Mercurial > hg > vamp-build-and-test
comparison DEPENDENCIES/generic/include/boost/math/special_functions/trigamma.hpp @ 102:f46d142149f5
Whoops, finish that update
author | Chris Cannam |
---|---|
date | Mon, 07 Sep 2015 11:13:41 +0100 |
parents | |
children |
comparison
equal
deleted
inserted
replaced
101:c530137014c0 | 102:f46d142149f5 |
---|---|
1 // (C) Copyright John Maddock 2006. | |
2 // Use, modification and distribution are subject to the | |
3 // Boost Software License, Version 1.0. (See accompanying file | |
4 // LICENSE_1_0.txt or copy at http://www.boost.org/LICENSE_1_0.txt) | |
5 | |
6 #ifndef BOOST_MATH_SF_TRIGAMMA_HPP | |
7 #define BOOST_MATH_SF_TRIGAMMA_HPP | |
8 | |
9 #ifdef _MSC_VER | |
10 #pragma once | |
11 #endif | |
12 | |
13 #include <boost/math/special_functions/math_fwd.hpp> | |
14 #include <boost/math/tools/rational.hpp> | |
15 #include <boost/math/tools/series.hpp> | |
16 #include <boost/math/tools/promotion.hpp> | |
17 #include <boost/math/policies/error_handling.hpp> | |
18 #include <boost/math/constants/constants.hpp> | |
19 #include <boost/mpl/comparison.hpp> | |
20 #include <boost/math/tools/big_constant.hpp> | |
21 #include <boost/math/special_functions/polygamma.hpp> | |
22 | |
23 namespace boost{ | |
24 namespace math{ | |
25 namespace detail{ | |
26 | |
27 template<class T, class Policy> | |
28 T polygamma_imp(const int n, T x, const Policy &pol); | |
29 | |
30 template <class T, class Policy> | |
31 T trigamma_prec(T x, const mpl::int_<53>*, const Policy&) | |
32 { | |
33 // Max error in interpolated form: 3.736e-017 | |
34 static const T offset = BOOST_MATH_BIG_CONSTANT(T, 53, 2.1093254089355469); | |
35 static const T P_1_2[] = { | |
36 BOOST_MATH_BIG_CONSTANT(T, 53, -1.1093280605946045), | |
37 BOOST_MATH_BIG_CONSTANT(T, 53, -3.8310674472619321), | |
38 BOOST_MATH_BIG_CONSTANT(T, 53, -3.3703848401898283), | |
39 BOOST_MATH_BIG_CONSTANT(T, 53, 0.28080574467981213), | |
40 BOOST_MATH_BIG_CONSTANT(T, 53, 1.6638069578676164), | |
41 BOOST_MATH_BIG_CONSTANT(T, 53, 0.64468386819102836), | |
42 }; | |
43 static const T Q_1_2[] = { | |
44 BOOST_MATH_BIG_CONSTANT(T, 53, 1.0), | |
45 BOOST_MATH_BIG_CONSTANT(T, 53, 3.4535389668541151), | |
46 BOOST_MATH_BIG_CONSTANT(T, 53, 4.5208926987851437), | |
47 BOOST_MATH_BIG_CONSTANT(T, 53, 2.7012734178351534), | |
48 BOOST_MATH_BIG_CONSTANT(T, 53, 0.64468798399785611), | |
49 BOOST_MATH_BIG_CONSTANT(T, 53, -0.20314516859987728e-6), | |
50 }; | |
51 // Max error in interpolated form: 1.159e-017 | |
52 static const T P_2_4[] = { | |
53 BOOST_MATH_BIG_CONSTANT(T, 53, -0.13803835004508849e-7), | |
54 BOOST_MATH_BIG_CONSTANT(T, 53, 0.50000049158540261), | |
55 BOOST_MATH_BIG_CONSTANT(T, 53, 1.6077979838469348), | |
56 BOOST_MATH_BIG_CONSTANT(T, 53, 2.5645435828098254), | |
57 BOOST_MATH_BIG_CONSTANT(T, 53, 2.0534873203680393), | |
