Mercurial > hg > vamp-build-and-test
comparison DEPENDENCIES/mingw32/Python27/Lib/site-packages/numpy/matrixlib/tests/test_defmatrix.py @ 87:2a2c65a20a8b
Add Python libs and headers
author | Chris Cannam |
---|---|
date | Wed, 25 Feb 2015 14:05:22 +0000 |
parents | |
children |
comparison
equal
deleted
inserted
replaced
86:413a9d26189e | 87:2a2c65a20a8b |
---|---|
1 from __future__ import division, absolute_import, print_function | |
2 | |
3 from numpy.testing import * | |
4 from numpy.core import * | |
5 from numpy import matrix, asmatrix, bmat | |
6 from numpy.matrixlib.defmatrix import matrix_power | |
7 from numpy.matrixlib import mat | |
8 import numpy as np | |
9 import collections | |
10 | |
11 class TestCtor(TestCase): | |
12 def test_basic(self): | |
13 A = array([[1, 2], [3, 4]]) | |
14 mA = matrix(A) | |
15 assert_(all(mA.A == A)) | |
16 | |
17 B = bmat("A,A;A,A") | |
18 C = bmat([[A, A], [A, A]]) | |
19 D = array([[1, 2, 1, 2], | |
20 [3, 4, 3, 4], | |
21 [1, 2, 1, 2], | |
22 [3, 4, 3, 4]]) | |
23 assert_(all(B.A == D)) | |
24 assert_(all(C.A == D)) | |
25 | |
26 E = array([[5, 6], [7, 8]]) | |
27 AEresult = matrix([[1, 2, 5, 6], [3, 4, 7, 8]]) | |
28 assert_(all(bmat([A, E]) == AEresult)) | |
29 | |
30 vec = arange(5) | |
31 mvec = matrix(vec) | |
32 assert_(mvec.shape == (1, 5)) | |
33 | |
34 def test_exceptions(self): | |
35 # Check for TypeError when called with invalid string data. | |
36 assert_raises(TypeError, matrix, "invalid") | |
37 | |
38 def test_bmat_nondefault_str(self): | |
39 A = array([[1, 2], [3, 4]]) | |
40 B = array([[5, 6], [7, 8]]) | |
41 Aresult = array([[1, 2, 1, 2], | |
42 [3, 4, 3, 4], | |
43 [1, 2, 1, 2], | |
44 [3, 4, 3, 4]]) | |
45 Bresult = array([[5, 6, 5, 6], | |
46 [7, 8, 7, 8], | |
47 [5, 6, 5, 6], | |
48 [7, 8, 7, 8]]) | |
49 mixresult = array([[1, 2, 5, 6], | |
50 [3, 4, 7, 8], | |
51 [5, 6, 1, 2], | |
52 [7, 8, 3, 4]]) | |
53 assert_(all(bmat("A,A;A,A") == Aresult)) | |
54 assert_(all(bmat("A,A;A,A", ldict={'A':B}) == Aresult)) | |
55 assert_raises(TypeError, bmat, "A,A;A,A", gdict={'A':B}) | |
56 assert_(all(bmat("A,A;A,A", ldict={'A':A}, gdict={'A':B}) == Aresult)) | |
57 b2 = bmat("A,B;C,D", ldict={'A':A,'B':B}, gdict={'C':B,'D':A}) | |
58 assert_(all(b2 == mixresult)) | |
59 | |
60 | |
61 class TestProperties(TestCase): | |
62 def test_sum(self): | |
63 """Test whether matrix.sum(axis=1) preserves orientation. | |
64 Fails in NumPy <= 0.9.6.2127. | |
65 """ | |
66 M = matrix([[1, 2, 0, 0], | |
67 [3, 4, 0, 0], | |
68 [1, 2, 1, 2], | |
69 [3, 4, 3, 4]]) | |
70 sum0 = matrix([8, 12, 4, 6]) | |
71 sum1 = matrix([3, 7, 6, 14]).T | |
72 sumall = 30 | |
73 assert_array_equal(sum0, M.sum(axis=0)) | |
74 assert_array_equal(sum1, M.sum(axis=1)) | |
75 assert_equal(sumall, M.sum()) | |
76 | |
77 assert_array_equal(sum0, np.sum(M, axis=0)) | |
78 assert_array_equal(sum1, np.sum(M, axis=1)) | |
79 assert_equal(sumall, np.sum(M)) | |
80 | |
81 | |
82 def test_prod(self): | |
83 x = matrix([[1, 2, 3], [4, 5, 6]]) | |
84 assert_equal(x.prod(), 720) | |
85 assert_equal(x.prod(0), matrix([[4, 10, 18]])) | |
86 assert_equal(x.prod(1), matrix([[6], [120]])) | |
87 | |
88 assert_equal(np.prod(x), 720) | |
89 assert_equal(np.prod(x, axis=0), matrix([[4, 10, 18]])) | |
