Mercurial > hg > vamp-build-and-test
comparison DEPENDENCIES/mingw32/Python27/Lib/site-packages/numpy/linalg/tests/test_linalg.py @ 87:2a2c65a20a8b
Add Python libs and headers
author | Chris Cannam |
---|---|
date | Wed, 25 Feb 2015 14:05:22 +0000 |
parents | |
children |
comparison
equal
deleted
inserted
replaced
86:413a9d26189e | 87:2a2c65a20a8b |
---|---|
1 """ Test functions for linalg module | |
2 | |
3 """ | |
4 from __future__ import division, absolute_import, print_function | |
5 | |
6 import os | |
7 import sys | |
8 import itertools | |
9 import traceback | |
10 | |
11 import numpy as np | |
12 from numpy import array, single, double, csingle, cdouble, dot, identity | |
13 from numpy import multiply, atleast_2d, inf, asarray, matrix | |
14 from numpy import linalg | |
15 from numpy.linalg import matrix_power, norm, matrix_rank | |
16 from numpy.testing import ( | |
17 assert_, assert_equal, assert_raises, assert_array_equal, | |
18 assert_almost_equal, assert_allclose, run_module_suite, | |
19 dec | |
20 ) | |
21 | |
22 | |
23 def ifthen(a, b): | |
24 return not a or b | |
25 | |
26 | |
27 def imply(a, b): | |
28 return not a or b | |
29 | |
30 | |
31 old_assert_almost_equal = assert_almost_equal | |
32 | |
33 | |
34 def assert_almost_equal(a, b, **kw): | |
35 if asarray(a).dtype.type in (single, csingle): | |
36 decimal = 6 | |
37 else: | |
38 decimal = 12 | |
39 old_assert_almost_equal(a, b, decimal=decimal, **kw) | |
40 | |
41 | |
42 def get_real_dtype(dtype): | |
43 return {single: single, double: double, | |
44 csingle: single, cdouble: double}[dtype] | |
45 | |
46 | |
47 def get_complex_dtype(dtype): | |
48 return {single: csingle, double: cdouble, | |
49 csingle: csingle, cdouble: cdouble}[dtype] | |
50 | |
51 def get_rtol(dtype): | |
52 # Choose a safe rtol | |
53 if dtype in (single, csingle): | |
54 return 1e-5 | |
55 else: | |
56 return 1e-11 | |
57 | |
58 class LinalgCase(object): | |
59 def __init__(self, name, a, b, exception_cls=None): | |
60 assert isinstance(name, str) | |
61 self.name = name | |
62 self.a = a | |
63 self.b = b | |
64 self.exception_cls = exception_cls | |
65 | |
66 def check(self, do): | |
67 if self.exception_cls is None: | |
68 do(self.a, self.b) | |
69 else: | |
70 assert_raises(self.exception_cls, do, self.a, self.b) | |
71 | |
72 def __repr__(self): | |
73 return "<LinalgCase: %s>" % (self.name,) | |
74 | |
75 | |
76 # | |
77 # Base test cases | |
78 # | |
79 | |
80 np.random.seed(1234) | |
81 | |
82 SQUARE_CASES = [ | |
83 LinalgCase("single", | |
84 array([[1., 2.], [3., 4.]], dtype=single), | |
85 array([2., 1.], dtype=single)), | |
86 LinalgCase("double", | |
87 array([[1., 2.], [3., 4.]], dtype=double), | |
88 array([2., 1.], dtype=double)), | |
89 LinalgCase("double_2", | |
90 array([[1., 2.], [3., 4.]], dtype=double), | |
91 array([[2., 1., 4.], [3., 4., 6.]], dtype=double)), | |
92 LinalgCase("csingle", | |
93 array([[1.+2j, 2+3j], [3+4j, 4+5j]], dtype=csingle), | |
94 array([2.+1j, 1.+2j], dtype=csingle)), | |
95 LinalgCase("cdouble", | |
96 array([[1.+2j, 2+3j], [3+4j, 4+5j]], dtype=cdouble), | |
97 array([2.+1j, 1.+2j], dtype=cdouble)), | |
98 LinalgCase("cdouble_2", | |
99 array([[1.+2j, 2+3j], [3+4j, 4+5j]], dtype=cdouble), | |
100 array([[2.+1j, 1.+2j, 1+3j], [1-2j, 1-3j, 1-6j]], dtype=cdouble)), | |
101 LinalgCase("empty", | |
102 atleast_2d(array([], dtype = double)), | |
103 atleast_2d(array([], dtype = double)), | |
104 linalg.LinAlgError), | |
105 LinalgCase("8x8", | |
106 np.random.rand(8, 8), | |
107 np.random.rand(8)), | |
108 LinalgCase("1x1", | |
109 np.random.rand(1, 1), | |
110 np.random.rand(1)), | |
111 LinalgCase("nonarray", | |
112 [[1, 2], [3, 4]], | |
113 [2, 1]), | |
114 LinalgCase("matrix_b_only", | |
115 array([[1., 2.], [3., 4.]]), | |
116 matrix([2., 1.]).T), | |
117 LinalgCase("matrix_a_and_b", | |
118 matrix([[1., 2.], [3., 4.]]), | |
119 matrix([2., 1.]).T), | |
120 ] | |
121 | |
122 NONSQUARE_CASES = [ | |
123 LinalgCase("single_nsq_1", | |
124 array([[1., 2., 3.], [3., 4., 6.]], dtype=single), | |
125 array([2., 1.], dtype=single)), | |
