comparison DEPENDENCIES/mingw32/Python27/Lib/site-packages/numpy/ma/tests/test_extras.py @ 87:2a2c65a20a8b

Add Python libs and headers
author Chris Cannam
date Wed, 25 Feb 2015 14:05:22 +0000
parents
children
comparison
equal deleted inserted replaced
86:413a9d26189e 87:2a2c65a20a8b
1 # pylint: disable-msg=W0611, W0612, W0511
2 """Tests suite for MaskedArray.
3 Adapted from the original test_ma by Pierre Gerard-Marchant
4
5 :author: Pierre Gerard-Marchant
6 :contact: pierregm_at_uga_dot_edu
7 :version: $Id: test_extras.py 3473 2007-10-29 15:18:13Z jarrod.millman $
8
9 """
10 from __future__ import division, absolute_import, print_function
11
12 __author__ = "Pierre GF Gerard-Marchant ($Author: jarrod.millman $)"
13 __version__ = '1.0'
14 __revision__ = "$Revision: 3473 $"
15 __date__ = '$Date: 2007-10-29 17:18:13 +0200 (Mon, 29 Oct 2007) $'
16
17 import numpy as np
18 from numpy.testing import TestCase, run_module_suite
19 from numpy.ma.testutils import (rand, assert_, assert_array_equal,
20 assert_equal, assert_almost_equal)
21 from numpy.ma.core import (array, arange, masked, MaskedArray, masked_array,
22 getmaskarray, shape, nomask, ones, zeros, count)
23 from numpy.ma.extras import (
24 atleast_2d, mr_, dot, polyfit,
25 cov, corrcoef, median, average,
26 unique, setxor1d, setdiff1d, union1d, intersect1d, in1d, ediff1d,
27 apply_over_axes, apply_along_axis,
28 compress_rowcols, mask_rowcols,
29 clump_masked, clump_unmasked,
30 flatnotmasked_contiguous, notmasked_contiguous, notmasked_edges,
31 masked_all, masked_all_like)
32
33
34 class TestGeneric(TestCase):
35 #
36 def test_masked_all(self):
37 # Tests masked_all
38 # Standard dtype
39 test = masked_all((2,), dtype=float)
40 control = array([1, 1], mask=[1, 1], dtype=float)
41 assert_equal(test, control)
42 # Flexible dtype
43 dt = np.dtype({'names': ['a', 'b'], 'formats': ['f', 'f']})
44 test = masked_all((2,), dtype=dt)
45 control = array([(0, 0), (0, 0)], mask=[(1, 1), (1, 1)], dtype=dt)
46 assert_equal(test, control)
47 test = masked_all((2, 2), dtype=dt)
48 control = array([[(0, 0), (0, 0)], [(0, 0), (0, 0)]],
49 mask=[[(1, 1), (1, 1)], [(1, 1), (1, 1)]],
50 dtype=dt)
51 assert_equal(test, control)
52 # Nested dtype
53 dt = np.dtype([('a', 'f'), ('b', [('ba', 'f'), ('bb', 'f')])])
54 test = masked_all((2,), dtype=dt)
55 control = array([(1, (1, 1)), (1, (1, 1))],
56 mask=[(1, (1, 1)), (1, (1, 1))], dtype=dt)
57 assert_equal(test, control)
58 test = masked_all((2,), dtype=dt)
59 control = array([(1, (1, 1)), (1, (1, 1))],
60 mask=[(1, (1, 1)), (1, (1, 1))], dtype=dt)
61 assert_equal(test, control)
62 test = masked_all((1, 1), dtype=dt)
63 control = array([[(1, (1, 1))]], mask=[[(1, (1, 1))]], dtype=dt)
64 assert_equal(test, control)
65
66 def test_masked_all_like(self):
67 # Tests masked_all
68 # Standard dtype
69 base = array([1, 2], dtype=float)
70 test = masked_all_like(base)
71 control = array([1, 1], mask=[1, 1], dtype=float)
72 assert_equal(test, control)
73 # Flexible dtype
74 dt = np.dtype({'names': ['a', 'b'], 'formats': ['f', 'f']})
75 base = array([(0, 0), (0, 0)], mask=[(1, 1), (1, 1)], dtype=dt)
76 test = masked_all_like(base)
77 control = array([(10, 10), (10, 10)], mask=[(1, 1), (1, 1)], dtype=dt)
78 assert_equal(test, control)
79 # Nested dtype
80 dt = np.dtype([('a', 'f'), ('b', [('ba', 'f'), ('bb', 'f')])])
81 control = array([(1, (1, 1)), (1, (1, 1))],
82 mask=[(1, (1, 1)), (1, (1, 1))], dtype=dt)
83 test = masked_all_like(control)
84 assert_equal(test, control)
85
86 def test_clump_masked(self):
87 # Test clump_masked
88 a = masked_array(np.arange(10))
89 a[[0, 1, 2, 6, 8, 9]] = masked
90 #
91 test = clump_masked(a)
92 control = [slice(0, 3), slice(6, 7), slice(8, 10)]
93 assert_equal(test, control)
94
95 def test_clump_unmasked(self):
96 # Test clump_unmasked
97 a = masked_array(np.arange(10))
98 a[[0, 1, 2, 6, 8, 9]] = masked
99 test = clump_unmasked(a)
100 control = [slice(3, 6), slice(7, 8), ]
101 assert_equal(test, control)
102
103 def test_flatnotmasked_contiguous(self):
104 # Test flatnotmasked_contiguous
105 a = arange(10)
106 # No mask
107 test = flatnotmasked_contiguous(a)
108 assert_equal(test, slice(0, a.size))
109 # Some mask
110 a[(a < 3) | (a > 8) | (a == 5)] = masked
111 test = flatnotmasked_contiguous(a)
112 assert_equal(test, [slice(3, 5), slice(6, 9)])
113 #
114 a[:] = masked
115 test = flatnotmasked_contiguous(a)
116 assert_equal(test, None)
117
118
119 class TestAverage(TestCase):
120 # Several tests of average. Why so many ? Good point...
121 def test_testAverage1(self):
122 # Test of average.