58 BOOST_MATH_BIG_CONSTANT(T, 53, 0.74566981111565923), | |
59 }; | |
60 static const T Q_2_4[] = { | |
61 BOOST_MATH_BIG_CONSTANT(T, 53, 1.0), | |
62 BOOST_MATH_BIG_CONSTANT(T, 53, 2.8822787662376169), | |
63 BOOST_MATH_BIG_CONSTANT(T, 53, 4.1681660554090917), | |
64 BOOST_MATH_BIG_CONSTANT(T, 53, 2.7853527819234466), | |
65 BOOST_MATH_BIG_CONSTANT(T, 53, 0.74967671848044792), | |
66 BOOST_MATH_BIG_CONSTANT(T, 53, -0.00057069112416246805), | |
67 }; | |
68 // Maximum Deviation Found: 6.896e-018 | |
69 // Expected Error Term : -6.895e-018 | |
70 // Maximum Relative Change in Control Points : 8.497e-004 | |
71 static const T P_4_inf[] = { | |
72 0.68947581948701249e-17L, | |
73 0.49999999999998975L, | |
74 1.0177274392923795L, | |
75 2.498208511343429L, | |
76 2.1921221359427595L, | |
77 1.5897035272532764L, | |
78 0.40154388356961734L, | |
79 }; | |
80 static const T Q_4_inf[] = { | |
81 1.0L, | |
82 1.7021215452463932L, | |
83 4.4290431747556469L, | |
84 2.9745631894384922L, | |
85 2.3013614809773616L, | |
86 0.28360399799075752L, | |
87 0.022892987908906897L, | |
88 }; | |
89 | |
90 if(x <= 2) | |
91 { | |
92 return (offset + boost::math::tools::evaluate_polynomial(P_1_2, x) / tools::evaluate_polynomial(Q_1_2, x)) / (x * x); | |
93 } | |
94 else if(x <= 4) | |
95 { | |
96 T y = 1 / x; | |
97 return (1 + tools::evaluate_polynomial(P_2_4, y) / tools::evaluate_polynomial(Q_2_4, y)) / x; | |
98 } | |
99 T y = 1 / x; | |
100 return (1 + tools::evaluate_polynomial(P_4_inf, y) / tools::evaluate_polynomial(Q_4_inf, y)) / x; | |
101 } | |
102 | |
103 template <class T, class Policy> | |
104 T trigamma_prec(T x, const mpl::int_<64>*, const Policy&) | |
105 { | |
106 // Max error in interpolated form: 1.178e-020 | |
107 static const T offset_1_2 = BOOST_MATH_BIG_CONSTANT(T, 64, 2.109325408935546875); | |
108 static const T P_1_2[] = { | |
109 BOOST_MATH_BIG_CONSTANT(T, 64, -1.10932535608960258341), | |
110 BOOST_MATH_BIG_CONSTANT(T, 64, -4.18793841543017129052), | |
111 BOOST_MATH_BIG_CONSTANT(T, 64, -4.63865531898487734531), | |
112 BOOST_MATH_BIG_CONSTANT(T, 64, -0.919832884430500908047), | |
113 BOOST_MATH_BIG_CONSTANT(T, 64, 1.68074038333180423012), | |
114 BOOST_MATH_BIG_CONSTANT(T, 64, 1.21172611429185622377), | |
115 BOOST_MATH_BIG_CONSTANT(T, 64, 0.259635673503366427284), | |
116 }; | |
117 static const T Q_1_2[] = { | |
118 BOOST_MATH_BIG_CONSTANT(T, 64, 1.0), | |
119 BOOST_MATH_BIG_CONSTANT(T, 64, 3.77521119359546982995), | |
120 BOOST_MATH_BIG_CONSTANT(T, 64, 5.664338024578956321), | |
121 BOOST_MATH_BIG_CONSTANT(T, 64, 4.25995134879278028361), | |
122 BOOST_MATH_BIG_CONSTANT(T, 64, 1.62956638448940402182), | |
123 BOOST_MATH_BIG_CONSTANT(T, 64, 0.259635512844691089868), | |
124 BOOST_MATH_BIG_CONSTANT(T, 64, 0.629642219810618032207e-8), | |
125 }; | |
126 // Max error in interpolated form: 3.912e-020 | |