126 LinalgCase("single_nsq_2", | |
127 array([[1., 2.], [3., 4.], [5., 6.]], dtype=single), | |
128 array([2., 1., 3.], dtype=single)), | |
129 LinalgCase("double_nsq_1", | |
130 array([[1., 2., 3.], [3., 4., 6.]], dtype=double), | |
131 array([2., 1.], dtype=double)), | |
132 LinalgCase("double_nsq_2", | |
133 array([[1., 2.], [3., 4.], [5., 6.]], dtype=double), | |
134 array([2., 1., 3.], dtype=double)), | |
135 LinalgCase("csingle_nsq_1", | |
136 array([[1.+1j, 2.+2j, 3.-3j], [3.-5j, 4.+9j, 6.+2j]], dtype=csingle), | |
137 array([2.+1j, 1.+2j], dtype=csingle)), | |
138 LinalgCase("csingle_nsq_2", | |
139 array([[1.+1j, 2.+2j], [3.-3j, 4.-9j], [5.-4j, 6.+8j]], dtype=csingle), | |
140 array([2.+1j, 1.+2j, 3.-3j], dtype=csingle)), | |
141 LinalgCase("cdouble_nsq_1", | |
142 array([[1.+1j, 2.+2j, 3.-3j], [3.-5j, 4.+9j, 6.+2j]], dtype=cdouble), | |
143 array([2.+1j, 1.+2j], dtype=cdouble)), | |
144 LinalgCase("cdouble_nsq_2", | |
145 array([[1.+1j, 2.+2j], [3.-3j, 4.-9j], [5.-4j, 6.+8j]], dtype=cdouble), | |
146 array([2.+1j, 1.+2j, 3.-3j], dtype=cdouble)), | |
147 LinalgCase("cdouble_nsq_1_2", | |
148 array([[1.+1j, 2.+2j, 3.-3j], [3.-5j, 4.+9j, 6.+2j]], dtype=cdouble), | |
149 array([[2.+1j, 1.+2j], [1-1j, 2-2j]], dtype=cdouble)), | |
150 LinalgCase("cdouble_nsq_2_2", | |
151 array([[1.+1j, 2.+2j], [3.-3j, 4.-9j], [5.-4j, 6.+8j]], dtype=cdouble), | |
152 array([[2.+1j, 1.+2j], [1-1j, 2-2j], [1-1j, 2-2j]], dtype=cdouble)), | |
153 LinalgCase("8x11", | |
154 np.random.rand(8, 11), | |
155 np.random.rand(11)), | |
156 LinalgCase("1x5", | |
157 np.random.rand(1, 5), | |
158 np.random.rand(5)), | |
159 LinalgCase("5x1", | |
160 np.random.rand(5, 1), | |
161 np.random.rand(1)), | |
162 ] | |
163 | |
164 HERMITIAN_CASES = [ | |
165 LinalgCase("hsingle", | |
166 array([[1., 2.], [2., 1.]], dtype=single), | |
167 None), | |
168 LinalgCase("hdouble", | |
169 array([[1., 2.], [2., 1.]], dtype=double), | |
170 None), | |
171 LinalgCase("hcsingle", | |
172 array([[1., 2+3j], [2-3j, 1]], dtype=csingle), | |
173 None), | |
174 LinalgCase("hcdouble", | |
175 array([[1., 2+3j], [2-3j, 1]], dtype=cdouble), | |
176 None), | |
177 LinalgCase("hempty", | |
178 atleast_2d(array([], dtype = double)), | |
179 None, | |
180 linalg.LinAlgError), | |
181 LinalgCase("hnonarray", | |
182 [[1, 2], [2, 1]], | |
183 None), | |
184 LinalgCase("matrix_b_only", | |
185 array([[1., 2.], [2., 1.]]), | |
186 None), | |
187 LinalgCase("hmatrix_a_and_b", | |
188 matrix([[1., 2.], [2., 1.]]), | |
189 None), | |
190 LinalgCase("hmatrix_1x1", | |
191 np.random.rand(1, 1), | |
192 None), | |
193 ] | |
194 | |
195 | |
196 # | |
197 # Gufunc test cases | |
198 # | |
199 | |
200 GENERALIZED_SQUARE_CASES = [] | |
201 GENERALIZED_NONSQUARE_CASES = [] | |
202 GENERALIZED_HERMITIAN_CASES = [] | |
203 | |
204 for tgt, src in ((GENERALIZED_SQUARE_CASES, SQUARE_CASES), | |
205 (GENERALIZED_NONSQUARE_CASES, NONSQUARE_CASES), | |
206 (GENERALIZED_HERMITIAN_CASES, HERMITIAN_CASES)): | |
207 for case in src: | |
208 if not isinstance(case.a, np.ndarray): | |
209 continue | |
210 | |
211 a = np.array([case.a, 2*case.a, 3*case.a]) | |
212 if case.b is None: | |
213 b = None | |
214 else: | |
215 b = np.array([case.b, 7*case.b, 6*case.b]) | |
216 new_case = LinalgCase(case.name + "_tile3", a, b, | |
217 case.exception_cls) | |
218 tgt.append(new_case) | |
219 | |
220 a = np.array([case.a]*2*3).reshape((3, 2) + case.a.shape) | |
221 if case.b is None: | |
222 b = None | |
223 else: | |
224 b = np.array([case.b]*2*3).reshape((3, 2) + case.b.shape) | |
225 new_case = LinalgCase(case.name + "_tile213", a, b, | |
226 case.exception_cls) | |
227 tgt.append(new_case) | |
228 | |
229 # | |
230 # Generate stride combination variations of the above | |
231 # | |
232 | |
233 def _stride_comb_iter(x): | |
234 """ | |
235 Generate cartesian product of strides for all axes | |
236 """ | |
237 | |
238 if not isinstance(x, np.ndarray): | |
239 yield x, "nop" | |
240 return | |
241 | |
242 stride_set = [(1,)]*x.ndim | |
243 stride_set[-1] = (1, 3, -4) | |
244 if x.ndim > 1: | |
245 stride_set[-2] = (1, 3, -4) | |