123 ott = array([0., 1., 2., 3.], mask=[True, False, False, False])
124 assert_equal(2.0, average(ott, axis=0))
125 assert_equal(2.0, average(ott, weights=[1., 1., 2., 1.]))
126 result, wts = average(ott, weights=[1., 1., 2., 1.], returned=1)
127 assert_equal(2.0, result)
128 self.assertTrue(wts == 4.0)
129 ott[:] = masked
130 assert_equal(average(ott, axis=0).mask, [True])
131 ott = array([0., 1., 2., 3.], mask=[True, False, False, False])
132 ott = ott.reshape(2, 2)
133 ott[:, 1] = masked
134 assert_equal(average(ott, axis=0), [2.0, 0.0])
135 assert_equal(average(ott, axis=1).mask[0], [True])
136 assert_equal([2., 0.], average(ott, axis=0))
137 result, wts = average(ott, axis=0, returned=1)
138 assert_equal(wts, [1., 0.])
139
140 def test_testAverage2(self):
141 # More tests of average.
142 w1 = [0, 1, 1, 1, 1, 0]
143 w2 = [[0, 1, 1, 1, 1, 0], [1, 0, 0, 0, 0, 1]]
144 x = arange(6, dtype=np.float_)
145 assert_equal(average(x, axis=0), 2.5)
146 assert_equal(average(x, axis=0, weights=w1), 2.5)
147 y = array([arange(6, dtype=np.float_), 2.0 * arange(6)])
148 assert_equal(average(y, None), np.add.reduce(np.arange(6)) * 3. / 12.)
149 assert_equal(average(y, axis=0), np.arange(6) * 3. / 2.)
150 assert_equal(average(y, axis=1),
151 [average(x, axis=0), average(x, axis=0) * 2.0])
152 assert_equal(average(y, None, weights=w2), 20. / 6.)
153 assert_equal(average(y, axis=0, weights=w2),
154 [0., 1., 2., 3., 4., 10.])
155 assert_equal(average(y, axis=1),
156 [average(x, axis=0), average(x, axis=0) * 2.0])
157 m1 = zeros(6)
158 m2 = [0, 0, 1, 1, 0, 0]
159 m3 = [[0, 0, 1, 1, 0, 0], [0, 1, 1, 1, 1, 0]]
160 m4 = ones(6)
161 m5 = [0, 1, 1, 1, 1, 1]
162 assert_equal(average(masked_array(x, m1), axis=0), 2.5)
163 assert_equal(average(masked_array(x, m2), axis=0), 2.5)
164 assert_equal(average(masked_array(x, m4), axis=0).mask, [True])
165 assert_equal(average(masked_array(x, m5), axis=0), 0.0)
166 assert_equal(count(average(masked_array(x, m4), axis=0)), 0)
167 z = masked_array(y, m3)
168 assert_equal(average(z, None), 20. / 6.)
169 assert_equal(average(z, axis=0), [0., 1., 99., 99., 4.0, 7.5])
170 assert_equal(average(z, axis=1), [2.5, 5.0])
171 assert_equal(average(z, axis=0, weights=w2),
172 [0., 1., 99., 99., 4.0, 10.0])
173
174 def test_testAverage3(self):
175 # Yet more tests of average!
176 a = arange(6)
177 b = arange(6) * 3
178 r1, w1 = average([[a, b], [b, a]], axis=1, returned=1)
179 assert_equal(shape(r1), shape(w1))
180 assert_equal(r1.shape, w1.shape)
181 r2, w2 = average(ones((2, 2, 3)), axis=0, weights=[3, 1], returned=1)
182 assert_equal(shape(w2), shape(r2))
183 r2, w2 = average(ones((2, 2, 3)), returned=1)
184 assert_equal(shape(w2), shape(r2))
185 r2, w2 = average(ones((2, 2, 3)), weights=ones((2, 2, 3)), returned=1)
186 assert_equal(shape(w2), shape(r2))
187 a2d = array([[1, 2], [0, 4]], float)
188 a2dm = masked_array(a2d, [[False, False], [True, False]])
189 a2da = average(a2d, axis=0)
190 assert_equal(a2da, [0.5, 3.0])
191 a2dma = average(a2dm, axis=0)
192 assert_equal(a2dma, [1.0, 3.0])
193 a2dma = average(a2dm, axis=None)
194 assert_equal(a2dma, 7. / 3.)
195 a2dma = average(a2dm, axis=1)
196 assert_equal(a2dma, [1.5, 4.0])
197
198 def test_onintegers_with_mask(self):
199 # Test average on integers with mask
200 a = average(array([1, 2]))
201 assert_equal(a, 1.5)
202 a = average(array([1, 2, 3, 4], mask=[False, False, True, True]))
203 assert_equal(a, 1.5)
204
205 def test_complex(self):
206 # Test with complex data.
207 # (Regression test for https://github.com/numpy/numpy/issues/2684)
208 mask = np.array([[0, 0, 0, 1, 0],
209 [0, 1, 0, 0, 0]], dtype=bool)
210 a = masked_array([[0, 1+2j, 3+4j, 5+6j, 7+8j],
211 [9j, 0+1j, 2+3j, 4+5j, 7+7j]],
212 mask=mask)
213
214 av = average(a)
215 expected = np.average(a.compressed())
216 assert_almost_equal(av.real, expected.real)
217 assert_almost_equal(av.imag, expected.imag)
218
219 av0 = average(a, axis=0)
220 expected0 = average(a.real, axis=0) + average(a.imag, axis=0)*1j
221 assert_almost_equal(av0.real, expected0.real)
222 assert_almost_equal(av0.imag, expected0.imag)
223
224 av1 = average(a, axis=1)
225 expected1 = average(a.real, axis=1) + average(a.imag, axis=1)*1j
226 assert_almost_equal(av1.real, expected1.real)
227 assert_almost_equal(av1.imag, expected1.imag)
228
229 # Test with the 'weights' argument.
