public: + BOOST_MOVE_CONVERSION_AWARE_CATCH(insert, value_type, insert_return_pair, this->priv_insert) + #endif + + #if defined(BOOST_CONTAINER_DOXYGEN_INVOKED) + //! <b>Effects</b>: Inserts a copy of x in the container if and only if there is + //! no element in the container with key equivalent to the key of x. + //! p is a hint pointing to where the insert should start to search. + //! + //! <b>Returns</b>: An iterator pointing to the element with key equivalent + //! to the key of x. + //! + //! <b>Complexity</b>: Logarithmic search time (constant if x is inserted + //! right before p) plus insertion linear to the elements with bigger keys than x. + //! + //! <b>Note</b>: If an element is inserted it might invalidate elements. + iterator insert(const_iterator p, const value_type &x); + + //! <b>Effects</b>: Inserts an element move constructed from x in the container. + //! p is a hint pointing to where the insert should start to search. + //! + //! <b>Returns</b>: An iterator pointing to the element with key equivalent to the key of x. + //! + //! <b>Complexity</b>: Logarithmic search time (constant if x is inserted + //! right before p) plus insertion linear to the elements with bigger keys than x. + //! + //! <b>Note</b>: If an element is inserted it might invalidate elements. + iterator insert(const_iterator position, value_type &&x); + #else + BOOST_MOVE_CONVERSION_AWARE_CATCH_1ARG(insert, value_type, iterator, this->priv_insert, const_iterator, const_iterator) + #endif + + //! <b>Requires</b>: first, last are not iterators into *this. + //! + //! <b>Effects</b>: inserts each element from the range [first,last) if and only + //! if there is no element with key equivalent to the key of that element. + //! + //! <b>Complexity</b>: At most N log(size()+N) (N is the distance from first to last) + //! search time plus N*size() insertion time. + //! + //! <b>Note</b>: If an element is inserted it might invalidate elements. + template <class InputIterator> + void insert(InputIterator first, InputIterator last) + { m_flat_tree.insert_unique(first, last); } + + //! <b>Requires</b>: first, last are not iterators into *this and + //! must be ordered according to the predicate and must be + //! unique values. + //! + //! <b>Effects</b>: inserts each element from the range [first,last) .This function + //! is more efficient than the normal range creation for ordered ranges. + //! + //! <b>Complexity</b>: At most N log(size()+N) (N is the distance from first to last) + //! search time plus N*size() insertion time. + //! + //! <b>Note</b>: Non-standard extension. If an element is inserted it might invalidate elements. + template <class InputIterator> + void insert(ordered_unique_range_t, InputIterator first, InputIterator last) + { m_flat_tree.insert_unique(ordered_unique_range, first, last); } + + //! <b>Effects</b>: Erases the element pointed to by position. + //! + //! <b>Returns</b>: Returns an iterator pointing to the element immediately + //! following q prior to the element being erased. If no such element exists, + //! returns end(). + //! + //! <b>Complexity</b>: Linear to the elements with keys bigger than position + //! + //! <b>Note</b>: Invalidates elements with keys + //! not less than the erased element. + iterator erase(const_iterator position) + { return m_flat_tree.erase(position); } + + //! <b>Effects</b>: Erases all elements in the container with key equivalent to x. + //! + //! <b>Returns</b>: Returns the number of erased elements. + //! + //! <b>Complexity</b>: Logarithmic search time plus erasure time + //! linear to the elements with bigger keys. + size_type erase(const key_type& x) + { return m_flat_tree.erase(x); } + + //! <b>Effects</b>: Erases all the elements in the range [first, last). + //! + //! <b>Returns</b>: Returns last. + //! + //! <b>Complexity</b>: size()*N where N is the distance from first to last. + //! + //! <b>Complexity</b>: Logarithmic search time plus erasure time + //! linear to the elements with bigger keys. + iterator erase(const_iterator first, const_iterator last) + { return m_flat_tree.erase(first, last); } + + //! <b>Effects</b>: Swaps the contents of *this and x. + //! + //! <b>Throws</b>: Nothing. + //! + //! <b>Complexity</b>: Constant. + void swap(flat_set& x) + { m_flat_tree.swap(x.m_flat_tree); } + + //! <b>Effects</b>: erase(a.begin(),a.end()). + //! + //! <b>Postcondition</b>: size() == 0. + //! + //! <b>Complexity</b>: linear in size(). + void clear() BOOST_CONTAINER_NOEXCEPT + { m_flat_tree.clear(); } + + ////////////////////////////////////////////// + // + // observers + // + ////////////////////////////////////////////// + + //! <b>Effects</b>: Returns the comparison object out + //! of which a was constructed. + //! + //! <b>Complexity</b>: Constant. + key_compare key_comp() const + { return m_flat_tree.key_comp(); } + + //! <b>Effects</b>: Returns an object of value_compare constructed out + //! of the comparison object. + //! + //! <b>Complexity</b>: Constant. + value_compare value_comp() const + { return m_flat_tree.key_comp(); } + + ////////////////////////////////////////////// + // + // set operations + // + ////////////////////////////////////////////// + + //! <b>Returns</b>: An iterator pointing to an element with the key + //! equivalent to x, or end() if such an element is not found. + //! + //! <b>Complexity</b>: Logarithmic. + iterator find(const key_type& x) + { return m_flat_tree.find(x); } + + //! <b>Returns</b>: Allocator const_iterator pointing to an element with the key + //! equivalent to x, or end() if such an element is not found. + //! + //! <b>Complexity</b>: Logarithmic.s + const_iterator find(const key_type& x) const + { return m_flat_tree.find(x); } + + //! <b>Returns</b>: The number of elements with key equivalent to x. + //! + //! <b>Complexity</b>: log(size())+count(k) + size_type count(const key_type& x) const + { return static_cast<size_type>(m_flat_tree.find(x) != m_flat_tree.end()); } + + //! <b>Returns</b>: An iterator pointing to the first element with key not less + //! than k, or a.end() if such an element is not found. + //! + //! <b>Complexity</b>: Logarithmic + iterator lower_bound(const key_type& x) + { return m_flat_tree.lower_bound(x); } + + //! <b>Returns</b>: Allocator const iterator pointing to the first element with key not + //! less than k, or a.end() if such an element is not found. + //! + //! <b>Complexity</b>: Logarithmic + const_iterator lower_bound(const key_type& x) const + { return m_flat_tree.lower_bound(x); } + + //! <b>Returns</b>: An iterator pointing to the first element with key not less + //! than x, or end() if such an element is not found. + //! + //! <b>Complexity</b>: Logarithmic + iterator upper_bound(const key_type& x) + { return m_flat_tree.upper_bound(x); } + + //! <b>Returns</b>: Allocator const iterator pointing to the first element with key not + //! less than x, or end() if such an element is not found. + //! + //! <b>Complexity</b>: Logarithmic + const_iterator upper_bound(const key_type& x) const + { return m_flat_tree.upper_bound(x); } + + //! <b>Effects</b>: Equivalent to std::make_pair(this->lower_bound(k), this->upper_bound(k)). + //! + //! <b>Complexity</b>: Logarithmic + std::pair<const_iterator, const_iterator> equal_range(const key_type& x) const + { return m_flat_tree.equal_range(x); } + + //! <b>Effects</b>: Equivalent to std::make_pair(this->lower_bound(k), this->upper_bound(k)). + //! + //! <b>Complexity</b>: Logarithmic + std::pair<iterator,iterator> equal_range(const key_type& x) + { return m_flat_tree.equal_range(x); } + + /// @cond + template <class K1, class C1, class A1> + friend bool operator== (const flat_set<K1,C1,A1>&, const flat_set<K1,C1,A1>&); + + template <class K1, class C1, class A1> + friend bool operator< (const flat_set<K1,C1,A1>&, const flat_set<K1,C1,A1>&); + + private: + template<class KeyType> + std::pair<iterator, bool> priv_insert(BOOST_FWD_REF(KeyType) x) + { return m_flat_tree.insert_unique(::boost::forward<KeyType>(x)); } + + template<class KeyType> + iterator priv_insert(const_iterator p, BOOST_FWD_REF(KeyType) x) + { return m_flat_tree.insert_unique(p, ::boost::forward<KeyType>(x)); } + /// @endcond +}; + +template <class Key, class Compare, class Allocator> +inline bool operator==(const flat_set<Key,Compare,Allocator>& x, + const flat_set<Key,Compare,Allocator>& y) + { return x.m_flat_tree == y.m_flat_tree; } + +template <class Key, class Compare, class Allocator> +inline bool operator<(const flat_set<Key,Compare,Allocator>& x, + const flat_set<Key,Compare,Allocator>& y) + { return x.m_flat_tree < y.m_flat_tree; } + +template <class Key, class Compare, class Allocator> +inline bool operator!=(const flat_set<Key,Compare,Allocator>& x, + const flat_set<Key,Compare,Allocator>& y) + { return !