246 if x.ndim > 2: | |
247 stride_set[-3] = (1, -4) | |
248 | |
249 for repeats in itertools.product(*tuple(stride_set)): | |
250 new_shape = [abs(a*b) for a, b in zip(x.shape, repeats)] | |
251 slices = tuple([slice(None, None, repeat) for repeat in repeats]) | |
252 | |
253 # new array with different strides, but same data | |
254 xi = np.empty(new_shape, dtype=x.dtype) | |
255 xi.view(np.uint32).fill(0xdeadbeef) | |
256 xi = xi[slices] | |
257 xi[...] = x | |
258 xi = xi.view(x.__class__) | |
259 assert np.all(xi == x) | |
260 yield xi, "stride_" + "_".join(["%+d" % j for j in repeats]) | |
261 | |
262 # generate also zero strides if possible | |
263 if x.ndim >= 1 and x.shape[-1] == 1: | |
264 s = list(x.strides) | |
265 s[-1] = 0 | |
266 xi = np.lib.stride_tricks.as_strided(x, strides=s) | |
267 yield xi, "stride_xxx_0" | |
268 if x.ndim >= 2 and x.shape[-2] == 1: | |
269 s = list(x.strides) | |
270 s[-2] = 0 | |
271 xi = np.lib.stride_tricks.as_strided(x, strides=s) | |
272 yield xi, "stride_xxx_0_x" | |
273 if x.ndim >= 2 and x.shape[:-2] == (1, 1): | |
274 s = list(x.strides) | |
275 s[-1] = 0 | |
276 s[-2] = 0 | |
277 xi = np.lib.stride_tricks.as_strided(x, strides=s) | |
278 yield xi, "stride_xxx_0_0" | |
279 | |
280 for src in (SQUARE_CASES, | |
281 NONSQUARE_CASES, | |
282 HERMITIAN_CASES, | |
283 GENERALIZED_SQUARE_CASES, | |
284 GENERALIZED_NONSQUARE_CASES, | |
285 GENERALIZED_HERMITIAN_CASES): | |
286 | |
287 new_cases = [] | |
288 for case in src: | |
289 for a, a_tag in _stride_comb_iter(case.a): | |
290 for b, b_tag in _stride_comb_iter(case.b): | |
291 new_case = LinalgCase(case.name + "_" + a_tag + "_" + b_tag, a, b, | |
292 exception_cls=case.exception_cls) | |
293 new_cases.append(new_case) | |
294 src.extend(new_cases) | |
295 | |
296 | |
297 # | |
298 # Test different routines against the above cases | |
299 # | |
300 | |
301 def _check_cases(func, cases): | |
302 for case in cases: | |
303 try: | |
304 case.check(func) | |
305 except Exception: | |
306 msg = "In test case: %r\n\n" % case | |
307 msg += traceback.format_exc() | |
308 raise AssertionError(msg) | |
309 | |
310 class LinalgTestCase(object): | |
311 def test_sq_cases(self): | |
312 _check_cases(self.do, SQUARE_CASES) | |
313 | |
314 | |
315 class LinalgNonsquareTestCase(object): | |
316 def test_sq_cases(self): | |
317 _check_cases(self.do, NONSQUARE_CASES) | |
318 | |
319 | |
320 class LinalgGeneralizedTestCase(object): | |
321 @dec.slow | |
322 def test_generalized_sq_cases(self): | |
323 _check_cases(self.do, GENERALIZED_SQUARE_CASES) | |
324 | |
325 | |
326 class LinalgGeneralizedNonsquareTestCase(object): | |
327 @dec.slow | |
328 def test_generalized_nonsq_cases(self): | |
329 _check_cases(self.do, GENERALIZED_NONSQUARE_CASES) | |
330 | |
331 | |
332 class HermitianTestCase(object): | |
333 def test_herm_cases(self): | |
334 _check_cases(self.do, HERMITIAN_CASES) | |
335 | |
336 | |
337 class HermitianGeneralizedTestCase(object): | |
338 @dec.slow | |
339 def test_generalized_herm_cases(self): | |
340 _check_cases(self.do, GENERALIZED_HERMITIAN_CASES) | |
341 | |
342 | |
343 def dot_generalized(a, b): | |
344 a = asarray(a) | |
345 if a.ndim >= 3: | |
346 if a.ndim == b.ndim: | |
347 # matrix x matrix | |
348 new_shape = a.shape[:-1] + b.shape[-1:] | |
349 elif a.ndim == b.ndim + 1: | |
350 # matrix x vector | |
351 new_shape = a.shape[:-1] | |
352 else: | |
353 raise ValueError("Not implemented...") | |
354 r = np.empty(new_shape, dtype=np.common_type(a, b)) | |
355 for c in itertools.product(*map(range, a.shape[:-2])): | |
356 r[c] = dot(a[c], b[c]) | |
357 return r | |
358 else: | |
359 return dot(a, b) | |
360 | |
361 | |
362 def identity_like_generalized(a): | |
363 a = asarray(a) | |
364 if a.ndim >= 3: | |
365 r = np.empty(a.shape, dtype=a.dtype) | |
366 for c in itertools.product(*map(range, a.shape[:-2])): | |
367 r[c] = identity(a.shape[-2]) | |
368 return r | |
369 else: | |
370 return identity(a.shape[0]) | |
371 | |
372 | |
373 class TestSolve(LinalgTestCase, LinalgGeneralizedTestCase): | |
374 def do(self, a, b): | |