230 wts = np.array([[0.5, 1.0, 2.0, 1.0, 0.5],
231 [1.0, 1.0, 1.0, 1.0, 1.0]])
232 wav = average(a, weights=wts)
233 expected = np.average(a.compressed(), weights=wts[~mask])
234 assert_almost_equal(wav.real, expected.real)
235 assert_almost_equal(wav.imag, expected.imag)
236
237 wav0 = average(a, weights=wts, axis=0)
238 expected0 = (average(a.real, weights=wts, axis=0) +
239 average(a.imag, weights=wts, axis=0)*1j)
240 assert_almost_equal(wav0.real, expected0.real)
241 assert_almost_equal(wav0.imag, expected0.imag)
242
243 wav1 = average(a, weights=wts, axis=1)
244 expected1 = (average(a.real, weights=wts, axis=1) +
245 average(a.imag, weights=wts, axis=1)*1j)
246 assert_almost_equal(wav1.real, expected1.real)
247 assert_almost_equal(wav1.imag, expected1.imag)
248
249
250 class TestConcatenator(TestCase):
251 # Tests for mr_, the equivalent of r_ for masked arrays.
252
253 def test_1d(self):
254 # Tests mr_ on 1D arrays.
255 assert_array_equal(mr_[1, 2, 3, 4, 5, 6], array([1, 2, 3, 4, 5, 6]))
256 b = ones(5)
257 m = [1, 0, 0, 0, 0]
258 d = masked_array(b, mask=m)
259 c = mr_[d, 0, 0, d]
260 self.assertTrue(isinstance(c, MaskedArray))
261 assert_array_equal(c, [1, 1, 1, 1, 1, 0, 0, 1, 1, 1, 1, 1])
262 assert_array_equal(c.mask, mr_[m, 0, 0, m])
263
264 def test_2d(self):
265 # Tests mr_ on 2D arrays.
266 a_1 = rand(5, 5)
267 a_2 = rand(5, 5)
268 m_1 = np.round_(rand(5, 5), 0)
269 m_2 = np.round_(rand(5, 5), 0)
270 b_1 = masked_array(a_1, mask=m_1)
271 b_2 = masked_array(a_2, mask=m_2)
272 # append columns
273 d = mr_['1', b_1, b_2]
274 self.assertTrue(d.shape == (5, 10))
275 assert_array_equal(d[:, :5], b_1)
276 assert_array_equal(d[:, 5:], b_2)
277 assert_array_equal(d.mask, np.r_['1', m_1, m_2])
278 d = mr_[b_1, b_2]
279 self.assertTrue(d.shape == (10, 5))
280 assert_array_equal(d[:5,:], b_1)
281 assert_array_equal(d[5:,:], b_2)
282 assert_array_equal(d.mask, np.r_[m_1, m_2])
283
284
285 class TestNotMasked(TestCase):
286 # Tests notmasked_edges and notmasked_contiguous.
287
288 def test_edges(self):
289 # Tests unmasked_edges
290 data = masked_array(np.arange(25).reshape(5, 5),
291 mask=[[0, 0, 1, 0, 0],
292 [0, 0, 0, 1, 1],
293 [1, 1, 0, 0, 0],
294 [0, 0, 0, 0, 0],
295 [1, 1, 1, 0, 0]],)
296 test = notmasked_edges(data, None)
297 assert_equal(test, [0, 24])
298 test = notmasked_edges(data, 0)
299 assert_equal(test[0], [(0, 0, 1, 0, 0), (0, 1, 2, 3, 4)])
300 assert_equal(test[1], [(3, 3, 3, 4, 4), (0, 1, 2, 3, 4)])
301 test = notmasked_edges(data, 1)
302 assert_equal(test[0], [(0, 1, 2, 3, 4), (0, 0, 2, 0, 3)])
303 assert_equal(test[1], [(0, 1, 2, 3, 4), (4, 2, 4, 4, 4)])
304 #
305 test = notmasked_edges(data.data, None)
306 assert_equal(test, [0, 24])
307 test = notmasked_edges(data.data, 0)
308 assert_equal(test[0], [(0, 0, 0, 0, 0), (0, 1, 2, 3, 4)])
309 assert_equal(test[1], [(4, 4, 4, 4, 4), (0, 1, 2, 3, 4)])
310 test = notmasked_edges(data.data, -1)
311 assert_equal(test[0], [(0, 1, 2, 3, 4), (0, 0, 0, 0, 0)])
312 assert_equal(test[1], [(0, 1, 2, 3, 4), (4, 4, 4, 4, 4)])
313 #
314 data[-2] = masked
315 test = notmasked_edges(data, 0)
316 assert_equal(test[0], [(0, 0, 1, 0, 0), (0, 1, 2, 3, 4)])
317 assert_equal(test[1], [(1, 1, 2, 4, 4), (0, 1, 2, 3, 4)])
318 test = notmasked_edges(data, -1)
319 assert_equal(test[0], [(0, 1, 2, 4), (0, 0, 2, 3)])
320 assert_equal(test[1], [(0, 1, 2, 4), (4, 2, 4, 4)])
321
322 def test_contiguous(self):
323 # Tests notmasked_contiguous
324 a = masked_array(np.arange(24).reshape(3, 8),
325 mask=[[0, 0, 0, 0, 1, 1, 1, 1],
326 [1, 1, 1, 1, 1, 1, 1, 1],
327 [0, 0, 0, 0, 0, 0, 1, 0], ])
328 tmp = notmasked_contiguous(a, None)
329 assert_equal(tmp[-1], slice(23, 24, None))
330 assert_equal(tmp[-2], slice(16, 22, None))
331 assert_equal(tmp[-3], slice(0, 4, None))
332 #
333 tmp = notmasked_contiguous(a, 0)
334 self.assertTrue(len(tmp[-1]) == 1)
335 self.assertTrue(tmp[-2] is None)
336 assert_equal(tmp[-3], tmp[-1])
337 self.assertTrue(len(tmp[0]) == 2)
338 #
339 tmp = notmasked_contiguous(a, 1)
340 assert_equal(tmp[0][-1], slice(0, 4, None))
341 self.assertTrue(tmp[1] is None)
342 assert_equal(tmp[2][-1], slice(7, 8, None))
343 assert_equal(tmp[2][-2], slice(0, 6, None))
344
345
346 class Test2DFunctions(TestCase):
347 # Tests 2D functions
348 def test_compress2d(self):
349 # Tests compress2d
350 x = array(np.arange(9).reshape(3, 3),
351 mask=[[1, 0, 0], [0, 0, 0], [0, 0, 0]])
352 assert_equal(compress_rowcols(x), [[4, 5], [7, 8]])
353 assert_equal(compress_rowcols(x, 0), [[3, 4, 5], [6, 7, 8]])
354 assert_equal(compress_rowcols(x, 1), [[1, 2], [4, 5], [7, 8]])
355 x = array(x._data, mask=[[0, 0, 0], [0, 1, 0], [0, 0, 0]])
356 assert_equal(compress_rowcols(x), [[0, 2], [6, 8]])
357 assert_equal(compress_rowcols(x, 0), [[0, 1, 2], [6, 7, 8]])
358 assert_equal(compress_rowcols(x, 1), [[0, 2], [3, 5], [6, 8]])
359 x = array(x._data, mask=[[1, 0, 0], [0, 1, 0], [0, 0, 0]])
360 assert_equal(compress_rowcols(x), [[8]])
361 assert_equal(compress_rowcols(x, 0), [[6, 7, 8]])
362 assert_equal(compress_rowcols(x, 1,), [[2], [5], [8]])
363 x = array(x._data, mask=[[1, 0, 0], [0, 1, 0], [0, 0, 1]])
364 assert_equal(compress_rowcols(x).size, 0)
365 assert_equal(compress_rowcols(x, 0).size, 0)
366 assert_equal(compress_rowcols(x, 1).size, 0)
367
368 def test_mask_rowcols(self):
369 # Tests mask_rowcols.