90 assert_equal(np.prod(x, axis=1), matrix([[6], [120]])) | |
91 | |
92 y = matrix([0, 1, 3]) | |
93 assert_(y.prod() == 0) | |
94 | |
95 def test_max(self): | |
96 x = matrix([[1, 2, 3], [4, 5, 6]]) | |
97 assert_equal(x.max(), 6) | |
98 assert_equal(x.max(0), matrix([[4, 5, 6]])) | |
99 assert_equal(x.max(1), matrix([[3], [6]])) | |
100 | |
101 assert_equal(np.max(x), 6) | |
102 assert_equal(np.max(x, axis=0), matrix([[4, 5, 6]])) | |
103 assert_equal(np.max(x, axis=1), matrix([[3], [6]])) | |
104 | |
105 def test_min(self): | |
106 x = matrix([[1, 2, 3], [4, 5, 6]]) | |
107 assert_equal(x.min(), 1) | |
108 assert_equal(x.min(0), matrix([[1, 2, 3]])) | |
109 assert_equal(x.min(1), matrix([[1], [4]])) | |
110 | |
111 assert_equal(np.min(x), 1) | |
112 assert_equal(np.min(x, axis=0), matrix([[1, 2, 3]])) | |
113 assert_equal(np.min(x, axis=1), matrix([[1], [4]])) | |
114 | |
115 def test_ptp(self): | |
116 x = np.arange(4).reshape((2, 2)) | |
117 assert_(x.ptp() == 3) | |
118 assert_(all(x.ptp(0) == array([2, 2]))) | |
119 assert_(all(x.ptp(1) == array([1, 1]))) | |
120 | |
121 def test_var(self): | |
122 x = np.arange(9).reshape((3, 3)) | |
123 mx = x.view(np.matrix) | |
124 assert_equal(x.var(ddof=0), mx.var(ddof=0)) | |
125 assert_equal(x.var(ddof=1), mx.var(ddof=1)) | |
126 | |
127 def test_basic(self): | |
128 import numpy.linalg as linalg | |
129 | |
130 A = array([[1., 2.], | |
131 [3., 4.]]) | |
132 mA = matrix(A) | |
133 assert_(allclose(linalg.inv(A), mA.I)) | |
134 assert_(all(array(transpose(A) == mA.T))) | |
135 assert_(all(array(transpose(A) == mA.H))) | |
136 assert_(all(A == mA.A)) | |
137 | |
138 B = A + 2j*A | |
139 mB = matrix(B) | |
140 assert_(allclose(linalg.inv(B), mB.I)) | |
141 assert_(all(array(transpose(B) == mB.T))) | |
142 assert_(all(array(conjugate(transpose(B)) == mB.H))) | |
143 | |
144 def test_pinv(self): | |
145 x = matrix(arange(6).reshape(2, 3)) | |
146 xpinv = matrix([[-0.77777778, 0.27777778], | |
147 [-0.11111111, 0.11111111], | |
148 [ 0.55555556, -0.05555556]]) | |
149 assert_almost_equal(x.I, xpinv) | |
150 | |
151 def test_comparisons(self): | |
152 A = arange(100).reshape(10, 10) | |
153 mA = matrix(A) | |
154 mB = matrix(A) + 0.1 | |
155 assert_(all(mB == A+0.1)) | |
156 assert_(all(mB == matrix(A+0.1))) | |
157 assert_(not any(mB == matrix(A-0.1))) | |
158 assert_(all(mA < mB)) | |
159 assert_(all(mA <= mB)) | |
160 assert_(all(mA <= mA)) | |
161 assert_(not any(mA < mA)) | |
162 | |
163 assert_(not any(mB < mA)) | |
164 assert_(all(mB >= mA)) | |
165 assert_(all(mB >= mB)) | |
166 assert_(not any(mB > mB)) | |
167 | |
168 assert_(all(mA == mA)) | |
169 assert_(not any(mA == mB)) | |
170 assert_(all(mB != mA)) | |
171 | |
172 assert_(not all(abs(mA) > 0)) | |
173 assert_(all(abs(mB > 0))) | |
174 | |
175 def test_asmatrix(self): | |
176 A = arange(100).reshape(10, 10) | |
177 mA = asmatrix(A) | |
178 A[0, 0] = -10 | |
179 assert_(A[0, 0] == mA[0, 0]) | |
180 | |
181 def test_noaxis(self): | |
182 A = matrix([[1, 0], [0, 1]]) | |
183 assert_(A.sum() == matrix(2)) | |
184 assert_(A.mean() == matrix(0.5)) | |
185 | |
186 def test_repr(self): | |
187 A = matrix([[1, 0], [0, 1]]) | |
188 assert_(repr(A) == "matrix([[1, 0],\n [0, 1]])") | |
189 | |
190 class TestCasting(TestCase): | |