(x == y); } + +template <class Key, class Compare, class Allocator> +inline bool operator>(const flat_set<Key,Compare,Allocator>& x, + const flat_set<Key,Compare,Allocator>& y) + { return y < x; } + +template <class Key, class Compare, class Allocator> +inline bool operator<=(const flat_set<Key,Compare,Allocator>& x, + const flat_set<Key,Compare,Allocator>& y) + { return !(y < x); } + +template <class Key, class Compare, class Allocator> +inline bool operator>=(const flat_set<Key,Compare,Allocator>& x, + const flat_set<Key,Compare,Allocator>& y) + { return !(x < y); } + +template <class Key, class Compare, class Allocator> +inline void swap(flat_set<Key,Compare,Allocator>& x, flat_set<Key,Compare,Allocator>& y) + { x.swap(y); } + +/// @cond + +} //namespace container { + +//!has_trivial_destructor_after_move<> == true_type +//!specialization for optimizations +template <class Key, class C, class Allocator> +struct has_trivial_destructor_after_move<boost::container::flat_set<Key, C, Allocator> > +{ + static const bool value = has_trivial_destructor_after_move<Allocator>::value &&has_trivial_destructor_after_move<C>::value; +}; + +namespace container { + +// Forward declaration of operators < and ==, needed for friend declaration. + +#ifdef BOOST_CONTAINER_DOXYGEN_INVOKED +template <class Key, class Compare = std::less<Key>, class Allocator = std::allocator<Key> > +#else +template <class Key, class Compare, class Allocator> +#endif +class flat_multiset; + +template <class Key, class Compare, class Allocator> +inline bool operator==(const flat_multiset<Key,Compare,Allocator>& x, + const flat_multiset<Key,Compare,Allocator>& y); + +template <class Key, class Compare, class Allocator> +inline bool operator<(const flat_multiset<Key,Compare,Allocator>& x, + const flat_multiset<Key,Compare,Allocator>& y); +/// @endcond + +//! flat_multiset is a Sorted Associative Container that stores objects of type Key. +//! +//! flat_multiset can store multiple copies of the same key value. +//! +//! flat_multiset is similar to std::multiset but it's implemented like an ordered vector. +//! This means that inserting a new element into a flat_multiset invalidates +//! previous iterators and references +//! +//! Erasing an element invalidates iterators and references +//! pointing to elements that come after (their keys are bigger) the erased element. +//! +//! This container provides random-access iterators. +#ifdef BOOST_CONTAINER_DOXYGEN_INVOKED +template <class Key, class Compare = std::less<Key>, class Allocator = std::allocator<Key> > +#else +template <class Key, class Compare, class Allocator> +#endif +class flat_multiset +{ + /// @cond + private: + BOOST_COPYABLE_AND_MOVABLE(flat_multiset) + typedef container_detail::flat_tree<Key, Key, container_detail::identity<Key>, Compare, Allocator> tree_t; + tree_t m_flat_tree; // flat tree representing flat_multiset + /// @endcond + + public: + ////////////////////////////////////////////// + // + // types + // + ////////////////////////////////////////////// + typedef Key key_type; + typedef Key value_type; + typedef Compare key_compare; + typedef Compare value_compare; + typedef typename ::boost::container::allocator_traits<Allocator>::pointer pointer; + typedef typename ::boost::container::allocator_traits<Allocator>::const_pointer const_pointer; + typedef typename ::boost::container::allocator_traits<Allocator>::reference reference; + typedef typename ::boost::container::allocator_traits<Allocator>::const_reference const_reference; + typedef typename ::boost::container::allocator_traits<Allocator>::size_type size_type; + typedef typename ::boost::container::allocator_traits<Allocator>::difference_type difference_type; + typedef Allocator allocator_type; + typedef typename BOOST_CONTAINER_IMPDEF(tree_t::stored_allocator_type) stored_allocator_type; + typedef typename BOOST_CONTAINER_IMPDEF(tree_t::iterator) iterator; + typedef typename BOOST_CONTAINER_IMPDEF(tree_t::const_iterator) const_iterator; + typedef typename BOOST_CONTAINER_IMPDEF(tree_t::reverse_iterator) reverse_iterator; + typedef typename BOOST_CONTAINER_IMPDEF(tree_t::const_reverse_iterator) const_reverse_iterator; + + //! <b>Effects</b>: Default constructs an empty flat_multiset. + //! + //! <b>Complexity</b>: Constant. + explicit flat_multiset() + : m_flat_tree() + {} + + //! <b>Effects</b>: Constructs an empty