370 x = array(np.arange(9).reshape(3, 3),
371 mask=[[1, 0, 0], [0, 0, 0], [0, 0, 0]])
372 assert_equal(mask_rowcols(x).mask,
373 [[1, 1, 1], [1, 0, 0], [1, 0, 0]])
374 assert_equal(mask_rowcols(x, 0).mask,
375 [[1, 1, 1], [0, 0, 0], [0, 0, 0]])
376 assert_equal(mask_rowcols(x, 1).mask,
377 [[1, 0, 0], [1, 0, 0], [1, 0, 0]])
378 x = array(x._data, mask=[[0, 0, 0], [0, 1, 0], [0, 0, 0]])
379 assert_equal(mask_rowcols(x).mask,
380 [[0, 1, 0], [1, 1, 1], [0, 1, 0]])
381 assert_equal(mask_rowcols(x, 0).mask,
382 [[0, 0, 0], [1, 1, 1], [0, 0, 0]])
383 assert_equal(mask_rowcols(x, 1).mask,
384 [[0, 1, 0], [0, 1, 0], [0, 1, 0]])
385 x = array(x._data, mask=[[1, 0, 0], [0, 1, 0], [0, 0, 0]])
386 assert_equal(mask_rowcols(x).mask,
387 [[1, 1, 1], [1, 1, 1], [1, 1, 0]])
388 assert_equal(mask_rowcols(x, 0).mask,
389 [[1, 1, 1], [1, 1, 1], [0, 0, 0]])
390 assert_equal(mask_rowcols(x, 1,).mask,
391 [[1, 1, 0], [1, 1, 0], [1, 1, 0]])
392 x = array(x._data, mask=[[1, 0, 0], [0, 1, 0], [0, 0, 1]])
393 self.assertTrue(mask_rowcols(x).all() is masked)
394 self.assertTrue(mask_rowcols(x, 0).all() is masked)
395 self.assertTrue(mask_rowcols(x, 1).all() is masked)
396 self.assertTrue(mask_rowcols(x).mask.all())
397 self.assertTrue(mask_rowcols(x, 0).mask.all())
398 self.assertTrue(mask_rowcols(x, 1).mask.all())
399
400 def test_dot(self):
401 # Tests dot product
402 n = np.arange(1, 7)
403 #
404 m = [1, 0, 0, 0, 0, 0]
405 a = masked_array(n, mask=m).reshape(2, 3)
406 b = masked_array(n, mask=m).reshape(3, 2)
407 c = dot(a, b, True)
408 assert_equal(c.mask, [[1, 1], [1, 0]])
409 c = dot(b, a, True)
410 assert_equal(c.mask, [[1, 1, 1], [1, 0, 0], [1, 0, 0]])
411 c = dot(a, b, False)
412 assert_equal(c, np.dot(a.filled(0), b.filled(0)))
413 c = dot(b, a, False)
414 assert_equal(c, np.dot(b.filled(0), a.filled(0)))
415 #
416 m = [0, 0, 0, 0, 0, 1]
417 a = masked_array(n, mask=m).reshape(2, 3)
418 b = masked_array(n, mask=m).reshape(3, 2)
419 c = dot(a, b, True)
420 assert_equal(c.mask, [[0, 1], [1, 1]])
421 c = dot(b, a, True)
422 assert_equal(c.mask, [[0, 0, 1], [0, 0, 1], [1, 1, 1]])
423 c = dot(a, b, False)
424 assert_equal(c, np.dot(a.filled(0), b.filled(0)))
425 assert_equal(c, dot(a, b))
426 c = dot(b, a, False)
427 assert_equal(c, np.dot(b.filled(0), a.filled(0)))
428 #
429 m = [0, 0, 0, 0, 0, 0]
430 a = masked_array(n, mask=m).reshape(2, 3)
431 b = masked_array(n, mask=m).reshape(3, 2)
432 c = dot(a, b)
433 assert_equal(c.mask, nomask)
434 c = dot(b, a)
435 assert_equal(c.mask, nomask)
436 #
437 a = masked_array(n, mask=[1, 0, 0, 0, 0, 0]).reshape(2, 3)
438 b = masked_array(n, mask=[0, 0, 0, 0, 0, 0]).reshape(3, 2)
439 c = dot(a, b, True)
440 assert_equal(c.mask, [[1, 1], [0, 0]])
441 c = dot(a, b, False)
442 assert_equal(c, np.dot(a.filled(0), b.filled(0)))
443 c = dot(b, a, True)
444 assert_equal(c.mask, [[1, 0, 0], [1, 0, 0], [1, 0, 0]])
445 c = dot(b, a, False)
446 assert_equal(c, np.dot(b.filled(0), a.filled(0)))
447 #
448 a = masked_array(n, mask=[0, 0, 0, 0, 0, 1]).reshape(2, 3)
449 b = masked_array(n, mask=[0, 0, 0, 0, 0, 0]).reshape(3, 2)
450 c = dot(a, b, True)
451 assert_equal(c.mask, [[0, 0], [1, 1]])
452 c = dot(a, b)
453 assert_equal(c, np.dot(a.filled(0), b.filled(0)))
454 c = dot(b, a, True)
455 assert_equal(c.mask, [[0, 0, 1], [0, 0, 1], [0, 0, 1]])
456 c = dot(b, a, False)
457 assert_equal(c, np.dot(b.filled(0), a.filled(0)))
458 #
459 a = masked_array(n, mask=[0, 0, 0, 0, 0, 1]).reshape(2, 3)
460 b = masked_array(n, mask=[0, 0, 1, 0, 0, 0]).reshape(3, 2)
461 c = dot(a, b, True)
462 assert_equal(c.mask, [[1, 0], [1, 1]])
463 c = dot(a, b, False)
464 assert_equal(c, np.dot(a.filled(0), b.filled(0)))
465 c = dot(b, a, True)
466 assert_equal(c.mask, [[0, 0, 1], [1, 1, 1], [0, 0, 1]])
467 c = dot(b, a, False)
468 assert_equal(c, np.dot(b.filled(0), a.filled(0)))
469
470
471 class TestApplyAlongAxis(TestCase):
472 # Tests 2D functions
473 def test_3d(self):
474 a = arange(12.).reshape(2, 2, 3)
475
476 def myfunc(b):
477 return b[1]
478
479 xa = apply_along_axis(myfunc, 2, a)
