comparison DEPENDENCIES/mingw32/Python27/Lib/site-packages/numpy/linalg/tests/test_regression.py @ 87:2a2c65a20a8b

Add Python libs and headers
author Chris Cannam
date Wed, 25 Feb 2015 14:05:22 +0000
parents
children
comparison
equal deleted inserted replaced
86:413a9d26189e 87:2a2c65a20a8b
1 """ Test functions for linalg module
2 """
3 from __future__ import division, absolute_import, print_function
4
5
6 from numpy.testing import *
7 import numpy as np
8 from numpy import linalg, arange, float64, array, dot, transpose
9
10 rlevel = 1
11
12 class TestRegression(TestCase):
13 def test_eig_build(self, level = rlevel):
14 """Ticket #652"""
15 rva = array([1.03221168e+02 +0.j,
16 -1.91843603e+01 +0.j,
17 -6.04004526e-01+15.84422474j,
18 -6.04004526e-01-15.84422474j,
19 -1.13692929e+01 +0.j,
20 -6.57612485e-01+10.41755503j,
21 -6.57612485e-01-10.41755503j,
22 1.82126812e+01 +0.j,
23 1.06011014e+01 +0.j,
24 7.80732773e+00 +0.j,
25 -7.65390898e-01 +0.j,
26 1.51971555e-15 +0.j,
27 -1.51308713e-15 +0.j])
28 a = arange(13*13, dtype = float64)
29 a.shape = (13, 13)
30 a = a%17
31 va, ve = linalg.eig(a)
32 va.sort()
33 rva.sort()
34 assert_array_almost_equal(va, rva)
35
36 def test_eigh_build(self, level = rlevel):
37 """Ticket 662."""
38 rvals = [68.60568999, 89.57756725, 106.67185574]
39
40 cov = array([[ 77.70273908, 3.51489954, 15.64602427],
41 [3.51489954, 88.97013878, -1.07431931],
42 [15.64602427, -1.07431931, 98.18223512]])
43
44 vals, vecs = linalg.eigh(cov)
45 assert_array_almost_equal(vals, rvals)
46
47 def test_svd_build(self, level = rlevel):
48 """Ticket 627."""
49 a = array([[ 0., 1.], [ 1., 1.], [ 2., 1.], [ 3., 1.]])
50 m, n = a.shape
51 u, s, vh = linalg.svd(a)
52
53 b = dot(transpose(u[:, n:]), a)
54
55 assert_array_almost_equal(b, np.zeros((2, 2)))
56
57 def test_norm_vector_badarg(self):
58 """Regression for #786: Froebenius norm for vectors raises
59 TypeError."""
60 self.assertRaises(ValueError, linalg.norm, array([1., 2., 3.]), 'fro')
61
62 def test_lapack_endian(self):
63 # For bug #1482
64 a = array([[5.7998084, -2.1825367 ],
65 [-2.1825367, 9.85910595]], dtype='>f8')
66 b = array(a, dtype='<f8')
67
68 ap = linalg.cholesky(a)
69 bp = linalg.cholesky(b)
70 assert_array_equal(ap, bp)
71
72 def test_large_svd_32bit(self):
73 # See gh-4442, 64bit would require very large/slow matrices.
74 x = np.eye(1000, 66)
75 np.linalg.svd(x)
76
77 def test_svd_no_uv(self):
78 # gh-4733
79 for shape in (3, 4), (4, 4), (4, 3):
80 for t in float, complex:
81 a = np.ones(shape, dtype=t)
82 w = linalg.svd(a, compute_uv=False)
83 c = np.count_nonzero(np.absolute(w) > 0.5)
84 assert_equal(c, 1)
85 assert_equal(np.linalg.matrix_rank(a), 1)
86 assert_array_less(1, np.linalg.norm(a, ord=2))
87
88
89 if __name__ == '__main__':
90 run_module_suite()