375 x = linalg.solve(a, b) | |
376 assert_almost_equal(b, dot_generalized(a, x)) | |
377 assert_(imply(isinstance(b, matrix), isinstance(x, matrix))) | |
378 | |
379 def test_types(self): | |
380 def check(dtype): | |
381 x = np.array([[1, 0.5], [0.5, 1]], dtype=dtype) | |
382 assert_equal(linalg.solve(x, x).dtype, dtype) | |
383 for dtype in [single, double, csingle, cdouble]: | |
384 yield check, dtype | |
385 | |
386 def test_0_size(self): | |
387 class ArraySubclass(np.ndarray): | |
388 pass | |
389 # Test system of 0x0 matrices | |
390 a = np.arange(8).reshape(2, 2, 2) | |
391 b = np.arange(6).reshape(1, 2, 3).view(ArraySubclass) | |
392 | |
393 expected = linalg.solve(a, b)[:, 0:0,:] | |
394 result = linalg.solve(a[:, 0:0, 0:0], b[:, 0:0,:]) | |
395 assert_array_equal(result, expected) | |
396 assert_(isinstance(result, ArraySubclass)) | |
397 | |
398 # Test errors for non-square and only b's dimension being 0 | |
399 assert_raises(linalg.LinAlgError, linalg.solve, a[:, 0:0, 0:1], b) | |
400 assert_raises(ValueError, linalg.solve, a, b[:, 0:0,:]) | |
401 | |
402 # Test broadcasting error | |
403 b = np.arange(6).reshape(1, 3, 2) # broadcasting error | |
404 assert_raises(ValueError, linalg.solve, a, b) | |
405 assert_raises(ValueError, linalg.solve, a[0:0], b[0:0]) | |
406 | |
407 # Test zero "single equations" with 0x0 matrices. | |
408 b = np.arange(2).reshape(1, 2).view(ArraySubclass) | |
409 expected = linalg.solve(a, b)[:, 0:0] | |
410 result = linalg.solve(a[:, 0:0, 0:0], b[:, 0:0]) | |
411 assert_array_equal(result, expected) | |
412 assert_(isinstance(result, ArraySubclass)) | |
413 | |
414 b = np.arange(3).reshape(1, 3) | |
415 assert_raises(ValueError, linalg.solve, a, b) | |
416 assert_raises(ValueError, linalg.solve, a[0:0], b[0:0]) | |
417 assert_raises(ValueError, linalg.solve, a[:, 0:0, 0:0], b) | |
418 | |
419 def test_0_size_k(self): | |
420 # test zero multiple equation (K=0) case. | |
421 class ArraySubclass(np.ndarray): | |
422 pass | |
423 a = np.arange(4).reshape(1, 2, 2) | |
424 b = np.arange(6).reshape(3, 2, 1).view(ArraySubclass) | |
425 | |
426 expected = linalg.solve(a, b)[:,:, 0:0] | |
427 result = linalg.solve(a, b[:,:, 0:0]) | |
428 assert_array_equal(result, expected) | |
429 assert_(isinstance(result, ArraySubclass)) | |
430 | |
431 # test both zero. | |
432 expected = linalg.solve(a, b)[:, 0:0, 0:0] | |
433 result = linalg.solve(a[:, 0:0, 0:0], b[:,0:0, 0:0]) | |
434 assert_array_equal(result, expected) | |
435 assert_(isinstance(result, ArraySubclass)) | |
436 | |
437 | |
438 class TestInv(LinalgTestCase, LinalgGeneralizedTestCase): | |
439 def do(self, a, b): | |
440 a_inv = linalg.inv(a) | |
441 assert_almost_equal(dot_generalized(a, a_inv), | |
442 identity_like_generalized(a)) | |
443 assert_(imply(isinstance(a, matrix), isinstance(a_inv, matrix))) | |
444 | |
445 def test_types(self): | |
446 def check(dtype): | |
447 x = np.array([[1, 0.5], [0.5, 1]], dtype=dtype) | |
448 assert_equal(linalg.inv(x).dtype, dtype) | |
449 for dtype in [single, double, csingle, cdouble]: | |
450 yield check, dtype | |
451 | |
452 def test_0_size(self): | |
453 # Check that all kinds of 0-sized arrays work | |
454 class ArraySubclass(np.ndarray): | |
455 pass | |
456 a = np.zeros((0, 1, 1), dtype=np.int_).view(ArraySubclass) | |
457 res = linalg.inv(a) | |
458 assert_(res.dtype.type is np.float64) | |
459 assert_equal(a.shape, res.shape) | |
460 assert_(isinstance(a, ArraySubclass)) | |
461 | |
462 a = np.zeros((0, 0), dtype=np.complex64).view(ArraySubclass) | |
463 res = linalg.inv(a) | |
464 assert_(res.dtype.type is np.complex64) | |
465 assert_equal(a.shape, res.shape) | |
466 | |
467 | |
468 class TestEigvals(LinalgTestCase, LinalgGeneralizedTestCase): | |
469 def do(self, a, b): | |
470 ev = linalg.eigvals(a) | |
471 evalues, evectors = linalg.eig(a) | |
472 assert_almost_equal(ev, evalues) | |
473 | |
474 def test_types(self): | |
475 def check(dtype): | |
476 x = np.array([[1, 0.5], [0.5, 1]], dtype=dtype) | |
477 assert_equal(linalg.eigvals(x).dtype, dtype) | |
478 x = np.array([[1, 0.5], [-1, 1]], dtype=dtype) | |