480 assert_equal(xa, [[1, 4], [7, 10]])
481
482 # Tests kwargs functions
483 def test_3d_kwargs(self):
484 a = arange(12).reshape(2, 2, 3)
485
486 def myfunc(b, offset=0):
487 return b[1+offset]
488
489 xa = apply_along_axis(myfunc, 2, a, offset=1)
490 assert_equal(xa, [[2, 5], [8, 11]])
491
492
493 class TestApplyOverAxes(TestCase):
494 # Tests apply_over_axes
495 def test_basic(self):
496 a = arange(24).reshape(2, 3, 4)
497 test = apply_over_axes(np.sum, a, [0, 2])
498 ctrl = np.array([[[60], [92], [124]]])
499 assert_equal(test, ctrl)
500 a[(a % 2).astype(np.bool)] = masked
501 test = apply_over_axes(np.sum, a, [0, 2])
502 ctrl = np.array([[[28], [44], [60]]])
503 assert_equal(test, ctrl)
504
505
506 class TestMedian(TestCase):
507 def test_pytype(self):
508 r = np.ma.median([[np.inf, np.inf], [np.inf, np.inf]], axis=-1)
509 assert_equal(r, np.inf)
510
511 def test_2d(self):
512 # Tests median w/ 2D
513 (n, p) = (101, 30)
514 x = masked_array(np.linspace(-1., 1., n),)
515 x[:10] = x[-10:] = masked
516 z = masked_array(np.empty((n, p), dtype=float))
517 z[:, 0] = x[:]
518 idx = np.arange(len(x))
519 for i in range(1, p):
520 np.random.shuffle(idx)
521 z[:, i] = x[idx]
522 assert_equal(median(z[:, 0]), 0)
523 assert_equal(median(z), 0)
524 assert_equal(median(z, axis=0), np.zeros(p))
525 assert_equal(median(z.T, axis=1), np.zeros(p))
526
527 def test_2d_waxis(self):
528 # Tests median w/ 2D arrays and different axis.
529 x = masked_array(np.arange(30).reshape(10, 3))
530 x[:3] = x[-3:] = masked
531 assert_equal(median(x), 14.5)
532 assert_equal(median(x, axis=0), [13.5, 14.5, 15.5])
533 assert_equal(median(x, axis=1), [0, 0, 0, 10, 13, 16, 19, 0, 0, 0])
534 assert_equal(median(x, axis=1).mask, [1, 1, 1, 0, 0, 0, 0, 1, 1, 1])
535
536 def test_3d(self):
537 # Tests median w/ 3D
538 x = np.ma.arange(24).reshape(3, 4, 2)
539 x[x % 3 == 0] = masked
540 assert_equal(median(x, 0), [[12, 9], [6, 15], [12, 9], [18, 15]])
541 x.shape = (4, 3, 2)
542 assert_equal(median(x, 0), [[99, 10], [11, 99], [13, 14]])
543 x = np.ma.arange(24).reshape(4, 3, 2)
544 x[x % 5 == 0] = masked
545 assert_equal(median(x, 0), [[12, 10], [8, 9], [16, 17]])
546
547 def test_neg_axis(self):
548 x = masked_array(np.arange(30).reshape(10, 3))
549 x[:3] = x[-3:] = masked
550 assert_equal(median(x, axis=-1), median(x, axis=1))
551
552 def test_out(self):
553 x = masked_array(np.arange(30).reshape(10, 3))
554 x[:3] = x[-3:] = masked
555 out = masked_array(np.ones(10))
556 r = median(x, axis=1, out=out)
557 assert_equal(r, out)
558 assert_(type(r) == MaskedArray)
559
560
561 class TestCov(TestCase):
562
563 def setUp(self):
564 self.data = array(np.random.rand(12))
565
566 def test_1d_wo_missing(self):
567 # Test cov on 1D variable w/o missing values
568 x = self.data
569 assert_almost_equal(np.cov(x), cov(x))
570 assert_almost_equal(np.cov(x, rowvar=False), cov(x, rowvar=False))
571 assert_almost_equal(np.cov(x, rowvar=False, bias=True),
572 cov(x, rowvar=False, bias=True))
573
574 def test_2d_wo_missing(self):
575 # Test cov on 1 2D variable w/o missing values
576 x = self.data.reshape(3, 4)
577 assert_almost_equal(np.cov(x), cov(x))
578 assert_almost_equal(np.cov(x, rowvar=False), cov(x, rowvar=False))
579 assert_almost_equal(np.cov(x, rowvar=False, bias=True),
580 cov(x, rowvar=False, bias=True))
581
582 def test_1d_w_missing(self):
583 # Test cov 1 1D variable w/missing values
584 x = self.data
585 x[-1] = masked
586 x -= x.mean()
587 nx = x.compressed()
588 assert_almost_equal(np.cov(nx), cov(x))
589 assert_almost_equal(np.cov(nx, rowvar=False), cov(x, rowvar=False))
590 assert_almost_equal(np.cov(nx, rowvar=False, bias=True),
591 cov(x, rowvar=False, bias=True))
592 #
593 try:
594 cov(x, allow_masked=False)
595 except ValueError:
596 pass
597 #
598 # 2 1D variables w/ missing values
599 nx = x[1:-1]
600 assert_almost_equal(np.cov(nx, nx[::-1]), cov(x, x[::-1]))
601 assert_almost_equal(np.cov(nx, nx[::-1], rowvar=False),
602 cov(x, x[::-1], rowvar=False))
603 assert_almost_equal(np.cov(nx, nx[::-1], rowvar=False, bias=True),
