Mercurial > hg > vamp-build-and-test
comparison DEPENDENCIES/mingw32/Python27/include/objimpl.h @ 87:2a2c65a20a8b
Add Python libs and headers
author | Chris Cannam |
---|---|
date | Wed, 25 Feb 2015 14:05:22 +0000 |
parents | |
children |
comparison
equal
deleted
inserted
replaced
86:413a9d26189e | 87:2a2c65a20a8b |
---|---|
1 /* The PyObject_ memory family: high-level object memory interfaces. | |
2 See pymem.h for the low-level PyMem_ family. | |
3 */ | |
4 | |
5 #ifndef Py_OBJIMPL_H | |
6 #define Py_OBJIMPL_H | |
7 | |
8 #include "pymem.h" | |
9 | |
10 #ifdef __cplusplus | |
11 extern "C" { | |
12 #endif | |
13 | |
14 /* BEWARE: | |
15 | |
16 Each interface exports both functions and macros. Extension modules should | |
17 use the functions, to ensure binary compatibility across Python versions. | |
18 Because the Python implementation is free to change internal details, and | |
19 the macros may (or may not) expose details for speed, if you do use the | |
20 macros you must recompile your extensions with each Python release. | |
21 | |
22 Never mix calls to PyObject_ memory functions with calls to the platform | |
23 malloc/realloc/ calloc/free, or with calls to PyMem_. | |
24 */ | |
25 | |
26 /* | |
27 Functions and macros for modules that implement new object types. | |
28 | |
29 - PyObject_New(type, typeobj) allocates memory for a new object of the given | |
30 type, and initializes part of it. 'type' must be the C structure type used | |
31 to represent the object, and 'typeobj' the address of the corresponding | |
32 type object. Reference count and type pointer are filled in; the rest of | |
33 the bytes of the object are *undefined*! The resulting expression type is | |
34 'type *'. The size of the object is determined by the tp_basicsize field | |
35 of the type object. | |
36 | |
37 - PyObject_NewVar(type, typeobj, n) is similar but allocates a variable-size | |
38 object with room for n items. In addition to the refcount and type pointer | |
39 fields, this also fills in the ob_size field. | |
40 | |
41 - PyObject_Del(op) releases the memory allocated for an object. It does not | |
42 run a destructor -- it only frees the memory. PyObject_Free is identical. | |
43 | |
44 - PyObject_Init(op, typeobj) and PyObject_InitVar(op, typeobj, n) don't | |
45 allocate memory. Instead of a 'type' parameter, they take a pointer to a | |
46 new object (allocated by an arbitrary allocator), and initialize its object | |
47 header fields. | |
48 | |
49 Note that objects created with PyObject_{New, NewVar} are allocated using the | |
50 specialized Python allocator (implemented in obmalloc.c), if WITH_PYMALLOC is | |
51 enabled. In addition, a special debugging allocator is used if PYMALLOC_DEBUG | |
52 is also #defined. | |
53 | |
54 In case a specific form of memory management is needed (for example, if you | |
55 must use the platform malloc heap(s), or shared memory, or C++ local storage or | |
56 operator new), you must first allocate the object with your custom allocator, | |
57 then pass its pointer to PyObject_{Init, InitVar} for filling in its Python- | |
