comparison DEPENDENCIES/mingw32/Python27/Lib/site-packages/numpy/ma/tests/test_regression.py @ 87:2a2c65a20a8b

Add Python libs and headers
author Chris Cannam
date Wed, 25 Feb 2015 14:05:22 +0000
parents
children
comparison
equal deleted inserted replaced
86:413a9d26189e 87:2a2c65a20a8b
1 from __future__ import division, absolute_import, print_function
2
3 import numpy as np
4 from numpy.testing import *
5 from numpy.compat import sixu
6
7 rlevel = 1
8
9
10 class TestRegression(TestCase):
11 def test_masked_array_create(self,level=rlevel):
12 # Ticket #17
13 x = np.ma.masked_array([0, 1, 2, 3, 0, 4, 5, 6],
14 mask=[0, 0, 0, 1, 1, 1, 0, 0])
15 assert_array_equal(np.ma.nonzero(x), [[1, 2, 6, 7]])
16
17 def test_masked_array(self,level=rlevel):
18 # Ticket #61
19 np.ma.array(1, mask=[1])
20
21 def test_mem_masked_where(self,level=rlevel):
22 # Ticket #62
23 from numpy.ma import masked_where, MaskType
24 a = np.zeros((1, 1))
25 b = np.zeros(a.shape, MaskType)
26 c = masked_where(b, a)
27 a-c
28
29 def test_masked_array_multiply(self,level=rlevel):
30 # Ticket #254
31 a = np.ma.zeros((4, 1))
32 a[2, 0] = np.ma.masked
33 b = np.zeros((4, 2))
34 a*b
35 b*a
36
37 def test_masked_array_repeat(self, level=rlevel):
38 # Ticket #271
39 np.ma.array([1], mask=False).repeat(10)
40
41 def test_masked_array_repr_unicode(self):
42 # Ticket #1256
43 repr(np.ma.array(sixu("Unicode")))
44
45 def test_atleast_2d(self):
46 # Ticket #1559
47 a = np.ma.masked_array([0.0, 1.2, 3.5], mask=[False, True, False])
48 b = np.atleast_2d(a)
49 assert_(a.mask.ndim == 1)
50 assert_(b.mask.ndim == 2)
51
52 def test_set_fill_value_unicode_py3(self):
53 # Ticket #2733
54 a = np.ma.masked_array(['a', 'b', 'c'], mask=[1, 0, 0])
55 a.fill_value = 'X'
56 assert_(a.fill_value == 'X')
57
58 def test_var_sets_maskedarray_scalar(self):
59 # Issue gh-2757
60 a = np.ma.array(np.arange(5), mask=True)
61 mout = np.ma.array(-1, dtype=float)
62 a.var(out=mout)
63 assert_(mout._data == 0)
64
65 def test_ddof_corrcoef(self):
66 # See gh-3336
67 x = np.ma.masked_equal([1, 2, 3, 4, 5], 4)
68 y = np.array([2, 2.5, 3.1, 3, 5])
69 r0 = np.ma.corrcoef(x, y, ddof=0)
70 r1 = np.ma.corrcoef(x, y, ddof=1)
71 # ddof should not have an effect (it gets cancelled out)
72 assert_allclose(r0.data, r1.data)
73
74 if __name__ == "__main__":
75 run_module_suite()