127 static const T P_2_8[] = { | |
128 BOOST_MATH_BIG_CONSTANT(T, 64, -0.387540035162952880976e-11), | |
129 BOOST_MATH_BIG_CONSTANT(T, 64, 0.500000000276430504), | |
130 BOOST_MATH_BIG_CONSTANT(T, 64, 3.21926880986360957306), | |
131 BOOST_MATH_BIG_CONSTANT(T, 64, 10.2550347708483445775), | |
132 BOOST_MATH_BIG_CONSTANT(T, 64, 18.9002075150709144043), | |
133 BOOST_MATH_BIG_CONSTANT(T, 64, 21.0357215832399705625), | |
134 BOOST_MATH_BIG_CONSTANT(T, 64, 13.4346512182925923978), | |
135 BOOST_MATH_BIG_CONSTANT(T, 64, 3.98656291026448279118), | |
136 }; | |
137 static const T Q_2_8[] = { | |
138 BOOST_MATH_BIG_CONSTANT(T, 64, 1.0), | |
139 BOOST_MATH_BIG_CONSTANT(T, 64, 6.10520430478613667724), | |
140 BOOST_MATH_BIG_CONSTANT(T, 64, 18.475001060603645512), | |
141 BOOST_MATH_BIG_CONSTANT(T, 64, 31.7087534567758405638), | |
142 BOOST_MATH_BIG_CONSTANT(T, 64, 31.908814523890465398), | |
143 BOOST_MATH_BIG_CONSTANT(T, 64, 17.4175479039227084798), | |
144 BOOST_MATH_BIG_CONSTANT(T, 64, 3.98749106958394941276), | |
145 BOOST_MATH_BIG_CONSTANT(T, 64, -0.000115917322224411128566), | |
146 }; | |
147 // Maximum Deviation Found: 2.635e-020 | |
148 // Expected Error Term : 2.635e-020 | |
149 // Maximum Relative Change in Control Points : 1.791e-003 | |
150 static const T P_8_inf[] = { | |
151 BOOST_MATH_BIG_CONSTANT(T, 64, -0.263527875092466899848e-19), | |
152 BOOST_MATH_BIG_CONSTANT(T, 64, 0.500000000000000058145), | |
153 BOOST_MATH_BIG_CONSTANT(T, 64, 0.0730121433777364138677), | |
154 BOOST_MATH_BIG_CONSTANT(T, 64, 1.94505878379957149534), | |
155 BOOST_MATH_BIG_CONSTANT(T, 64, 0.0517092358874932620529), | |
156 BOOST_MATH_BIG_CONSTANT(T, 64, 1.07995383547483921121), | |
157 }; | |
158 static const T Q_8_inf[] = { | |
159 BOOST_MATH_BIG_CONSTANT(T, 64, 1.0), | |
160 BOOST_MATH_BIG_CONSTANT(T, 64, -0.187309046577818095504), | |
161 BOOST_MATH_BIG_CONSTANT(T, 64, 3.95255391645238842975), | |
162 BOOST_MATH_BIG_CONSTANT(T, 64, -1.14743283327078949087), | |
163 BOOST_MATH_BIG_CONSTANT(T, 64, 2.52989799376344914499), | |
164 BOOST_MATH_BIG_CONSTANT(T, 64, -0.627414303172402506396), | |
165 BOOST_MATH_BIG_CONSTANT(T, 64, 0.141554248216425512536), | |
166 }; | |
167 | |
168 if(x <= 2) | |
169 { | |
170 return (offset_1_2 + boost::math::tools::evaluate_polynomial(P_1_2, x) / tools::evaluate_polynomial(Q_1_2, x)) / (x * x); | |
171 } | |
172 else if(x <= 8) | |
173 { | |
174 T y = 1 / x; | |
175 return (1 + tools::evaluate_polynomial(P_2_8, y) / tools::evaluate_polynomial(Q_2_8, y)) / x; | |
176 } | |
177 T y = 1 / x; | |
178 return (1 + tools::evaluate_polynomial(P_8_inf, y) / tools::evaluate_polynomial(Q_8_inf, y)) / x; | |
179 } | |
180 | |
181 template <class T, class Policy> | |
182 T trigamma_prec(T x, const mpl::int_<113>*, const Policy&) | |
183 { | |
184 // Max error in interpolated form: 1.916e-035 | |
185 | |
186 static const T P_1_2[] = { | |