604 cov(x, x[::-1], rowvar=False, bias=True))
605
606 def test_2d_w_missing(self):
607 # Test cov on 2D variable w/ missing value
608 x = self.data
609 x[-1] = masked
610 x = x.reshape(3, 4)
611 valid = np.logical_not(getmaskarray(x)).astype(int)
612 frac = np.dot(valid, valid.T)
613 xf = (x - x.mean(1)[:, None]).filled(0)
614 assert_almost_equal(cov(x),
615 np.cov(xf) * (x.shape[1] - 1) / (frac - 1.))
616 assert_almost_equal(cov(x, bias=True),
617 np.cov(xf, bias=True) * x.shape[1] / frac)
618 frac = np.dot(valid.T, valid)
619 xf = (x - x.mean(0)).filled(0)
620 assert_almost_equal(cov(x, rowvar=False),
621 (np.cov(xf, rowvar=False) *
622 (x.shape[0] - 1) / (frac - 1.)))
623 assert_almost_equal(cov(x, rowvar=False, bias=True),
624 (np.cov(xf, rowvar=False, bias=True) *
625 x.shape[0] / frac))
626
627
628 class TestCorrcoef(TestCase):
629
630 def setUp(self):
631 self.data = array(np.random.rand(12))
632
633 def test_ddof(self):
634 # Test ddof keyword
635 x = self.data
636 assert_almost_equal(np.corrcoef(x, ddof=0), corrcoef(x, ddof=0))
637
638 def test_1d_wo_missing(self):
639 # Test cov on 1D variable w/o missing values
640 x = self.data
641 assert_almost_equal(np.corrcoef(x), corrcoef(x))
642 assert_almost_equal(np.corrcoef(x, rowvar=False),
643 corrcoef(x, rowvar=False))
644 assert_almost_equal(np.corrcoef(x, rowvar=False, bias=True),
645 corrcoef(x, rowvar=False, bias=True))
646
647 def test_2d_wo_missing(self):
648 # Test corrcoef on 1 2D variable w/o missing values
649 x = self.data.reshape(3, 4)
650 assert_almost_equal(np.corrcoef(x), corrcoef(x))
651 assert_almost_equal(np.corrcoef(x, rowvar=False),
652 corrcoef(x, rowvar=False))
653 assert_almost_equal(np.corrcoef(x, rowvar=False, bias=True),
654 corrcoef(x, rowvar=False, bias=True))
655
656 def test_1d_w_missing(self):
657 # Test corrcoef 1 1D variable w/missing values
658 x = self.data
659 x[-1] = masked
660 x -= x.mean()
661 nx = x.compressed()
662 assert_almost_equal(np.corrcoef(nx), corrcoef(x))
663 assert_almost_equal(np.corrcoef(nx, rowvar=False),
664 corrcoef(x, rowvar=False))
665 assert_almost_equal(np.corrcoef(nx, rowvar=False, bias=True),
666 corrcoef(x, rowvar=False, bias=True))
667 #
668 try:
669 corrcoef(x, allow_masked=False)
670 except ValueError:
671 pass
672 #
673 # 2 1D variables w/ missing values
674 nx = x[1:-1]
675 assert_almost_equal(np.corrcoef(nx, nx[::-1]), corrcoef(x, x[::-1]))
676 assert_almost_equal(np.corrcoef(nx, nx[::-1], rowvar=False),
677 corrcoef(x, x[::-1], rowvar=False))
678 assert_almost_equal(np.corrcoef(nx, nx[::-1], rowvar=False, bias=True),
679 corrcoef(x, x[::-1], rowvar=False, bias=True))
680
681 def test_2d_w_missing(self):
682 # Test corrcoef on 2D variable w/ missing value
683 x = self.data
684 x[-1] = masked
685 x = x.reshape(3, 4)
686
687 test = corrcoef(x)
688 control = np.corrcoef(x)
689 assert_almost_equal(test[:-1, :-1], control[:-1, :-1])
690
691
692 class TestPolynomial(TestCase):
693 #
694 def test_polyfit(self):
695 # Tests polyfit
696 # On ndarrays
697 x = np.random.rand(10)
698 y = np.random.rand(20).reshape(-1, 2)
699 assert_almost_equal(polyfit(x, y, 3), np.polyfit(x, y, 3))
700 # ON 1D maskedarrays
701 x = x.view(MaskedArray)
702 x[0] = masked
703 y = y.view(MaskedArray)
704 y[0, 0] = y[-1, -1] = masked
705 #
706 (C, R, K, S, D) = polyfit(x, y[:, 0], 3, full=True)
707 (c, r, k, s, d) = np.polyfit(x[1:], y[1:, 0].compressed(), 3,
708 full=True)
709 for (a, a_) in zip((C, R, K, S, D), (c, r, k, s, d)):
710 assert_almost_equal(a, a_)
711 #
712 (C, R, K, S, D) = polyfit(x, y[:, -1], 3, full=True)
713 (c, r, k, s, d) = np.polyfit(x[1:-1], y[1:-1, -1], 3, full=True)
714 for (a, a_) in zip((C, R, K, S, D), (c, r, k, s, d)):
715 assert_almost_equal(a, a_)
716 #
717 (C, R, K, S, D) = polyfit(x, y, 3, full=True)
718 (c, r, k, s, d) = np.polyfit(x[1:-1], y[1:-1,:], 3, full=True)
719 for (a, a_) in zip((C, R, K, S, D), (c, r, k, s, d)):
720 assert_almost_equal(a, a_)
721 #
722 w = np.random.rand(10) + 1
723 wo = w.copy()
724 xs = x[1:-1]