479 assert_equal(linalg.eigvals(x).dtype, get_complex_dtype(dtype)) | |
480 for dtype in [single, double, csingle, cdouble]: | |
481 yield check, dtype | |
482 | |
483 | |
484 class TestEig(LinalgTestCase, LinalgGeneralizedTestCase): | |
485 def do(self, a, b): | |
486 evalues, evectors = linalg.eig(a) | |
487 assert_allclose(dot_generalized(a, evectors), | |
488 np.asarray(evectors) * np.asarray(evalues)[...,None,:], | |
489 rtol=get_rtol(evalues.dtype)) | |
490 assert_(imply(isinstance(a, matrix), isinstance(evectors, matrix))) | |
491 | |
492 def test_types(self): | |
493 def check(dtype): | |
494 x = np.array([[1, 0.5], [0.5, 1]], dtype=dtype) | |
495 w, v = np.linalg.eig(x) | |
496 assert_equal(w.dtype, dtype) | |
497 assert_equal(v.dtype, dtype) | |
498 | |
499 x = np.array([[1, 0.5], [-1, 1]], dtype=dtype) | |
500 w, v = np.linalg.eig(x) | |
501 assert_equal(w.dtype, get_complex_dtype(dtype)) | |
502 assert_equal(v.dtype, get_complex_dtype(dtype)) | |
503 | |
504 for dtype in [single, double, csingle, cdouble]: | |
505 yield check, dtype | |
506 | |
507 | |
508 class TestSVD(LinalgTestCase, LinalgGeneralizedTestCase): | |
509 def do(self, a, b): | |
510 u, s, vt = linalg.svd(a, 0) | |
511 assert_allclose(a, dot_generalized(np.asarray(u) * np.asarray(s)[...,None,:], | |
512 np.asarray(vt)), | |
513 rtol=get_rtol(u.dtype)) | |
514 assert_(imply(isinstance(a, matrix), isinstance(u, matrix))) | |
515 assert_(imply(isinstance(a, matrix), isinstance(vt, matrix))) | |
516 | |
517 def test_types(self): | |
518 def check(dtype): | |
519 x = np.array([[1, 0.5], [0.5, 1]], dtype=dtype) | |
520 u, s, vh = linalg.svd(x) | |
521 assert_equal(u.dtype, dtype) | |
522 assert_equal(s.dtype, get_real_dtype(dtype)) | |
523 assert_equal(vh.dtype, dtype) | |
524 s = linalg.svd(x, compute_uv=False) | |
525 assert_equal(s.dtype, get_real_dtype(dtype)) | |
526 | |
527 for dtype in [single, double, csingle, cdouble]: | |
528 yield check, dtype | |
529 | |
530 | |
531 class TestCondSVD(LinalgTestCase, LinalgGeneralizedTestCase): | |
532 def do(self, a, b): | |
533 c = asarray(a) # a might be a matrix | |
534 s = linalg.svd(c, compute_uv=False) | |
535 old_assert_almost_equal(s[0]/s[-1], linalg.cond(a), decimal=5) | |
536 | |
537 | |
538 class TestCond2(LinalgTestCase): | |
539 def do(self, a, b): | |
540 c = asarray(a) # a might be a matrix | |
541 s = linalg.svd(c, compute_uv=False) | |
542 old_assert_almost_equal(s[0]/s[-1], linalg.cond(a, 2), decimal=5) | |
543 | |
544 | |
545 class TestCondInf(object): | |
546 def test(self): | |
547 A = array([[1., 0, 0], [0, -2., 0], [0, 0, 3.]]) | |
548 assert_almost_equal(linalg.cond(A, inf), 3.) | |
549 | |
550 | |
551 class TestPinv(LinalgTestCase): | |
552 def do(self, a, b): | |
553 a_ginv = linalg.pinv(a) | |
554 assert_almost_equal(dot(a, a_ginv), identity(asarray(a).shape[0])) | |
555 assert_(imply(isinstance(a, matrix), isinstance(a_ginv, matrix))) | |
556 | |
557 | |
558 class TestDet(LinalgTestCase, LinalgGeneralizedTestCase): | |
559 def do(self, a, b): | |
560 d = linalg.det(a) | |
561 (s, ld) = linalg.slogdet(a) | |
562 if asarray(a).dtype.type in (single, double): | |
563 ad = asarray(a).astype(double) | |
564 else: | |
565 ad = asarray(a).astype(cdouble) | |
566 ev = linalg.eigvals(ad) | |
567 assert_almost_equal(d, multiply.reduce(ev, axis=-1)) | |
568 assert_almost_equal(s * np.exp(ld), multiply.reduce(ev, axis=-1)) | |
569 | |
570 s = np.atleast_1d(s) | |
571 ld = np.atleast_1d(ld) | |
572 m = (s != 0) | |
573 assert_almost_equal(np.abs(s[m]), 1) | |
574 assert_equal(ld[~m], -inf) | |
575 | |
576 def test_zero(self): | |
577 assert_equal(linalg.det([[0.0]]), 0.0) | |
578 assert_equal(type(linalg.det([[0.0]])), double) | |
579 assert_equal(linalg.det([[0.0j]]), 0.0) | |
580 assert_equal(type(linalg.det([[0.0j]])), cdouble) | |
581 | |
582 assert_equal(linalg.slogdet([[0.0]]), (0.0, -inf)) | |
583 assert_equal(type(linalg.slogdet([[0.0]])[0]), double) | |
584 assert_equal(type(linalg.slogdet([[0.0]])[1]), double) | |
585 assert_equal(linalg.slogdet([[0.0j]]), (0.0j, -inf)) | |