187 BOOST_MATH_BIG_CONSTANT(T, 113, -0.999999999999999082554457936871832533), | |
188 BOOST_MATH_BIG_CONSTANT(T, 113, -4.71237311120865266379041700054847734), | |
189 BOOST_MATH_BIG_CONSTANT(T, 113, -7.94125711970499027763789342500817316), | |
190 BOOST_MATH_BIG_CONSTANT(T, 113, -5.74657746697664735258222071695644535), | |
191 BOOST_MATH_BIG_CONSTANT(T, 113, -0.404213349456398905981223965160595687), | |
192 BOOST_MATH_BIG_CONSTANT(T, 113, 2.47877781178642876561595890095758896), | |
193 BOOST_MATH_BIG_CONSTANT(T, 113, 2.07714151702455125992166949812126433), | |
194 BOOST_MATH_BIG_CONSTANT(T, 113, 0.858877899162360138844032265418028567), | |
195 BOOST_MATH_BIG_CONSTANT(T, 113, 0.20499222604410032375789018837922397), | |
196 BOOST_MATH_BIG_CONSTANT(T, 113, 0.0272103140348194747360175268778415049), | |
197 BOOST_MATH_BIG_CONSTANT(T, 113, 0.0015764849020876949848954081173520686), | |
198 }; | |
199 static const T Q_1_2[] = { | |
200 BOOST_MATH_BIG_CONSTANT(T, 113, 1.0), | |
201 BOOST_MATH_BIG_CONSTANT(T, 113, 4.71237311120863419878375031457715223), | |
202 BOOST_MATH_BIG_CONSTANT(T, 113, 9.58619118655339853449127952145877467), | |
203 BOOST_MATH_BIG_CONSTANT(T, 113, 11.0940067269829372437561421279054968), | |
204 BOOST_MATH_BIG_CONSTANT(T, 113, 8.09075424749327792073276309969037885), | |
205 BOOST_MATH_BIG_CONSTANT(T, 113, 3.87705890159891405185343806884451286), | |
206 BOOST_MATH_BIG_CONSTANT(T, 113, 1.22758678701914477836330837816976782), | |
207 BOOST_MATH_BIG_CONSTANT(T, 113, 0.249092040606385004109672077814668716), | |
208 BOOST_MATH_BIG_CONSTANT(T, 113, 0.0295750413900655597027079600025569048), | |
209 BOOST_MATH_BIG_CONSTANT(T, 113, 0.00157648490200498142247694709728858139), | |
210 BOOST_MATH_BIG_CONSTANT(T, 113, 0.161264050344059471721062360645432809e-14), | |
211 }; | |
212 | |
213 // Max error in interpolated form: 8.958e-035 | |
214 static const T P_2_4[] = { | |
215 BOOST_MATH_BIG_CONSTANT(T, 113, -2.55843734739907925764326773972215085), | |
216 BOOST_MATH_BIG_CONSTANT(T, 113, -12.2830208240542011967952466273455887), | |
217 BOOST_MATH_BIG_CONSTANT(T, 113, -23.9195022162767993526575786066414403), | |
218 BOOST_MATH_BIG_CONSTANT(T, 113, -24.9256431504823483094158828285470862), | |
219 BOOST_MATH_BIG_CONSTANT(T, 113, -14.7979122765478779075108064826412285), | |
220 BOOST_MATH_BIG_CONSTANT(T, 113, -4.46654453928610666393276765059122272), | |
221 BOOST_MATH_BIG_CONSTANT(T, 113, -0.0191439033405649675717082465687845002), | |
222 BOOST_MATH_BIG_CONSTANT(T, 113, 0.515412052554351265708917209749037352), | |
223 BOOST_MATH_BIG_CONSTANT(T, 113, 0.195378348786064304378247325360320038), | |
224 BOOST_MATH_BIG_CONSTANT(T, 113, 0.0334761282624174313035014426794245393), | |
225 BOOST_MATH_BIG_CONSTANT(T, 113, 0.002373665205942206348500250056602687), | |
226 }; | |
227 static const T Q_2_4[] = { | |