725 ys = y[1:-1]
726 ws = w[1:-1]
727 (C, R, K, S, D) = polyfit(x, y, 3, full=True, w=w)
728 (c, r, k, s, d) = np.polyfit(xs, ys, 3, full=True, w=ws)
729 assert_equal(w, wo)
730 for (a, a_) in zip((C, R, K, S, D), (c, r, k, s, d)):
731 assert_almost_equal(a, a_)
732
733
734 class TestArraySetOps(TestCase):
735
736 def test_unique_onlist(self):
737 # Test unique on list
738 data = [1, 1, 1, 2, 2, 3]
739 test = unique(data, return_index=True, return_inverse=True)
740 self.assertTrue(isinstance(test[0], MaskedArray))
741 assert_equal(test[0], masked_array([1, 2, 3], mask=[0, 0, 0]))
742 assert_equal(test[1], [0, 3, 5])
743 assert_equal(test[2], [0, 0, 0, 1, 1, 2])
744
745 def test_unique_onmaskedarray(self):
746 # Test unique on masked data w/use_mask=True
747 data = masked_array([1, 1, 1, 2, 2, 3], mask=[0, 0, 1, 0, 1, 0])
748 test = unique(data, return_index=True, return_inverse=True)
749 assert_equal(test[0], masked_array([1, 2, 3, -1], mask=[0, 0, 0, 1]))
750 assert_equal(test[1], [0, 3, 5, 2])
751 assert_equal(test[2], [0, 0, 3, 1, 3, 2])
752 #
753 data.fill_value = 3
754 data = masked_array(data=[1, 1, 1, 2, 2, 3],
755 mask=[0, 0, 1, 0, 1, 0], fill_value=3)
756 test = unique(data, return_index=True, return_inverse=True)
757 assert_equal(test[0], masked_array([1, 2, 3, -1], mask=[0, 0, 0, 1]))
758 assert_equal(test[1], [0, 3, 5, 2])
759 assert_equal(test[2], [0, 0, 3, 1, 3, 2])
760
761 def test_unique_allmasked(self):
762 # Test all masked
763 data = masked_array([1, 1, 1], mask=True)
764 test = unique(data, return_index=True, return_inverse=True)
765 assert_equal(test[0], masked_array([1, ], mask=[True]))
766 assert_equal(test[1], [0])
767 assert_equal(test[2], [0, 0, 0])
768 #
769 # Test masked
770 data = masked
771 test = unique(data, return_index=True, return_inverse=True)
772 assert_equal(test[0], masked_array(masked))
773 assert_equal(test[1], [0])
774 assert_equal(test[2], [0])
775
776 def test_ediff1d(self):
777 # Tests mediff1d
778 x = masked_array(np.arange(5), mask=[1, 0, 0, 0, 1])
779 control = array([1, 1, 1, 4], mask=[1, 0, 0, 1])
780 test = ediff1d(x)
781 assert_equal(test, control)
782 assert_equal(test.data, control.data)
783 assert_equal(test.mask, control.mask)
784
785 def test_ediff1d_tobegin(self):
786 # Test ediff1d w/ to_begin
787 x = masked_array(np.arange(5), mask=[1, 0, 0, 0, 1])
788 test = ediff1d(x, to_begin=masked)
789 control = array([0, 1, 1, 1, 4], mask=[1, 1, 0, 0, 1])
790 assert_equal(test, control)
791 assert_equal(test.data, control.data)
792 assert_equal(test.mask, control.mask)
793 #
794 test = ediff1d(x, to_begin=[1, 2, 3])
795 control = array([1, 2, 3, 1, 1, 1, 4], mask=[0, 0, 0, 1, 0, 0, 1])
796 assert_equal(test, control)
797 assert_equal(test.data, control.data)
798 assert_equal(test.mask, control.mask)
799
800 def test_ediff1d_toend(self):
801 # Test ediff1d w/ to_end
802 x = masked_array(np.arange(5), mask=[1, 0, 0, 0, 1])
803 test = ediff1d(x, to_end=masked)
804 control = array([1, 1, 1, 4, 0], mask=[1, 0, 0, 1, 1])
805 assert_equal(test, control)
806 assert_equal(test.data, control.data)
807 assert_equal(test.mask, control.mask)
808 #
809 test = ediff1d(x, to_end=[1, 2, 3])
810 control = array([1, 1, 1, 4, 1, 2, 3], mask=[1, 0, 0, 1, 0, 0, 0])
811 assert_equal(test, control)
812 assert_equal(test.data, control.data)
813 assert_equal(test.mask, control.mask)
814
815 def test_ediff1d_tobegin_toend(self):
816 # Test ediff1d w/ to_begin and to_end
817 x = masked_array(np.arange(5), mask=[1, 0, 0, 0, 1])
818 test = ediff1d(x, to_end=masked, to_begin=masked)
819 control = array([0, 1, 1, 1, 4, 0], mask=[1, 1, 0, 0, 1, 1])
820 assert_equal(test, control)
821 assert_equal(test.data, control.data)
822 assert_equal(test.mask, control.mask)
823 #
824 test = ediff1d(x, to_end=[1, 2, 3], to_begin=masked)
825 control = array([0, 1, 1, 1, 4, 1, 2, 3],
826 mask=[1, 1, 0, 0, 1, 0, 0, 0])
827 assert_equal(test, control)
828 assert_equal(test.data, control.data)
829 assert_equal(test.mask, control.mask)
830
831 def test_ediff1d_ndarray(self):