58 specific fields: reference count, type pointer, possibly others. You should | |
59 be aware that Python no control over these objects because they don't | |
60 cooperate with the Python memory manager. Such objects may not be eligible | |
61 for automatic garbage collection and you have to make sure that they are | |
62 released accordingly whenever their destructor gets called (cf. the specific | |
63 form of memory management you're using). | |
64 | |
65 Unless you have specific memory management requirements, use | |
66 PyObject_{New, NewVar, Del}. | |
67 */ | |
68 | |
69 /* | |
70 * Raw object memory interface | |
71 * =========================== | |
72 */ | |
73 | |
74 /* Functions to call the same malloc/realloc/free as used by Python's | |
75 object allocator. If WITH_PYMALLOC is enabled, these may differ from | |
76 the platform malloc/realloc/free. The Python object allocator is | |
77 designed for fast, cache-conscious allocation of many "small" objects, | |
78 and with low hidden memory overhead. | |
79 | |
80 PyObject_Malloc(0) returns a unique non-NULL pointer if possible. | |
81 | |
82 PyObject_Realloc(NULL, n) acts like PyObject_Malloc(n). | |
83 PyObject_Realloc(p != NULL, 0) does not return NULL, or free the memory | |
84 at p. | |
85 | |
86 Returned pointers must be checked for NULL explicitly; no action is | |
87 performed on failure other than to return NULL (no warning it printed, no | |
88 exception is set, etc). | |
89 | |
90 For allocating objects, use PyObject_{New, NewVar} instead whenever | |
91 possible. The PyObject_{Malloc, Realloc, Free} family is exposed | |
92 so that you can exploit Python's small-block allocator for non-object | |
93 uses. If you must use these routines to allocate object memory, make sure | |
94 the object gets initialized via PyObject_{Init, InitVar} after obtaining | |
95 the raw memory. | |
96 */ | |
97 PyAPI_FUNC(void *) PyObject_Malloc(size_t); | |
98 PyAPI_FUNC(void *) PyObject_Realloc(void *, size_t); | |
99 PyAPI_FUNC(void) PyObject_Free(void *); | |
100 | |
101 | |
102 /* Macros */ | |
103 #ifdef WITH_PYMALLOC | |
104 #ifdef PYMALLOC_DEBUG /* WITH_PYMALLOC && PYMALLOC_DEBUG */ | |
105 PyAPI_FUNC(void *) _PyObject_DebugMalloc(size_t nbytes); | |
106 PyAPI_FUNC(void *) _PyObject_DebugRealloc(void *p, size_t nbytes); | |
107 PyAPI_FUNC(void) _PyObject_DebugFree(void *p); | |
108 PyAPI_FUNC(void) _PyObject_DebugDumpAddress(const void *p); | |
109 PyAPI_FUNC(void) _PyObject_DebugCheckAddress(const void *p); | |
110 PyAPI_FUNC(void) _PyObject_DebugMallocStats(void); | |
111 PyAPI_FUNC(void *) _PyObject_DebugMallocApi(char api, size_t nbytes); | |
112 PyAPI_FUNC(void *) _PyObject_DebugReallocApi(char api, void *p, size_t nbytes); | |
113 PyAPI_FUNC(void) _PyObject_DebugFreeApi(char api, void *p); | |
114 PyAPI_FUNC(void) _PyObject_DebugCheckAddressApi(char api, const void *p); | |
115 PyAPI_FUNC(void *) _PyMem_DebugMalloc(size_t nbytes); | |
116 PyAPI_FUNC(void *) _PyMem_DebugRealloc(void *p, size_t nbytes); | |
117 PyAPI_FUNC(void) _PyMem_DebugFree(void *p); | |
118 #define PyObject_MALLOC _PyObject_DebugMalloc | |