228 BOOST_MATH_BIG_CONSTANT(T, 113, 1.0), | |
229 BOOST_MATH_BIG_CONSTANT(T, 113, 4.80098558454419907830670928248659245), | |
230 BOOST_MATH_BIG_CONSTANT(T, 113, 9.99220727843170133895059300223445265), | |
231 BOOST_MATH_BIG_CONSTANT(T, 113, 11.8896146167631330735386697123464976), | |
232 BOOST_MATH_BIG_CONSTANT(T, 113, 8.96613256683809091593793565879092581), | |
233 BOOST_MATH_BIG_CONSTANT(T, 113, 4.47254136149624110878909334574485751), | |
234 BOOST_MATH_BIG_CONSTANT(T, 113, 1.48600982028196527372434773913633152), | |
235 BOOST_MATH_BIG_CONSTANT(T, 113, 0.319570735766764237068541501137990078), | |
236 BOOST_MATH_BIG_CONSTANT(T, 113, 0.0407358345787680953107374215319322066), | |
237 BOOST_MATH_BIG_CONSTANT(T, 113, 0.00237366520593271641375755486420859837), | |
238 BOOST_MATH_BIG_CONSTANT(T, 113, 0.239554887903526152679337256236302116e-15), | |
239 BOOST_MATH_BIG_CONSTANT(T, 113, -0.294749244740618656265237072002026314e-17), | |
240 }; | |
241 | |
242 static const T y_offset_2_4 = BOOST_MATH_BIG_CONSTANT(T, 113, 3.558437347412109375); | |
243 | |
244 // Max error in interpolated form: 4.319e-035 | |
245 static const T P_4_8[] = { | |
246 BOOST_MATH_BIG_CONSTANT(T, 113, 0.166626112697021464248967707021688845e-16), | |
247 BOOST_MATH_BIG_CONSTANT(T, 113, 0.499999999999997739552090249208808197), | |
248 BOOST_MATH_BIG_CONSTANT(T, 113, 6.40270945019053817915772473771553187), | |
249 BOOST_MATH_BIG_CONSTANT(T, 113, 41.3833374155000608013677627389343329), | |
250 BOOST_MATH_BIG_CONSTANT(T, 113, 166.803341854562809335667241074035245), | |
251 BOOST_MATH_BIG_CONSTANT(T, 113, 453.39964786925369319960722793414521), | |
252 BOOST_MATH_BIG_CONSTANT(T, 113, 851.153712317697055375935433362983944), | |
253 BOOST_MATH_BIG_CONSTANT(T, 113, 1097.70657567285059133109286478004458), | |
254 BOOST_MATH_BIG_CONSTANT(T, 113, 938.431232478455316020076349367632922), | |
255 BOOST_MATH_BIG_CONSTANT(T, 113, 487.268001604651932322080970189930074), | |
256 BOOST_MATH_BIG_CONSTANT(T, 113, 119.953445242335730062471193124820659), | |
257 }; | |
258 static const T Q_4_8[] = { | |
259 BOOST_MATH_BIG_CONSTANT(T, 113, 1.0), | |
260 BOOST_MATH_BIG_CONSTANT(T, 113, 12.4720855670474488978638945855932398), | |
261 BOOST_MATH_BIG_CONSTANT(T, 113, 78.6093129753298570701376952709727391), | |
262 BOOST_MATH_BIG_CONSTANT(T, 113, 307.470246050318322489781182863190127), | |
263 BOOST_MATH_BIG_CONSTANT(T, 113, 805.140686101151538537565264188630079), | |
264 BOOST_MATH_BIG_CONSTANT(T, 113, 1439.12019760292146454787601409644413), | |
265 BOOST_MATH_BIG_CONSTANT(T, 113, 1735.6105285756048831268586001383127), | |
266 BOOST_MATH_BIG_CONSTANT(T, 113, 1348.32500712856328019355198611280536), | |
267 BOOST_MATH_BIG_CONSTANT(T, 113, 607.225985860570846699704222144650563), | |
268 BOOST_MATH_BIG_CONSTANT(T, 113, 119.952317857277045332558673164517227), | |