586 assert_equal(type(linalg.slogdet([[0.0j]])[0]), cdouble) | |
587 assert_equal(type(linalg.slogdet([[0.0j]])[1]), double) | |
588 | |
589 def test_types(self): | |
590 def check(dtype): | |
591 x = np.array([[1, 0.5], [0.5, 1]], dtype=dtype) | |
592 assert_equal(np.linalg.det(x).dtype, dtype) | |
593 ph, s = np.linalg.slogdet(x) | |
594 assert_equal(s.dtype, get_real_dtype(dtype)) | |
595 assert_equal(ph.dtype, dtype) | |
596 for dtype in [single, double, csingle, cdouble]: | |
597 yield check, dtype | |
598 | |
599 | |
600 class TestLstsq(LinalgTestCase, LinalgNonsquareTestCase): | |
601 def do(self, a, b): | |
602 arr = np.asarray(a) | |
603 m, n = arr.shape | |
604 u, s, vt = linalg.svd(a, 0) | |
605 x, residuals, rank, sv = linalg.lstsq(a, b) | |
606 if m <= n: | |
607 assert_almost_equal(b, dot(a, x)) | |
608 assert_equal(rank, m) | |
609 else: | |
610 assert_equal(rank, n) | |
611 assert_almost_equal(sv, sv.__array_wrap__(s)) | |
612 if rank == n and m > n: | |
613 expect_resids = (np.asarray(abs(np.dot(a, x) - b))**2).sum(axis=0) | |
614 expect_resids = np.asarray(expect_resids) | |
615 if len(np.asarray(b).shape) == 1: | |
616 expect_resids.shape = (1,) | |
617 assert_equal(residuals.shape, expect_resids.shape) | |
618 else: | |
619 expect_resids = np.array([]).view(type(x)) | |
620 assert_almost_equal(residuals, expect_resids) | |
621 assert_(np.issubdtype(residuals.dtype, np.floating)) | |
622 assert_(imply(isinstance(b, matrix), isinstance(x, matrix))) | |
623 assert_(imply(isinstance(b, matrix), isinstance(residuals, matrix))) | |
624 | |
625 | |
626 class TestMatrixPower(object): | |
627 R90 = array([[0, 1], [-1, 0]]) | |
628 Arb22 = array([[4, -7], [-2, 10]]) | |
629 noninv = array([[1, 0], [0, 0]]) | |
630 arbfloat = array([[0.1, 3.2], [1.2, 0.7]]) | |
631 | |
632 large = identity(10) | |
633 t = large[1,:].copy() | |
634 large[1,:] = large[0,:] | |
635 large[0,:] = t | |
636 | |
637 def test_large_power(self): | |
638 assert_equal(matrix_power(self.R90, 2**100+2**10+2**5+1), self.R90) | |
639 | |
640 def test_large_power_trailing_zero(self): | |
641 assert_equal(matrix_power(self.R90, 2**100+2**10+2**5), identity(2)) | |
642 | |
643 def testip_zero(self): | |
644 def tz(M): | |
645 mz = matrix_power(M, 0) | |
646 assert_equal(mz, identity(M.shape[0])) | |
647 assert_equal(mz.dtype, M.dtype) | |
648 for M in [self.Arb22, self.arbfloat, self.large]: | |
649 yield tz, M | |
650 | |
651 def testip_one(self): | |
652 def tz(M): | |
653 mz = matrix_power(M, 1) | |
654 assert_equal(mz, M) | |
655 assert_equal(mz.dtype, M.dtype) | |
656 for M in [self.Arb22, self.arbfloat, self.large]: | |
657 yield tz, M | |
658 | |
659 def testip_two(self): | |
660 def tz(M): | |
661 mz = matrix_power(M, 2) | |
662 assert_equal(mz, dot(M, M)) | |
663 assert_equal(mz.dtype, M.dtype) | |
664 for M in [self.Arb22, self.arbfloat, self.large]: | |
665 yield tz, M | |
666 | |
667 def testip_invert(self): | |
668 def tz(M): | |
669 mz = matrix_power(M, -1) | |
670 assert_almost_equal(identity(M.shape[0]), dot(mz, M)) | |
671 for M in [self.R90, self.Arb22, self.arbfloat, self.large]: | |
672 yield tz, M | |
673 | |
674 def test_invert_noninvertible(self): | |
675 import numpy.linalg | |
676 assert_raises(numpy.linalg.linalg.LinAlgError, | |
677 lambda: matrix_power(self.noninv, -1)) | |
678 | |
679 | |
680 class TestBoolPower(object): | |
681 def test_square(self): | |
682 A = array([[True, False], [True, True]]) | |
683 assert_equal(matrix_power(A, 2), A) | |
684 | |
685 | |
686 class TestEigvalsh(HermitianTestCase, HermitianGeneralizedTestCase): | |
687 def do(self, a, b): | |
688 # note that eigenvalue arrays must be sorted since | |
689 # their order isn't guaranteed. | |
690 ev = linalg.eigvalsh(a, 'L') | |
691 evalues, evectors = linalg.eig(a) | |
692 ev.sort(axis=-1) | |
693 evalues.sort(axis=-1) | |
694 assert_allclose(ev, evalues, | |
695 rtol=get_rtol(ev.dtype)) | |
696 | |
697 ev2 = linalg.eigvalsh(a, 'U') | |
698 ev2.sort(axis=-1) | |
699 assert_allclose(ev2, evalues, | |
700 rtol=get_rtol(ev.dtype)) | |
701 | |