119 #define PyObject_Malloc _PyObject_DebugMalloc | |
120 #define PyObject_REALLOC _PyObject_DebugRealloc | |
121 #define PyObject_Realloc _PyObject_DebugRealloc | |
122 #define PyObject_FREE _PyObject_DebugFree | |
123 #define PyObject_Free _PyObject_DebugFree | |
124 | |
125 #else /* WITH_PYMALLOC && ! PYMALLOC_DEBUG */ | |
126 #define PyObject_MALLOC PyObject_Malloc | |
127 #define PyObject_REALLOC PyObject_Realloc | |
128 #define PyObject_FREE PyObject_Free | |
129 #endif | |
130 | |
131 #else /* ! WITH_PYMALLOC */ | |
132 #define PyObject_MALLOC PyMem_MALLOC | |
133 #define PyObject_REALLOC PyMem_REALLOC | |
134 #define PyObject_FREE PyMem_FREE | |
135 | |
136 #endif /* WITH_PYMALLOC */ | |
137 | |
138 #define PyObject_Del PyObject_Free | |
139 #define PyObject_DEL PyObject_FREE | |
140 | |
141 /* for source compatibility with 2.2 */ | |
142 #define _PyObject_Del PyObject_Free | |
143 | |
144 /* | |
145 * Generic object allocator interface | |
146 * ================================== | |
147 */ | |
148 | |
149 /* Functions */ | |
150 PyAPI_FUNC(PyObject *) PyObject_Init(PyObject *, PyTypeObject *); | |
151 PyAPI_FUNC(PyVarObject *) PyObject_InitVar(PyVarObject *, | |
152 PyTypeObject *, Py_ssize_t); | |
153 PyAPI_FUNC(PyObject *) _PyObject_New(PyTypeObject *); | |
154 PyAPI_FUNC(PyVarObject *) _PyObject_NewVar(PyTypeObject *, Py_ssize_t); | |
155 | |
156 #define PyObject_New(type, typeobj) \ | |
157 ( (type *) _PyObject_New(typeobj) ) | |
158 #define PyObject_NewVar(type, typeobj, n) \ | |
159 ( (type *) _PyObject_NewVar((typeobj), (n)) ) | |
160 | |
161 /* Macros trading binary compatibility for speed. See also pymem.h. | |
162 Note that these macros expect non-NULL object pointers.*/ | |
163 #define PyObject_INIT(op, typeobj) \ | |
164 ( Py_TYPE(op) = (typeobj), _Py_NewReference((PyObject *)(op)), (op) ) | |
165 #define PyObject_INIT_VAR(op, typeobj, size) \ | |
166 ( Py_SIZE(op) = (size), PyObject_INIT((op), (typeobj)) ) | |
167 | |
168 #define _PyObject_SIZE(typeobj) ( (typeobj)->tp_basicsize ) | |
169 | |
170 /* _PyObject_VAR_SIZE returns the number of bytes (as size_t) allocated for a | |
171 vrbl-size object with nitems items, exclusive of gc overhead (if any). The | |
172 value is rounded up to the closest multiple of sizeof(void *), in order to | |
173 ensure that pointer fields at the end of the object are correctly aligned | |
174 for the platform (this is of special importance for subclasses of, e.g., | |
175 str or long, so that pointers can be stored after the embedded data). | |
176 | |
177 Note that there's no memory wastage in doing this, as malloc has to | |
178 return (at worst) pointer-aligned memory anyway. | |
179 */ | |
180 #if ((SIZEOF_VOID_P - 1) & SIZEOF_VOID_P) != 0 | |
181 # error "_PyObject_VAR_SIZE requires SIZEOF_VOID_P be a power of 2" | |
182 #endif | |
183 | |
184 #define _PyObject_VAR_SIZE(typeobj, nitems) \ | |
185 (size_t) \ | |
186 ( ( (typeobj)->tp_basicsize + \ | |
187 (nitems)*(typeobj)->tp_itemsize + \ | |
188 (SIZEOF_VOID_P - 1) \ | |
189 ) & ~(SIZEOF_VOID_P - 1) \ | |
190 ) | |
191 | |
192 #define PyObject_NEW(type, typeobj) \ | |