269 BOOST_MATH_BIG_CONSTANT(T, 113, 0.000140165918355036060868680809129436084), | |
270 }; | |
271 | |
272 // Maximum Deviation Found: 2.867e-035 | |
273 // Expected Error Term : 2.866e-035 | |
274 // Maximum Relative Change in Control Points : 2.662e-004 | |
275 static const T P_8_16[] = { | |
276 BOOST_MATH_BIG_CONSTANT(T, 113, -0.184828315274146610610872315609837439e-19), | |
277 BOOST_MATH_BIG_CONSTANT(T, 113, 0.500000000000000004122475157735807738), | |
278 BOOST_MATH_BIG_CONSTANT(T, 113, 3.02533865247313349284875558880415875), | |
279 BOOST_MATH_BIG_CONSTANT(T, 113, 13.5995927517457371243039532492642734), | |
280 BOOST_MATH_BIG_CONSTANT(T, 113, 35.3132224283087906757037999452941588), | |
281 BOOST_MATH_BIG_CONSTANT(T, 113, 67.1639424550714159157603179911505619), | |
282 BOOST_MATH_BIG_CONSTANT(T, 113, 83.5767733658513967581959839367419891), | |
283 BOOST_MATH_BIG_CONSTANT(T, 113, 71.073491212235705900866411319363501), | |
284 BOOST_MATH_BIG_CONSTANT(T, 113, 35.8621515614725564575893663483998663), | |
285 BOOST_MATH_BIG_CONSTANT(T, 113, 8.72152231639983491987779743154333318), | |
286 }; | |
287 static const T Q_8_16[] = { | |
288 BOOST_MATH_BIG_CONSTANT(T, 113, 1.0), | |
289 BOOST_MATH_BIG_CONSTANT(T, 113, 5.71734397161293452310624822415866372), | |
290 BOOST_MATH_BIG_CONSTANT(T, 113, 25.293404179620438179337103263274815), | |
291 BOOST_MATH_BIG_CONSTANT(T, 113, 62.2619767967468199111077640625328469), | |
292 BOOST_MATH_BIG_CONSTANT(T, 113, 113.955048909238993473389714972250235), | |
293 BOOST_MATH_BIG_CONSTANT(T, 113, 130.807138328938966981862203944329408), | |
294 BOOST_MATH_BIG_CONSTANT(T, 113, 102.423146902337654110717764213057753), | |
295 BOOST_MATH_BIG_CONSTANT(T, 113, 44.0424772805245202514468199602123565), | |
296 BOOST_MATH_BIG_CONSTANT(T, 113, 8.89898032477904072082994913461386099), | |
297 BOOST_MATH_BIG_CONSTANT(T, 113, -0.0296627336872039988632793863671456398), | |
298 }; | |
299 // Maximum Deviation Found: 1.079e-035 | |
300 // Expected Error Term : -1.079e-035 | |
301 // Maximum Relative Change in Control Points : 7.884e-003 | |
302 static const T P_16_inf[] = { | |
303 BOOST_MATH_BIG_CONSTANT(T, 113, 0.0), | |
304 BOOST_MATH_BIG_CONSTANT(T, 113, 0.500000000000000000000000000000087317), | |
305 BOOST_MATH_BIG_CONSTANT(T, 113, 0.345625669885456215194494735902663968), | |
306 BOOST_MATH_BIG_CONSTANT(T, 113, 9.62895499360842232127552650044647769), | |
307 BOOST_MATH_BIG_CONSTANT(T, 113, 3.5936085382439026269301003761320812), | |
308 BOOST_MATH_BIG_CONSTANT(T, 113, 49.459599118438883265036646019410669), | |
309 BOOST_MATH_BIG_CONSTANT(T, 113, 7.77519237321893917784735690560496607), | |
310 BOOST_MATH_BIG_CONSTANT(T, 113, 74.4536074488178075948642351179304121), | |
311 BOOST_MATH_BIG_CONSTANT(T, 113, 2.75209340397069050436806159297952699), | |
312 BOOST_MATH_BIG_CONSTANT(T, 113, 23.9292359711471667884504840186561598), | |