832 # Test ediff1d w/ a ndarray
833 x = np.arange(5)
834 test = ediff1d(x)
835 control = array([1, 1, 1, 1], mask=[0, 0, 0, 0])
836 assert_equal(test, control)
837 self.assertTrue(isinstance(test, MaskedArray))
838 assert_equal(test.data, control.data)
839 assert_equal(test.mask, control.mask)
840 #
841 test = ediff1d(x, to_end=masked, to_begin=masked)
842 control = array([0, 1, 1, 1, 1, 0], mask=[1, 0, 0, 0, 0, 1])
843 self.assertTrue(isinstance(test, MaskedArray))
844 assert_equal(test.data, control.data)
845 assert_equal(test.mask, control.mask)
846
847 def test_intersect1d(self):
848 # Test intersect1d
849 x = array([1, 3, 3, 3], mask=[0, 0, 0, 1])
850 y = array([3, 1, 1, 1], mask=[0, 0, 0, 1])
851 test = intersect1d(x, y)
852 control = array([1, 3, -1], mask=[0, 0, 1])
853 assert_equal(test, control)
854
855 def test_setxor1d(self):
856 # Test setxor1d
857 a = array([1, 2, 5, 7, -1], mask=[0, 0, 0, 0, 1])
858 b = array([1, 2, 3, 4, 5, -1], mask=[0, 0, 0, 0, 0, 1])
859 test = setxor1d(a, b)
860 assert_equal(test, array([3, 4, 7]))
861 #
862 a = array([1, 2, 5, 7, -1], mask=[0, 0, 0, 0, 1])
863 b = [1, 2, 3, 4, 5]
864 test = setxor1d(a, b)
865 assert_equal(test, array([3, 4, 7, -1], mask=[0, 0, 0, 1]))
866 #
867 a = array([1, 2, 3])
868 b = array([6, 5, 4])
869 test = setxor1d(a, b)
870 assert_(isinstance(test, MaskedArray))
871 assert_equal(test, [1, 2, 3, 4, 5, 6])
872 #
873 a = array([1, 8, 2, 3], mask=[0, 1, 0, 0])
874 b = array([6, 5, 4, 8], mask=[0, 0, 0, 1])
875 test = setxor1d(a, b)
876 assert_(isinstance(test, MaskedArray))
877 assert_equal(test, [1, 2, 3, 4, 5, 6])
878 #
879 assert_array_equal([], setxor1d([], []))
880
881 def test_in1d(self):
882 # Test in1d
883 a = array([1, 2, 5, 7, -1], mask=[0, 0, 0, 0, 1])
884 b = array([1, 2, 3, 4, 5, -1], mask=[0, 0, 0, 0, 0, 1])
885 test = in1d(a, b)
886 assert_equal(test, [True, True, True, False, True])
887 #
888 a = array([5, 5, 2, 1, -1], mask=[0, 0, 0, 0, 1])
889 b = array([1, 5, -1], mask=[0, 0, 1])
890 test = in1d(a, b)
891 assert_equal(test, [True, True, False, True, True])
892 #
893 assert_array_equal([], in1d([], []))
894
895 def test_in1d_invert(self):
896 # Test in1d's invert parameter
897 a = array([1, 2, 5, 7, -1], mask=[0, 0, 0, 0, 1])
898 b = array([1, 2, 3, 4, 5, -1], mask=[0, 0, 0, 0, 0, 1])
899 assert_equal(np.invert(in1d(a, b)), in1d(a, b, invert=True))
900
901 a = array([5, 5, 2, 1, -1], mask=[0, 0, 0, 0, 1])
902 b = array([1, 5, -1], mask=[0, 0, 1])
903 assert_equal(np.invert(in1d(a, b)), in1d(a, b, invert=True))
904
905 assert_array_equal([], in1d([], [], invert=True))
906
907 def test_union1d(self):
908 # Test union1d
909 a = array([1, 2, 5, 7, 5, -1], mask=[0, 0, 0, 0, 0, 1])
910 b = array([1, 2, 3, 4, 5, -1], mask=[0, 0, 0, 0, 0, 1])
911 test = union1d(a, b)
912 control = array([1, 2, 3, 4, 5, 7, -1], mask=[0, 0, 0, 0, 0, 0, 1])
913 assert_equal(test, control)
914 #
915 assert_array_equal([], union1d([], []))
916
917 def test_setdiff1d(self):
918 # Test setdiff1d
919 a = array([6, 5, 4, 7, 7, 1, 2, 1], mask=[0, 0, 0, 0, 0, 0, 0, 1])
920 b = array([2, 4, 3, 3, 2, 1, 5])
921 test = setdiff1d(a, b)
922 assert_equal(test, array([6, 7, -1], mask=[0, 0, 1]))
923 #
924 a = arange(10)
925 b = arange(8)
926 assert_equal(setdiff1d(a, b), array([8, 9]))
927
928 def test_setdiff1d_char_array(self):
929 # Test setdiff1d_charray
930 a = np.array(['a', 'b', 'c'])
931 b = np.array(['a', 'b', 's'])
932 assert_array_equal(setdiff1d(a, b), np.array(['c']))
933
934
935 class TestShapeBase(TestCase):
936 #
937 def test_atleast2d(self):
938 # Test atleast_2d
939 a = masked_array([0, 1, 2], mask=[0, 1, 0])
940 b = atleast_2d(a)
941 assert_equal(b.shape, (1, 3))
942 assert_equal(b.mask.shape, b.data.shape)
943 assert_equal(a.shape, (3,))
944 assert_equal(a.mask.shape, a.data.shape)
945
946
947 ###############################################################################
948 #------------------------------------------------------------------------------
949 if __name__ == "__main__":
950 run_module_suite()