Mercurial > hg > vamp-build-and-test
comparison DEPENDENCIES/mingw32/Python27/Lib/site-packages/numpy/random/tests/test_regression.py @ 87:2a2c65a20a8b
Add Python libs and headers
author | Chris Cannam |
---|---|
date | Wed, 25 Feb 2015 14:05:22 +0000 |
parents | |
children |
comparison
equal
deleted
inserted
replaced
86:413a9d26189e | 87:2a2c65a20a8b |
---|---|
1 from __future__ import division, absolute_import, print_function | |
2 | |
3 from numpy.testing import (TestCase, run_module_suite, assert_, | |
4 assert_array_equal) | |
5 from numpy import random | |
6 from numpy.compat import long | |
7 import numpy as np | |
8 | |
9 | |
10 class TestRegression(TestCase): | |
11 | |
12 def test_VonMises_range(self): | |
13 # Make sure generated random variables are in [-pi, pi]. | |
14 # Regression test for ticket #986. | |
15 for mu in np.linspace(-7., 7., 5): | |
16 r = random.mtrand.vonmises(mu, 1, 50) | |
17 assert_(np.all(r > -np.pi) and np.all(r <= np.pi)) | |
18 | |
19 def test_hypergeometric_range(self): | |
20 # Test for ticket #921 | |
21 assert_(np.all(np.random.hypergeometric(3, 18, 11, size=10) < 4)) | |
22 assert_(np.all(np.random.hypergeometric(18, 3, 11, size=10) > 0)) | |
23 | |
24 def test_logseries_convergence(self): | |
25 # Test for ticket #923 | |
26 N = 1000 | |
27 np.random.seed(0) | |
28 rvsn = np.random.logseries(0.8, size=N) | |
29 # these two frequency counts should be close to theoretical | |
30 # numbers with this large sample | |
31 # theoretical large N result is 0.49706795 | |
32 freq = np.sum(rvsn == 1) / float(N) | |
33 msg = "Frequency was %f, should be > 0.45" % freq | |
34 assert_(freq > 0.45, msg) | |
35 # theoretical large N result is 0.19882718 | |
36 freq = np.sum(rvsn == 2) / float(N) | |
37 msg = "Frequency was %f, should be < 0.23" % freq | |
38 assert_(freq < 0.23, msg) | |
39 | |
40 def test_permutation_longs(self): | |
41 np.random.seed(1234) | |
42 a = np.random.permutation(12) | |
43 np.random.seed(1234) | |
44 b = np.random.permutation(long(12)) | |
45 assert_array_equal(a, b) | |
46 | |
47 def test_randint_range(self): | |
48 # Test for ticket #1690 | |
49 lmax = np.iinfo('l').max | |
50 lmin = np.iinfo('l').min | |
51 try: | |
52 random.randint(lmin, lmax) | |
53 except: | |
54 raise AssertionError | |
55 | |
56 def test_shuffle_mixed_dimension(self): | |
57 # Test for trac ticket #2074 | |
58 for t in [[1, 2, 3, None], | |
59 [(1, 1), (2, 2), (3, 3), None], | |
60 [1, (2, 2), (3, 3), None], | |
61 [(1, 1), 2, 3, None]]: | |
62 np.random.seed(12345) | |
63 shuffled = list(t) | |
64 random.shuffle(shuffled) | |
65 assert_array_equal(shuffled, [t[0], t[3], t[1], t[2]]) | |
66 | |
67 def test_call_within_randomstate(self): | |
68 # Check that custom RandomState does not call into global state | |
69 m = np.random.RandomState() | |
70 res = np.array([0, 8, 7, 2, 1, 9, 4, 7, 0, 3]) | |
71 for i in range(3): | |
72 np.random.seed(i) | |
73 m.seed(4321) | |
74 # If m.state is not honored, the result will change | |
75 assert_array_equal(m.choice(10, size=10, p=np.ones(10)/10.), res) | |
76 | |
77 def test_multivariate_normal_size_types(self): | |
78 # Test for multivariate_normal issue with 'size' argument. | |
79 # Check that the multivariate_normal size argument can be a | |
80 # numpy integer. | |
81 np.random.multivariate_normal([0], [[0]], size=1) | |
82 np.random.multivariate_normal([0], [[0]], size=np.int_(1)) | |
83 np.random.multivariate_normal([0], [[0]], size=np.int64(1)) | |
84 | |
85 if __name__ == "__main__": | |
86 run_module_suite() |