313 }; | |
314 static const T Q_16_inf[] = { | |
315 BOOST_MATH_BIG_CONSTANT(T, 113, 1.0), | |
316 BOOST_MATH_BIG_CONSTANT(T, 113, 0.357918006437579097055656138920742037), | |
317 BOOST_MATH_BIG_CONSTANT(T, 113, 19.1386039850709849435325005484512944), | |
318 BOOST_MATH_BIG_CONSTANT(T, 113, 0.874349081464143606016221431763364517), | |
319 BOOST_MATH_BIG_CONSTANT(T, 113, 98.6516097434855572678195488061432509), | |
320 BOOST_MATH_BIG_CONSTANT(T, 113, -16.1051972833382893468655223662534306), | |
321 BOOST_MATH_BIG_CONSTANT(T, 113, 154.316860216253720989145047141653727), | |
322 BOOST_MATH_BIG_CONSTANT(T, 113, -40.2026880424378986053105969312264534), | |
323 BOOST_MATH_BIG_CONSTANT(T, 113, 60.1679136674264778074736441126810223), | |
324 BOOST_MATH_BIG_CONSTANT(T, 113, -13.3414844622256422644504472438320114), | |
325 BOOST_MATH_BIG_CONSTANT(T, 113, 2.53795636200649908779512969030363442), | |
326 }; | |
327 | |
328 if(x <= 2) | |
329 { | |
330 return (2 + boost::math::tools::evaluate_polynomial(P_1_2, x) / tools::evaluate_polynomial(Q_1_2, x)) / (x * x); | |
331 } | |
332 else if(x <= 4) | |
333 { | |
334 return (y_offset_2_4 + boost::math::tools::evaluate_polynomial(P_2_4, x) / tools::evaluate_polynomial(Q_2_4, x)) / (x * x); | |
335 } | |
336 else if(x <= 8) | |
337 { | |
338 T y = 1 / x; | |
339 return (1 + tools::evaluate_polynomial(P_4_8, y) / tools::evaluate_polynomial(Q_4_8, y)) / x; | |
340 } | |
341 else if(x <= 16) | |
342 { | |
343 T y = 1 / x; | |
344 return (1 + tools::evaluate_polynomial(P_8_16, y) / tools::evaluate_polynomial(Q_8_16, y)) / x; | |
345 } | |
346 T y = 1 / x; | |
347 return (1 + tools::evaluate_polynomial(P_16_inf, y) / tools::evaluate_polynomial(Q_16_inf, y)) / x; | |
348 } | |
349 | |
350 template <class T, class Tag, class Policy> | |
351 T trigamma_imp(T x, const Tag* t, const Policy& pol) | |
352 { | |
353 // | |
354 // This handles reflection of negative arguments, and all our | |
355 // error handling, then forwards to the T-specific approximation. | |
356 // | |
357 BOOST_MATH_STD_USING // ADL of std functions. | |
358 | |
359 T result = 0; | |
360 // | |
361 // Check for negative arguments and use reflection: | |
362 // | |
363 if(x <= 0) | |
364 { | |
365 // Reflect: | |
366 T z = 1 - x; | |
367 // Argument reduction for tan: | |
368 if(floor(x) == x) | |
369 { | |
370 return policies::raise_pole_error<T>("boost::math::trigamma<%1%>(%1%)", 0, (1-x), pol); | |
371 } | |
372 T s = fabs(x) < fabs(z) ? boost::math::sin_pi(x, pol) : boost::math::sin_pi(z, pol); | |
373 return -trigamma_imp(z, t, pol) + boost::math::pow<2>(constants::pi<T>()) / (s * s); | |
374 } | |
375 if(x < 1) | |
376 { | |
377 result = 1 / (x * x); | |
378 x += 1; | |
379 } | |
380 return result + trigamma_prec(x, t, pol); | |
381 } | |
382 | |
383 template <class T, class Policy> | |