702 def test_types(self): | |
703 def check(dtype): | |
704 x = np.array([[1, 0.5], [0.5, 1]], dtype=dtype) | |
705 w = np.linalg.eigvalsh(x) | |
706 assert_equal(w.dtype, get_real_dtype(dtype)) | |
707 for dtype in [single, double, csingle, cdouble]: | |
708 yield check, dtype | |
709 | |
710 def test_invalid(self): | |
711 x = np.array([[1, 0.5], [0.5, 1]], dtype=np.float32) | |
712 assert_raises(ValueError, np.linalg.eigvalsh, x, UPLO="lrong") | |
713 assert_raises(ValueError, np.linalg.eigvalsh, x, "lower") | |
714 assert_raises(ValueError, np.linalg.eigvalsh, x, "upper") | |
715 | |
716 def test_UPLO(self): | |
717 Klo = np.array([[0, 0],[1, 0]], dtype=np.double) | |
718 Kup = np.array([[0, 1],[0, 0]], dtype=np.double) | |
719 tgt = np.array([-1, 1], dtype=np.double) | |
720 rtol = get_rtol(np.double) | |
721 | |
722 # Check default is 'L' | |
723 w = np.linalg.eigvalsh(Klo) | |
724 assert_allclose(np.sort(w), tgt, rtol=rtol) | |
725 # Check 'L' | |
726 w = np.linalg.eigvalsh(Klo, UPLO='L') | |
727 assert_allclose(np.sort(w), tgt, rtol=rtol) | |
728 # Check 'l' | |
729 w = np.linalg.eigvalsh(Klo, UPLO='l') | |
730 assert_allclose(np.sort(w), tgt, rtol=rtol) | |
731 # Check 'U' | |
732 w = np.linalg.eigvalsh(Kup, UPLO='U') | |
733 assert_allclose(np.sort(w), tgt, rtol=rtol) | |
734 # Check 'u' | |
735 w = np.linalg.eigvalsh(Kup, UPLO='u') | |
736 assert_allclose(np.sort(w), tgt, rtol=rtol) | |
737 | |
738 | |
739 class TestEigh(HermitianTestCase, HermitianGeneralizedTestCase): | |
740 def do(self, a, b): | |
741 # note that eigenvalue arrays must be sorted since | |
742 # their order isn't guaranteed. | |
743 ev, evc = linalg.eigh(a) | |
744 evalues, evectors = linalg.eig(a) | |
745 ev.sort(axis=-1) | |
746 evalues.sort(axis=-1) | |
747 assert_almost_equal(ev, evalues) | |
748 | |
749 assert_allclose(dot_generalized(a, evc), | |
750 np.asarray(ev)[...,None,:] * np.asarray(evc), | |
751 rtol=get_rtol(ev.dtype)) | |
752 | |
753 ev2, evc2 = linalg.eigh(a, 'U') | |
754 ev2.sort(axis=-1) | |
755 assert_almost_equal(ev2, evalues) | |
756 | |
757 assert_allclose(dot_generalized(a, evc2), | |
758 np.asarray(ev2)[...,None,:] * np.asarray(evc2), | |
759 rtol=get_rtol(ev.dtype), err_msg=repr(a)) | |
760 | |
761 def test_types(self): | |
762 def check(dtype): | |
763 x = np.array([[1, 0.5], [0.5, 1]], dtype=dtype) | |
764 w, v = np.linalg.eigh(x) | |
765 assert_equal(w.dtype, get_real_dtype(dtype)) | |
766 assert_equal(v.dtype, dtype) | |
767 for dtype in [single, double, csingle, cdouble]: | |
768 yield check, dtype | |
769 | |
770 def test_invalid(self): | |
771 x = np.array([[1, 0.5], [0.5, 1]], dtype=np.float32) | |
772 assert_raises(ValueError, np.linalg.eigh, x, UPLO="lrong") | |
773 assert_raises(ValueError, np.linalg.eigh, x, "lower") | |
774 assert_raises(ValueError, np.linalg.eigh, x, "upper") | |
775 | |
776 def test_UPLO(self): | |
777 Klo = np.array([[0, 0],[1, 0]], dtype=np.double) | |
778 Kup = np.array([[0, 1],[0, 0]], dtype=np.double) | |
779 tgt = np.array([-1, 1], dtype=np.double) | |
780 rtol = get_rtol(np.double) | |
781 | |
782 # Check default is 'L' | |
783 w, v = np.linalg.eigh(Klo) | |
784 assert_allclose(np.sort(w), tgt, rtol=rtol) | |
785 # Check 'L' | |
786 w, v = np.linalg.eigh(Klo, UPLO='L') | |
787 assert_allclose(np.sort(w), tgt, rtol=rtol) | |
788 # Check 'l' | |
789 w, v = np.linalg.eigh(Klo, UPLO='l') | |
790 assert_allclose(np.sort(w), tgt, rtol=rtol) | |
791 # Check 'U' | |
792 w, v = np.linalg.eigh(Kup, UPLO='U') | |
793 assert_allclose(np.sort(w), tgt, rtol=rtol) | |
794 # Check 'u' | |
795 w, v = np.linalg.eigh(Kup, UPLO='u') | |
796 assert_allclose(np.sort(w), tgt, rtol=rtol) | |
797 | |
798 | |
799 class _TestNorm(object): | |
800 | |
801 dt = None | |
802 dec = None | |
803 | |
804 def test_empty(self): | |
805 assert_equal(norm([]), 0.0) | |
806 assert_equal(norm(array([], dtype=self.dt)), 0.0) | |
807 assert_equal(norm(atleast_2d(array([], dtype=self.dt))), 0.0) | |
808 | |
809 def test_vector(self): | |
810 a = [1, 2, 3, 4] | |
811 b = [-1, -2, -3, -4] | |
812 c = [-1, 2, -3, 4] | |
813 | |
814 def _test(v): | |