flat_multiset using the specified + //! comparison object and allocator. + //! + //! <b>Complexity</b>: Constant. + explicit flat_multiset(const Compare& comp, + const allocator_type& a = allocator_type()) + : m_flat_tree(comp, a) + {} + + //! <b>Effects</b>: Constructs an empty flat_multiset using the specified allocator. + //! + //! <b>Complexity</b>: Constant. + explicit flat_multiset(const allocator_type& a) + : m_flat_tree(a) + {} + + template <class InputIterator> + flat_multiset(InputIterator first, InputIterator last, + const Compare& comp = Compare(), + const allocator_type& a = allocator_type()) + : m_flat_tree(false, first, last, comp, a) + {} + + //! <b>Effects</b>: Constructs an empty flat_multiset using the specified comparison object and + //! allocator, and inserts elements from the ordered range [first ,last ). This function + //! is more efficient than the normal range creation for ordered ranges. + //! + //! <b>Requires</b>: [first ,last) must be ordered according to the predicate. + //! + //! <b>Complexity</b>: Linear in N. + //! + //! <b>Note</b>: Non-standard extension. + template <class InputIterator> + flat_multiset(ordered_range_t, InputIterator first, InputIterator last, + const Compare& comp = Compare(), + const allocator_type& a = allocator_type()) + : m_flat_tree(ordered_range, first, last, comp, a) + {} + + //! <b>Effects</b>: Copy constructs a flat_multiset. + //! + //! <b>Complexity</b>: Linear in x.size(). + flat_multiset(const flat_multiset& x) + : m_flat_tree(x.m_flat_tree) + {} + + //! <b>Effects</b>: Move constructs a flat_multiset. Constructs *this using x's resources. + //! + //! <b>Complexity</b>: Constant. + //! + //! <b>Postcondition</b>: x is emptied. + flat_multiset(BOOST_RV_REF(flat_multiset) mx) + : m_flat_tree(boost::move(mx.m_flat_tree)) + {} + + //! <b>Effects</b>: Copy constructs a flat_multiset using the specified allocator. + //! + //! <b>Complexity</b>: Linear in x.size(). + flat_multiset(const flat_multiset& x, const allocator_type &a) + : m_flat_tree(x.m_flat_tree, a) + {} + + //! <b>Effects</b>: Move constructs a flat_multiset using the specified allocator. + //! Constructs *this using x's resources. + //! + //! <b>Complexity</b>: Constant if a == mx.get_allocator(), linear otherwise + flat_multiset(BOOST_RV_REF(flat_multiset) mx, const allocator_type &a) + : m_flat_tree(boost::move(mx.m_flat_tree), a) + {} + + //! <b>Effects</b>: Makes *this a copy of x. + //! + //! <b>Complexity</b>: Linear in x.size(). + flat_multiset& operator=(BOOST_COPY_ASSIGN_REF(flat_multiset) x) + { m_flat_tree = x.m_flat_tree; return *this; } + + //! <b>Effects</b>: Makes *this a copy of x. + //! + //! <b>Complexity</b>: Linear in x.size(). + flat_multiset& operator=(BOOST_RV_REF(flat_multiset) mx) + { m_flat_tree = boost::move(mx.m_flat_tree); return *this; } + + //! <b>Effects</b>: Returns a copy of the Allocator that + //! was passed to the object's constructor. + //! + //! <b>Complexity</b>: Constant. + allocator_type get_allocator() const BOOST_CONTAINER_NOEXCEPT + { return m_flat_tree.get_allocator(); } + + //! <b>Effects</b>: Returns a reference to the internal allocator. + //! + //! <b>Throws</b>: Nothing + //! + //! <b>Complexity</b>: Constant. + //! + //! <b>Note</b>: Non-standard extension. + stored_allocator_type &get_stored_allocator() BOOST_CONTAINER_NOEXCEPT + { return m_flat_tree.get_stored_allocator(); } + + //! <b>Effects</b>: Returns a reference to the internal allocator. + //! + //! <b>Throws</b>: Nothing + //! + //! <b>Complexity</b>: Constant. + //! + //! <b>Note</b>: Non-standard extension. + const stored_allocator_type &get_stored_allocator() const BOOST_CONTAINER_NOEXCEPT + { return m_flat_tree.get_stored_allocator(); } + + //! <b>Effects</b>: Returns an iterator to the first element contained in the container. + //! + //! <b>Throws</b>: Nothing. + //! + //! <b>Complexity</b>: Constant. + iterator begin() BOOST_CONTAINER_NOEXCEPT + { return m_flat_tree.begin(); } + + //! <b>Effects</b>: Returns a const_iterator to the first element contained in the container. + //! + //! <b>Throws</b>: Nothing. + //! + //! <b>Complexity</b>: Constant. + const_iterator begin() const + { return m_flat_tree.begin(); } + + //! <b>Effects</b>: Returns a const_iterator to the first element contained in the container. + //! + //! <b>Throws</b>: Nothing. + //! + //! <b>Complexity</b>: Constant. + const_iterator cbegin() const BOOST_CONTAINER_NOEXCEPT + { return m_flat_tree.cbegin(); } + + //! <b>Effects</b>: Returns an iterator to the end of the container. + //! + //! <b>Throws</b>: Nothing. + //! + //! <b>Complexity</b>: Constant. + iterator end() BOOST_CONTAINER_NOEXCEPT + { return m_flat_tree.end(); } + + //! <b>Effects</b>: Returns a const_iterator to the end of the container. + //! + //! <b>Throws</b>: Nothing. + //! + //! <b>Complexity</b>: Constant. + const_iterator end() const BOOST_CONTAINER_NOEXCEPT + { return m_flat_tree.end(); } + + //! <b>Effects</b>: Returns a const_iterator to the end of the container. + //! + //! <b>Throws</b>: Nothing. + //! + //! <b>Complexity</b>: Constant. + const_iterator cend() const BOOST_CONTAINER_NOEXCEPT + { return m_flat_tree.cend(); } + + //! <b>Effects</b>: Returns a reverse_iterator pointing to the beginning + //! of the reversed container. + //! + //! <b>Throws</b>: Nothing. + //! + //! <b>Complexity</b>: Constant. + reverse_iterator rbegin() BOOST_CONTAINER_NOEXCEPT + { return m_flat_tree.rbegin(); } + + //! <b>Effects</b>: Returns a const_reverse_iterator pointing to the beginning + //! of the reversed container. + //! + //! <b>Throws</b>: Nothing. + //! + //! <b>Complexity</b>: Constant. + const_reverse_iterator rbegin() const BOOST_CONTAINER_NOEXCEPT + { return m_flat_tree.rbegin(); } + + //! <b>Effects</b>: Returns a const_reverse_iterator pointing to the beginning + //! of the reversed container. + //! + //! <b>Throws</b>: Nothing. + //! + //! <b>Complexity</b>: Constant. + const_reverse_iterator crbegin() const BOOST_CONTAINER_NOEXCEPT + { return m_flat_tree.crbegin(); } + + //! <b>Effects</b>: Returns a reverse_iterator pointing to the end + //! of the reversed container. + //! + //! <b>Throws</b>: Nothing. + //! + //! <b>Complexity</b>: Constant. + reverse_iterator rend() BOOST_CONTAINER_NOEXCEPT + { return m_flat_tree.rend(); } + + //! <b>Effects</b>: Returns a const_reverse_iterator pointing to the end + //! of the reversed container. + //! + //! <b>Throws</b>: Nothing. + //! + //! <b>Complexity</b>: Constant. + const_reverse_iterator rend() const BOOST_CONTAINER_NOEXCEPT + { return m_flat_tree.rend(); } + + //! <b>Effects</b>: Returns a const_reverse_iterator pointing to the end + //! of the reversed container. + //! + //! <b>Throws</b>: Nothing. + //! + //! <b>Complexity</b>: Constant. + const_reverse_iterator crend() const BOOST_CONTAINER_NOEXCEPT + { return m_flat_tree.crend(); } + + ////////////////////////////////////////////// + // + // capacity + // + ////////////////////////////////////////////// + + //! <b>Effects</b>: Returns true if the container contains no elements. + //! + //! <b>Throws</b>: Nothing. + //! + //! <b>Complexity</b>: Constant. + bool empty() const BOOST_CONTAINER_NOEXCEPT + { return m_flat_tree.empty(); } + + //! <b>Effects</b>: Returns the number of the elements contained in the container. + //! + //! <b>Throws</b>: Nothing. + //! + //! <b>Complexity</b>: Constant. + size_type size() const BOOST_CONTAINER_NOEXCEPT + { return m_flat_tree.size(); } + + //! <b>Effects</b>: Returns the largest possible size of the container. + //! + //! <b>Throws</b>: Nothing. + //! + //! <b>Complexity</b>: Constant. + size_type max_size() const BOOST_CONTAINER_NOEXCEPT + { return m_flat_tree.max_size(); } + + //! <b>Effects</b>: Number of elements for which memory has been allocated. + //! capacity() is always greater than or equal to size(). + //! + //! <b>Throws</b>: Nothing. + //! + //! <b>Complexity</b>: Constant. + size_type capacity() const BOOST_CONTAINER_NOEXCEPT + { return m_flat_tree.capacity(); } + + //! <b>Effects</b>: If n is less than or equal to capacity(), this call has no + //! effect. Otherwise, it is a request for allocation of additional memory. + //! If the request is successful, then capacity() is greater than or equal to + //! n; otherwise, capacity() is unchanged. In either case, size() is unchanged. + //! + //! <b>Throws</b>: If memory allocation allocation throws or Key's copy constructor throws. + //! + //! <b>Note</b>: If capacity() is less than "cnt", iterators and references to + //! to values might be invalidated. + void reserve(size_type cnt) + { m_flat_tree.reserve(cnt); } + + //! <b>Effects</b>: Tries to deallocate the excess of memory created + // with previous allocations. The size of the vector is unchanged + //! + //! <b>Throws</b>: If memory allocation throws, or Key's copy constructor throws. + //! + //! <b>Complexity</b>: Linear to size(). + void shrink_to_fit() + { m_flat_tree.shrink_to_fit(); } + + ////////////////////////////////////////////// + // + // modifiers + // + ////////////////////////////////////////////// + + #if defined(BOOST_CONTAINER_PERFECT_FORWARDING) || defined(BOOST_CONTAINER_DOXYGEN_INVOKED) + + //! <b>Effects</b>: Inserts an object of type Key constructed with + //! std::forward<Args>(args)... and returns the iterator pointing to the + //! newly inserted element. + //! + //! <b>Complexity</b>: Logarithmic search time plus linear insertion + //! to the elements with bigger keys than x. + //! + //! <b>Note</b>: If an element is inserted it might invalidate elements. + template <class... Args> + iterator emplace(Args&&... args) + { return m_flat_tree.emplace_equal(boost::forward<Args>(args)...); } + + //! <b>Effects</b>: Inserts an object of type Key constructed with + //! std::forward<Args>(args)... in the container. + //! p is a hint pointing to where the insert should start to search. + //! + //! <b>Returns</b>: An iterator pointing to the element with key equivalent + //! to the key of x. + //! + //! <b>Complexity</b>: Logarithmic search time (constant if x is inserted + //! right before p) plus insertion linear to the elements with bigger keys than x. + //! + //! <b>Note</b>: If an element is inserted it might invalidate elements. + template <class... Args> + iterator emplace_hint(const_iterator hint, Args&&... args) + { return m_flat_tree.emplace_hint_equal(hint, boost::forward<Args>(args)...); } + + #else //#ifdef BOOST_CONTAINER_PERFECT_FORWARDING + + #define BOOST_PP_LOCAL_MACRO(n) \ + BOOST_PP_EXPR_IF(n, template<) BOOST_PP_ENUM_PARAMS(n, class P) BOOST_PP_EXPR_IF(n, >) \ + iterator emplace(BOOST_PP_ENUM(n, BOOST_CONTAINER_PP_PARAM_LIST, _)) \ + { return m_flat_tree.emplace_equal(BOOST_PP_ENUM(n, BOOST_CONTAINER_PP_PARAM_FORWARD, _)); } \ + \ + BOOST_PP_EXPR_IF(n, template<) BOOST_PP_ENUM_PARAMS(n, class P) BOOST_PP_EXPR_IF(n, >) \ + iterator emplace_hint(const_iterator hint \ + BOOST_PP_ENUM_TRAILING(n, BOOST_CONTAINER_PP_PARAM_LIST, _)) \ + { return m_flat_tree.emplace_hint_equal \ + (hint BOOST_PP_ENUM_TRAILING(n, BOOST_CONTAINER_PP_PARAM_FORWARD, _)); } \ + //! + #define BOOST_PP_LOCAL_LIMITS (0, BOOST_CONTAINER_MAX_CONSTRUCTOR_PARAMETERS) + #include BOOST_PP_LOCAL_ITERATE() + + #endif //#ifdef BOOST_CONTAINER_PERFECT_FORWARDING + + #if defined(BOOST_CONTAINER_DOXYGEN_INVOKED) + //! <b>Effects</b>: Inserts x and returns the iterator pointing to the + //! newly inserted element. + //! + //! <b>Complexity</b>: Logarithmic search time plus linear insertion + //! to the elements with bigger keys than x. + //! + //! <b>Note</b>: If an element is inserted it might invalidate elements. + iterator insert(const value_type &x); + + //! <b>Effects</b>: Inserts a new value_type move constructed from x + //! and returns the iterator pointing to the newly inserted element. + //! + //! <b>Complexity</b>: Logarithmic search time plus linear insertion + //! to the elements with bigger keys than x. + //! + //! <b>Note</b>: If an element is inserted it might invalidate elements. + iterator insert(value_type &&x); + #else + BOOST_MOVE_CONVERSION_AWARE_CATCH(insert, value_type, iterator, this->priv_insert) + #endif + + #if defined(BOOST_CONTAINER_DOXYGEN_INVOKED) + //! <b>Effects</b>: Inserts a copy of x in the container. + //! p is a hint pointing to where the insert should start to search. + //! + //! <b>Returns</b>: An iterator pointing to the element with key equivalent + //! to the key of x. + //! + //! <b>Complexity</b>: Logarithmic search time (constant if x is inserted + //! right before p) plus insertion linear to the elements with bigger keys than x. + //! + //! <b>Note</b>: If an element is inserted it might invalidate elements. + iterator insert(const_iterator p, const value_type &x); + + //! <b>Effects</b>: Inserts a new value move constructed from x in the container. + //! p is a hint pointing to where the insert should start to search. + //! + //! <b>Returns</b>: An iterator pointing to the element with key equivalent + //! to the key of x. + //! + //! <b>Complexity</b>: Logarithmic search time (constant if x is inserted + //! right before p) plus insertion linear to the elements with bigger keys