191 def test_basic(self): | |
192 A = arange(100).reshape(10, 10) | |
193 mA = matrix(A) | |
194 | |
195 mB = mA.copy() | |
196 O = ones((10, 10), float64) * 0.1 | |
197 mB = mB + O | |
198 assert_(mB.dtype.type == float64) | |
199 assert_(all(mA != mB)) | |
200 assert_(all(mB == mA+0.1)) | |
201 | |
202 mC = mA.copy() | |
203 O = ones((10, 10), complex128) | |
204 mC = mC * O | |
205 assert_(mC.dtype.type == complex128) | |
206 assert_(all(mA != mB)) | |
207 | |
208 | |
209 class TestAlgebra(TestCase): | |
210 def test_basic(self): | |
211 import numpy.linalg as linalg | |
212 | |
213 A = array([[1., 2.], | |
214 [3., 4.]]) | |
215 mA = matrix(A) | |
216 | |
217 B = identity(2) | |
218 for i in range(6): | |
219 assert_(allclose((mA ** i).A, B)) | |
220 B = dot(B, A) | |
221 | |
222 Ainv = linalg.inv(A) | |
223 B = identity(2) | |
224 for i in range(6): | |
225 assert_(allclose((mA ** -i).A, B)) | |
226 B = dot(B, Ainv) | |
227 | |
228 assert_(allclose((mA * mA).A, dot(A, A))) | |
229 assert_(allclose((mA + mA).A, (A + A))) | |
230 assert_(allclose((3*mA).A, (3*A))) | |
231 | |
232 mA2 = matrix(A) | |
233 mA2 *= 3 | |
234 assert_(allclose(mA2.A, 3*A)) | |
235 | |
236 def test_pow(self): | |
237 """Test raising a matrix to an integer power works as expected.""" | |
238 m = matrix("1. 2.; 3. 4.") | |
239 m2 = m.copy() | |
240 m2 **= 2 | |
241 mi = m.copy() | |
242 mi **= -1 | |
243 m4 = m2.copy() | |
244 m4 **= 2 | |
245 assert_array_almost_equal(m2, m**2) | |
246 assert_array_almost_equal(m4, np.dot(m2, m2)) | |
247 assert_array_almost_equal(np.dot(mi, m), np.eye(2)) | |
248 | |
249 def test_notimplemented(self): | |
250 '''Check that 'not implemented' operations produce a failure.''' | |
251 A = matrix([[1., 2.], | |
252 [3., 4.]]) | |
253 | |
254 # __rpow__ | |
255 try: | |
256 1.0**A | |
257 except TypeError: | |
258 pass | |
259 else: | |
260 self.fail("matrix.__rpow__ doesn't raise a TypeError") | |
261 | |
262 # __mul__ with something not a list, ndarray, tuple, or scalar | |
263 try: | |
264 A*object() | |
265 except TypeError: | |
266 pass | |
267 else: | |
268 self.fail("matrix.__mul__ with non-numeric object doesn't raise" | |
269 "a TypeError") | |
270 | |
271 class TestMatrixReturn(TestCase): | |
272 def test_instance_methods(self): | |
273 a = matrix([1.0], dtype='f8') | |
274 methodargs = { | |
275 'astype': ('intc',), | |
276 'clip': (0.0, 1.0), | |
277 'compress': ([1],), | |
278 'repeat': (1,), | |
279 'reshape': (1,), | |
280 'swapaxes': (0, 0), | |
281 'dot': np.array([1.0]), | |
282 } | |
283 excluded_methods = [ | |
284 'argmin', 'choose', 'dump', 'dumps', 'fill', 'getfield', | |
285 'getA', 'getA1', 'item', 'nonzero', 'put', 'putmask', 'resize', | |
286 'searchsorted', 'setflags', 'setfield', 'sort', | |
287 'partition', 'argpartition', | |
288 'take', 'tofile', 'tolist', 'tostring', 'tobytes', 'all', 'any', | |
289 'sum', 'argmax', 'argmin', 'min', 'max', 'mean', 'var', 'ptp', | |
290 'prod', 'std', 'ctypes', 'itemset', 'setasflat' | |
291 ] | |
292 for attrib in dir(a): | |
293 if attrib.startswith('_') or attrib in excluded_methods: | |
294 continue | |
295 f = getattr(a, attrib) | |
296 if isinstance(f, collections.Callable): | |
297 # reset contents of a | |
298 a.astype('f8') | |