384 T trigamma_imp(T x, const mpl::int_<0>*, const Policy& pol) | |
385 { | |
386 return polygamma_imp(1, x, pol); | |
387 } | |
388 // | |
389 // Initializer: ensure all our constants are initialized prior to the first call of main: | |
390 // | |
391 template <class T, class Policy> | |
392 struct trigamma_initializer | |
393 { | |
394 struct init | |
395 { | |
396 init() | |
397 { | |
398 typedef typename policies::precision<T, Policy>::type precision_type; | |
399 do_init(mpl::bool_<precision_type::value && (precision_type::value <= 113)>()); | |
400 } | |
401 void do_init(const mpl::true_&) | |
402 { | |
403 boost::math::trigamma(T(2.5), Policy()); | |
404 } | |
405 void do_init(const mpl::false_&){} | |
406 void force_instantiate()const{} | |
407 }; | |
408 static const init initializer; | |
409 static void force_instantiate() | |
410 { | |
411 initializer.force_instantiate(); | |
412 } | |
413 }; | |
414 | |
415 template <class T, class Policy> | |
416 const typename trigamma_initializer<T, Policy>::init trigamma_initializer<T, Policy>::initializer; | |
417 | |
418 } // namespace detail | |
419 | |
420 template <class T, class Policy> | |
421 inline typename tools::promote_args<T>::type | |
422 trigamma(T x, const Policy&) | |
423 { | |
424 typedef typename tools::promote_args<T>::type result_type; | |
425 typedef typename policies::evaluation<result_type, Policy>::type value_type; | |
426 typedef typename policies::precision<T, Policy>::type precision_type; | |
427 typedef typename mpl::if_< | |
428 mpl::or_< | |
429 mpl::less_equal<precision_type, mpl::int_<0> >, | |
430 mpl::greater<precision_type, mpl::int_<114> > | |
431 >, | |
432 mpl::int_<0>, | |
433 typename mpl::if_< | |
434 mpl::less<precision_type, mpl::int_<54> >, | |
435 mpl::int_<53>, | |
436 typename mpl::if_< | |
437 mpl::less<precision_type, mpl::int_<65> >, | |
438 mpl::int_<64>, | |
439 mpl::int_<113> | |
440 >::type | |
441 >::type | |
442 >::type tag_type; | |
443 | |
444 typedef typename policies::normalise< | |
445 Policy, | |
446 policies::promote_float<false>, | |
447 policies::promote_double<false>, | |
448 policies::discrete_quantile<>, | |
449 policies::assert_undefined<> >::type forwarding_policy; | |
450 | |
451 // Force initialization of constants: | |
452 detail::trigamma_initializer<value_type, forwarding_policy>::force_instantiate(); | |
453 | |
454 return policies::checked_narrowing_cast<result_type, Policy>(detail::trigamma_imp( | |
455 static_cast<value_type>(x), | |
456 static_cast<const tag_type*>(0), forwarding_policy()), "boost::math::trigamma<%1%>(%1%)"); | |
457 } | |
458 | |
459 template <class T> | |
460 inline typename tools::promote_args<T>::type | |
461 trigamma(T x) | |
462 { | |
463 return trigamma(x, policies::policy<>()); | |
464 } | |
465 | |
466 } // namespace math | |
467 } // namespace boost | |
468 #endif | |
469 |