193 ( (type *) PyObject_Init( \ | |
194 (PyObject *) PyObject_MALLOC( _PyObject_SIZE(typeobj) ), (typeobj)) ) | |
195 | |
196 #define PyObject_NEW_VAR(type, typeobj, n) \ | |
197 ( (type *) PyObject_InitVar( \ | |
198 (PyVarObject *) PyObject_MALLOC(_PyObject_VAR_SIZE((typeobj),(n)) ),\ | |
199 (typeobj), (n)) ) | |
200 | |
201 /* This example code implements an object constructor with a custom | |
202 allocator, where PyObject_New is inlined, and shows the important | |
203 distinction between two steps (at least): | |
204 1) the actual allocation of the object storage; | |
205 2) the initialization of the Python specific fields | |
206 in this storage with PyObject_{Init, InitVar}. | |
207 | |
208 PyObject * | |
209 YourObject_New(...) | |
210 { | |
211 PyObject *op; | |
212 | |
213 op = (PyObject *) Your_Allocator(_PyObject_SIZE(YourTypeStruct)); | |
214 if (op == NULL) | |
215 return PyErr_NoMemory(); | |
216 | |
217 PyObject_Init(op, &YourTypeStruct); | |
218 | |
219 op->ob_field = value; | |
220 ... | |
221 return op; | |
222 } | |
223 | |
224 Note that in C++, the use of the new operator usually implies that | |
225 the 1st step is performed automatically for you, so in a C++ class | |
226 constructor you would start directly with PyObject_Init/InitVar | |
227 */ | |
228 | |
229 /* | |
230 * Garbage Collection Support | |
231 * ========================== | |
232 */ | |
233 | |
234 /* C equivalent of gc.collect(). */ | |
235 PyAPI_FUNC(Py_ssize_t) PyGC_Collect(void); | |
236 | |
237 /* Test if a type has a GC head */ | |
238 #define PyType_IS_GC(t) PyType_HasFeature((t), Py_TPFLAGS_HAVE_GC) | |
239 | |
240 /* Test if an object has a GC head */ | |
241 #define PyObject_IS_GC(o) (PyType_IS_GC(Py_TYPE(o)) && \ | |
242 (Py_TYPE(o)->tp_is_gc == NULL || Py_TYPE(o)->tp_is_gc(o))) | |
243 | |
244 PyAPI_FUNC(PyVarObject *) _PyObject_GC_Resize(PyVarObject *, Py_ssize_t); | |
245 #define PyObject_GC_Resize(type, op, n) \ | |
246 ( (type *) _PyObject_GC_Resize((PyVarObject *)(op), (n)) ) | |
247 | |
248 /* for source compatibility with 2.2 */ | |
249 #define _PyObject_GC_Del PyObject_GC_Del | |
250 | |
251 /* GC information is stored BEFORE the object structure. */ | |
252 typedef union _gc_head { | |
253 struct { | |
254 union _gc_head *gc_next; | |
255 union _gc_head *gc_prev; | |
256 Py_ssize_t gc_refs; | |
257 } gc; | |
258 long double dummy; /* force worst-case alignment */ | |
259 } PyGC_Head; | |
260 | |
261 extern PyGC_Head *_PyGC_generation0; | |
262 | |
263 #define _Py_AS_GC(o) ((PyGC_Head *)(o)-1) | |
264 | |
265 #define _PyGC_REFS_UNTRACKED (-2) | |
266 #define _PyGC_REFS_REACHABLE (-3) | |
267 #define _PyGC_REFS_TENTATIVELY_UNREACHABLE (-4) | |
268 | |
269 /* Tell the GC to track this object. NB: While the object is tracked the | |
270 * collector it must be safe to call the ob_traverse method. */ | |
271 #define _PyObject_GC_TRACK(o) do { \ | |
272 PyGC_Head *g = _Py_AS_GC(o); \ | |
273 if (g->gc.gc_refs != _PyGC_REFS_UNTRACKED) \ | |
274 Py_FatalError("GC object already tracked"); \ | |
275 g->gc.gc_refs = _PyGC_REFS_REACHABLE; \ | |
276 g->gc.gc_next = _PyGC_generation0; \ | |