299 a.fill(1.0) | |
300 if attrib in methodargs: | |
301 args = methodargs[attrib] | |
302 else: | |
303 args = () | |
304 b = f(*args) | |
305 assert_(type(b) is matrix, "%s" % attrib) | |
306 assert_(type(a.real) is matrix) | |
307 assert_(type(a.imag) is matrix) | |
308 c, d = matrix([0.0]).nonzero() | |
309 assert_(type(c) is matrix) | |
310 assert_(type(d) is matrix) | |
311 | |
312 | |
313 class TestIndexing(TestCase): | |
314 def test_basic(self): | |
315 x = asmatrix(zeros((3, 2), float)) | |
316 y = zeros((3, 1), float) | |
317 y[:, 0] = [0.8, 0.2, 0.3] | |
318 x[:, 1] = y>0.5 | |
319 assert_equal(x, [[0, 1], [0, 0], [0, 0]]) | |
320 | |
321 | |
322 class TestNewScalarIndexing(TestCase): | |
323 def setUp(self): | |
324 self.a = matrix([[1, 2], [3, 4]]) | |
325 | |
326 def test_dimesions(self): | |
327 a = self.a | |
328 x = a[0] | |
329 assert_equal(x.ndim, 2) | |
330 | |
331 def test_array_from_matrix_list(self): | |
332 a = self.a | |
333 x = array([a, a]) | |
334 assert_equal(x.shape, [2, 2, 2]) | |
335 | |
336 def test_array_to_list(self): | |
337 a = self.a | |
338 assert_equal(a.tolist(), [[1, 2], [3, 4]]) | |
339 | |
340 def test_fancy_indexing(self): | |
341 a = self.a | |
342 x = a[1, [0, 1, 0]] | |
343 assert_(isinstance(x, matrix)) | |
344 assert_equal(x, matrix([[3, 4, 3]])) | |
345 x = a[[1, 0]] | |
346 assert_(isinstance(x, matrix)) | |
347 assert_equal(x, matrix([[3, 4], [1, 2]])) | |
348 x = a[[[1], [0]], [[1, 0], [0, 1]]] | |
349 assert_(isinstance(x, matrix)) | |
350 assert_equal(x, matrix([[4, 3], [1, 2]])) | |
351 | |
352 def test_matrix_element(self): | |
353 x = matrix([[1, 2, 3], [4, 5, 6]]) | |
354 assert_equal(x[0][0], matrix([[1, 2, 3]])) | |
355 assert_equal(x[0][0].shape, (1, 3)) | |
356 assert_equal(x[0].shape, (1, 3)) | |
357 assert_equal(x[:, 0].shape, (2, 1)) | |
358 | |
359 x = matrix(0) | |
360 assert_equal(x[0, 0], 0) | |
361 assert_equal(x[0], 0) | |
362 assert_equal(x[:, 0].shape, x.shape) | |
363 | |
364 def test_scalar_indexing(self): | |
365 x = asmatrix(zeros((3, 2), float)) | |
366 assert_equal(x[0, 0], x[0][0]) | |
367 | |
368 def test_row_column_indexing(self): | |
369 x = asmatrix(np.eye(2)) | |
370 assert_array_equal(x[0,:], [[1, 0]]) | |
371 assert_array_equal(x[1,:], [[0, 1]]) | |
372 assert_array_equal(x[:, 0], [[1], [0]]) | |
373 assert_array_equal(x[:, 1], [[0], [1]]) | |
374 | |
375 def test_boolean_indexing(self): | |
376 A = arange(6) | |
377 A.shape = (3, 2) | |
378 x = asmatrix(A) | |
379 assert_array_equal(x[:, array([True, False])], x[:, 0]) | |
380 assert_array_equal(x[array([True, False, False]),:], x[0,:]) | |
381 | |
382 def test_list_indexing(self): | |
383 A = arange(6) | |
384 A.shape = (3, 2) | |
385 x = asmatrix(A) | |
386 assert_array_equal(x[:, [1, 0]], x[:, ::-1]) | |
387 assert_array_equal(x[[2, 1, 0],:], x[::-1,:]) | |
388 | |
389 class TestPower(TestCase): | |
390 def test_returntype(self): | |
391 a = array([[0, 1], [0, 0]]) | |
392 assert_(type(matrix_power(a, 2)) is ndarray) | |
393 a = mat(a) | |
394 assert_(type(matrix_power(a, 2)) is matrix) | |
395 | |
396 def test_list(self): | |
397 assert_array_equal(matrix_power([[0, 1], [0, 0]], 2), [[0, 0], [0, 0]]) | |
398 | |
399 if __name__ == "__main__": | |
400 run_module_suite() |