than x. + //! + //! <b>Note</b>: If an element is inserted it might invalidate elements. + iterator insert(const_iterator position, value_type &&x); + #else + BOOST_MOVE_CONVERSION_AWARE_CATCH_1ARG(insert, value_type, iterator, this->priv_insert, const_iterator, const_iterator) + #endif + + //! <b>Requires</b>: first, last are not iterators into *this. + //! + //! <b>Effects</b>: inserts each element from the range [first,last) . + //! + //! <b>Complexity</b>: At most N log(size()+N) (N is the distance from first to last) + //! search time plus N*size() insertion time. + //! + //! <b>Note</b>: If an element is inserted it might invalidate elements. + template <class InputIterator> + void insert(InputIterator first, InputIterator last) + { m_flat_tree.insert_equal(first, last); } + + //! <b>Requires</b>: first, last are not iterators into *this and + //! must be ordered according to the predicate. + //! + //! <b>Effects</b>: inserts each element from the range [first,last) .This function + //! is more efficient than the normal range creation for ordered ranges. + //! + //! <b>Complexity</b>: At most N log(size()+N) (N is the distance from first to last) + //! search time plus N*size() insertion time. + //! + //! <b>Note</b>: Non-standard extension. If an element is inserted it might invalidate elements. + template <class InputIterator> + void insert(ordered_range_t, InputIterator first, InputIterator last) + { m_flat_tree.insert_equal(ordered_range, first, last); } + + //! <b>Effects</b>: Erases the element pointed to by position. + //! + //! <b>Returns</b>: Returns an iterator pointing to the element immediately + //! following q prior to the element being erased. If no such element exists, + //! returns end(). + //! + //! <b>Complexity</b>: Linear to the elements with keys bigger than position + //! + //! <b>Note</b>: Invalidates elements with keys + //! not less than the erased element. + iterator erase(const_iterator position) + { return m_flat_tree.erase(position); } + + //! <b>Effects</b>: Erases all elements in the container with key equivalent to x. + //! + //! <b>Returns</b>: Returns the number of erased elements. + //! + //! <b>Complexity</b>: Logarithmic search time plus erasure time + //! linear to the elements with bigger keys. + size_type erase(const key_type& x) + { return m_flat_tree.erase(x); } + + //! <b>Effects</b>: Erases all the elements in the range [first, last). + //! + //! <b>Returns</b>: Returns last. + //! + //! <b>Complexity</b>: size()*N where N is the distance from first to last. + //! + //! <b>Complexity</b>: Logarithmic search time plus erasure time + //! linear to the elements with bigger keys. + iterator erase(const_iterator first, const_iterator last) + { return m_flat_tree.erase(first, last); } + + //! <b>Effects</b>: Swaps the contents of *this and x. + //! + //! <b>Throws</b>: Nothing. + //! + //! <b>Complexity</b>: Constant. + void swap(flat_multiset& x) + { m_flat_tree.swap(x.m_flat_tree); } + + //! <b>Effects</b>: erase(a.begin(),a.end()). + //! + //! <b>Postcondition</b>: size() == 0. + //! + //! <b>Complexity</b>: linear in size(). + void clear() BOOST_CONTAINER_NOEXCEPT + { m_flat_tree.clear(); } + + ////////////////////////////////////////////// + // + // observers + // + ////////////////////////////////////////////// + + //! <b>Effects</b>: Returns the comparison object out + //! of which a was constructed. + //! + //! <b>Complexity</b>: Constant. + key_compare key_comp() const + { return m_flat_tree.key_comp(); } + + //! <b>Effects</b>: Returns an object of value_compare constructed out + //! of the comparison object. + //! + //! <b>Complexity</b>: Constant. + value_compare value_comp() const + { return m_flat_tree.key_comp(); } + + ////////////////////////////////////////////// + // + // set operations + // + ////////////////////////////////////////////// + + //! <b>Returns</b>: An iterator pointing to an element with the key + //! equivalent to x, or end() if such an element is not found. + //! + //! <b>Complexity</b>: Logarithmic. + iterator find(const key_type& x) + { return m_flat_tree.find(x); } + + //! <b>Returns</b>: Allocator const_iterator pointing to an element with the key + //! equivalent to x, or end() if such an element is not found. + //! + //! <b>Complexity</b>: Logarithmic.s + const_iterator find(const key_type& x) const + { return m_flat_tree.find(x); } + + //! <b>Returns</b>: The number of elements with key equivalent to x. + //! + //! <b>Complexity</b>: log(size())+count(k) + size_type count(const key_type& x) const + { return m_flat_tree.count(x); } + + //! <b>Returns</b>: An iterator pointing to the first element with key not less + //! than k, or a.end() if such an element is not found. + //! + //! <b>Complexity</b>: Logarithmic + iterator lower_bound(const key_type& x) + { return m_flat_tree.lower_bound(x); } + + //! <b>Returns</b>: Allocator const iterator pointing to the first element with key not + //! less than k, or a.end() if such an element is not found. + //! + //! <b>Complexity</b>: Logarithmic + const_iterator lower_bound(const key_type& x) const + { return m_flat_tree.lower_bound(x); } + + //! <b>Returns</b>: An iterator pointing to the first element with key not less + //! than x, or end() if such an element is not found. + //! + //! <b>Complexity</b>: Logarithmic + iterator upper_bound(const key_type& x) + { return m_flat_tree.upper_bound(x); } + + //! <b>Returns</b>: Allocator const iterator pointing to the first element with key not + //! less than x, or end() if such an element is not found. + //! + //! <b>Complexity</b>: Logarithmic + const_iterator upper_bound(const key_type& x) const + { return m_flat_tree.upper_bound(x); } + + //! <b>Effects</b>: Equivalent to std::make_pair(this->lower_bound(k), this->upper_bound(k)). + //! + //! <b>Complexity</b>: Logarithmic + std::pair<const_iterator, const_iterator> equal_range(const key_type& x) const + { return m_flat_tree.equal_range(x); } + + //! <b>Effects</b>: Equivalent to std::make_pair(this->lower_bound(k), this->upper_bound(k)). + //! + //! <b>Complexity</b>: Logarithmic + std::pair<iterator,iterator> equal_range(const key_type& x) + { return m_flat_tree.equal_range(x); } + + /// @cond + template <class K1, class C1, class A1> + friend bool operator== (const flat_multiset<K1,C1,A1>&, + const flat_multiset<K1,C1,A1>&); + template <class K1, class C1, class A1> + friend bool operator< (const flat_multiset<K1,C1,A1>&, + const flat_multiset<K1,C1,A1>&); + private: + template <class KeyType> + iterator priv_insert(BOOST_FWD_REF(KeyType) x) + { return m_flat_tree.insert_equal(::boost::forward<KeyType>(x)); } + + template <class KeyType> + iterator priv_insert(const_iterator p, BOOST_FWD_REF(KeyType) x) + { return m_flat_tree.insert_equal(p, ::boost::forward<KeyType>(x)); } + /// @endcond +}; + +template <class Key, class Compare, class Allocator> +inline bool operator==(const flat_multiset<Key,Compare,Allocator>& x, + const flat_multiset<Key,Compare,Allocator>& y) + { return x.m_flat_tree == y.m_flat_tree; } + +template <class Key, class Compare, class Allocator> +inline bool operator<(const flat_multiset<Key,Compare,Allocator>& x, + const flat_multiset<Key,Compare,Allocator>& y) + { return x.m_flat_tree < y.m_flat_tree; } + +template <class Key, class Compare, class Allocator> +inline bool operator!=(const flat_multiset<Key,Compare,Allocator>& x, + const flat_multiset<Key,Compare,Allocator>& y) + { return !(x == y); } + +template <class Key, class Compare, class Allocator> +inline bool operator>(const flat_multiset<Key,Compare,Allocator>& x, + const flat_multiset<Key,Compare,Allocator>& y) + { return y < x; } + +template <class Key, class Compare, class Allocator> +inline bool operator<=(const flat_multiset<Key,Compare,Allocator>& x, + const flat_multiset<Key,Compare,Allocator>& y) + { return !(y < x); } + +template <class Key, class Compare, class Allocator> +inline bool operator>=(const flat_multiset<Key,Compare,Allocator>& x, + const flat_multiset<Key,Compare,Allocator>& y) +{ return !(x < y); } + +template <class Key, class Compare, class Allocator> +inline void swap(flat_multiset<Key,Compare,Allocator>& x, flat_multiset<Key,Compare,Allocator>& y) + { x.swap(y); } + +/// @cond + +} //namespace container { + +//!has_trivial_destructor_after_move<> == true_type +//!specialization for optimizations +template <class Key, class C, class Allocator> +struct has_trivial_destructor_after_move<boost::container::flat_multiset<Key, C, Allocator> > +{ + static const bool value = has_trivial_destructor_after_move<Allocator>::value && has_trivial_destructor_after_move<C>::value; +}; + +namespace container { + +/// @endcond + +}} + +#include <boost/container/detail/config_end.hpp> + +#endif /* BOOST_CONTAINER_FLAT_SET_HPP */