277 g->gc.gc_prev = _PyGC_generation0->gc.gc_prev; \ | |
278 g->gc.gc_prev->gc.gc_next = g; \ | |
279 _PyGC_generation0->gc.gc_prev = g; \ | |
280 } while (0); | |
281 | |
282 /* Tell the GC to stop tracking this object. | |
283 * gc_next doesn't need to be set to NULL, but doing so is a good | |
284 * way to provoke memory errors if calling code is confused. | |
285 */ | |
286 #define _PyObject_GC_UNTRACK(o) do { \ | |
287 PyGC_Head *g = _Py_AS_GC(o); \ | |
288 assert(g->gc.gc_refs != _PyGC_REFS_UNTRACKED); \ | |
289 g->gc.gc_refs = _PyGC_REFS_UNTRACKED; \ | |
290 g->gc.gc_prev->gc.gc_next = g->gc.gc_next; \ | |
291 g->gc.gc_next->gc.gc_prev = g->gc.gc_prev; \ | |
292 g->gc.gc_next = NULL; \ | |
293 } while (0); | |
294 | |
295 /* True if the object is currently tracked by the GC. */ | |
296 #define _PyObject_GC_IS_TRACKED(o) \ | |
297 ((_Py_AS_GC(o))->gc.gc_refs != _PyGC_REFS_UNTRACKED) | |
298 | |
299 /* True if the object may be tracked by the GC in the future, or already is. | |
300 This can be useful to implement some optimizations. */ | |
301 #define _PyObject_GC_MAY_BE_TRACKED(obj) \ | |
302 (PyObject_IS_GC(obj) && \ | |
303 (!PyTuple_CheckExact(obj) || _PyObject_GC_IS_TRACKED(obj))) | |
304 | |
305 | |
306 PyAPI_FUNC(PyObject *) _PyObject_GC_Malloc(size_t); | |
307 PyAPI_FUNC(PyObject *) _PyObject_GC_New(PyTypeObject *); | |
308 PyAPI_FUNC(PyVarObject *) _PyObject_GC_NewVar(PyTypeObject *, Py_ssize_t); | |
309 PyAPI_FUNC(void) PyObject_GC_Track(void *); | |
310 PyAPI_FUNC(void) PyObject_GC_UnTrack(void *); | |
311 PyAPI_FUNC(void) PyObject_GC_Del(void *); | |
312 | |
313 #define PyObject_GC_New(type, typeobj) \ | |
314 ( (type *) _PyObject_GC_New(typeobj) ) | |
315 #define PyObject_GC_NewVar(type, typeobj, n) \ | |
316 ( (type *) _PyObject_GC_NewVar((typeobj), (n)) ) | |
317 | |
318 | |
319 /* Utility macro to help write tp_traverse functions. | |
320 * To use this macro, the tp_traverse function must name its arguments | |
321 * "visit" and "arg". This is intended to keep tp_traverse functions | |
322 * looking as much alike as possible. | |
323 */ | |
324 #define Py_VISIT(op) \ | |
325 do { \ | |
326 if (op) { \ | |
327 int vret = visit((PyObject *)(op), arg); \ | |
328 if (vret) \ | |
329 return vret; \ | |
330 } \ | |
331 } while (0) | |
332 | |
333 /* This is here for the sake of backwards compatibility. Extensions that | |
334 * use the old GC API will still compile but the objects will not be | |
335 * tracked by the GC. */ | |
336 #define PyGC_HEAD_SIZE 0 | |
337 #define PyObject_GC_Init(op) | |
338 #define PyObject_GC_Fini(op) | |
339 #define PyObject_AS_GC(op) (op) | |
340 #define PyObject_FROM_GC(op) (op) | |
341 | |
342 | |
343 /* Test if a type supports weak references */ | |
344 #define PyType_SUPPORTS_WEAKREFS(t) \ | |
345 (PyType_HasFeature((t), Py_TPFLAGS_HAVE_WEAKREFS) \ | |
346 && ((t)->tp_weaklistoffset > 0)) | |
347 | |
348 #define PyObject_GET_WEAKREFS_LISTPTR(o) \ | |
349 ((PyObject **) (((char *) (o)) + Py_TYPE(o)->tp_weaklistoffset)) | |
350 | |
351 #ifdef __cplusplus | |
352 } | |
353 #endif | |
354 #endif /* !Py_OBJIMPL_H */ |