815 np.testing.assert_almost_equal(norm(v), 30**0.5, | |
816 decimal=self.dec) | |
817 np.testing.assert_almost_equal(norm(v, inf), 4.0, | |
818 decimal=self.dec) | |
819 np.testing.assert_almost_equal(norm(v, -inf), 1.0, | |
820 decimal=self.dec) | |
821 np.testing.assert_almost_equal(norm(v, 1), 10.0, | |
822 decimal=self.dec) | |
823 np.testing.assert_almost_equal(norm(v, -1), 12.0/25, | |
824 decimal=self.dec) | |
825 np.testing.assert_almost_equal(norm(v, 2), 30**0.5, | |
826 decimal=self.dec) | |
827 np.testing.assert_almost_equal(norm(v, -2), ((205./144)**-0.5), | |
828 decimal=self.dec) | |
829 np.testing.assert_almost_equal(norm(v, 0), 4, | |
830 decimal=self.dec) | |
831 | |
832 for v in (a, b, c,): | |
833 _test(v) | |
834 | |
835 for v in (array(a, dtype=self.dt), array(b, dtype=self.dt), | |
836 array(c, dtype=self.dt)): | |
837 _test(v) | |
838 | |
839 def test_matrix(self): | |
840 A = matrix([[1, 3], [5, 7]], dtype=self.dt) | |
841 assert_almost_equal(norm(A), 84**0.5) | |
842 assert_almost_equal(norm(A, 'fro'), 84**0.5) | |
843 assert_almost_equal(norm(A, inf), 12.0) | |
844 assert_almost_equal(norm(A, -inf), 4.0) | |
845 assert_almost_equal(norm(A, 1), 10.0) | |
846 assert_almost_equal(norm(A, -1), 6.0) | |
847 assert_almost_equal(norm(A, 2), 9.1231056256176615) | |
848 assert_almost_equal(norm(A, -2), 0.87689437438234041) | |
849 | |
850 assert_raises(ValueError, norm, A, 'nofro') | |
851 assert_raises(ValueError, norm, A, -3) | |
852 assert_raises(ValueError, norm, A, 0) | |
853 | |
854 def test_axis(self): | |
855 # Vector norms. | |
856 # Compare the use of `axis` with computing the norm of each row | |
857 # or column separately. | |
858 A = array([[1, 2, 3], [4, 5, 6]], dtype=self.dt) | |
859 for order in [None, -1, 0, 1, 2, 3, np.Inf, -np.Inf]: | |
860 expected0 = [norm(A[:, k], ord=order) for k in range(A.shape[1])] | |
861 assert_almost_equal(norm(A, ord=order, axis=0), expected0) | |
862 expected1 = [norm(A[k,:], ord=order) for k in range(A.shape[0])] | |
863 assert_almost_equal(norm(A, ord=order, axis=1), expected1) | |
864 | |
865 # Matrix norms. | |
866 B = np.arange(1, 25, dtype=self.dt).reshape(2, 3, 4) | |
867 | |
868 for order in [None, -2, 2, -1, 1, np.Inf, -np.Inf, 'fro']: | |
869 assert_almost_equal(norm(A, ord=order), norm(A, ord=order, | |
870 axis=(0, 1))) | |
871 | |
872 n = norm(B, ord=order, axis=(1, 2)) | |
873 expected = [norm(B[k], ord=order) for k in range(B.shape[0])] | |
874 assert_almost_equal(n, expected) | |
875 | |
876 n = norm(B, ord=order, axis=(2, 1)) | |
877 expected = [norm(B[k].T, ord=order) for k in range(B.shape[0])] | |
878 assert_almost_equal(n, expected) | |
879 | |
880 n = norm(B, ord=order, axis=(0, 2)) | |
881 expected = [norm(B[:, k,:], ord=order) for k in range(B.shape[1])] | |
882 assert_almost_equal(n, expected) | |
883 | |
884 n = norm(B, ord=order, axis=(0, 1)) | |
885 expected = [norm(B[:,:, k], ord=order) for k in range(B.shape[2])] | |
886 assert_almost_equal(n, expected) | |
887 | |
888 def test_bad_args(self): | |
889 # Check that bad arguments raise the appropriate exceptions. | |
890 | |
891 A = array([[1, 2, 3], [4, 5, 6]], dtype=self.dt) | |
892 B = np.arange(1, 25, dtype=self.dt).reshape(2, 3, 4) | |
893 | |
894 # Using `axis=<integer>` or passing in a 1-D array implies vector | |
895 # norms are being computed, so also using `ord='fro'` raises a | |
896 # ValueError. | |
897 assert_raises(ValueError, norm, A, 'fro', 0) | |
898 assert_raises(ValueError, norm, [3, 4], 'fro', None) | |
899 | |
900 # Similarly, norm should raise an exception when ord is any finite | |
901 # number other than 1, 2, -1 or -2 when computing matrix norms. | |
902 for order in [0, 3]: | |
903 assert_raises(ValueError, norm, A, order, None) | |
904 assert_raises(ValueError, norm, A, order, (0, 1)) | |
905 assert_raises(ValueError, norm, B, order, (1, 2)) | |
906 | |
907 # Invalid axis | |
908 assert_raises(ValueError, norm, B, None, 3) | |
909 assert_raises(ValueError, norm, B, None, (2, 3)) | |
910 assert_raises(ValueError, norm, B, None, (0, 1, 2)) | |
911 | |
912 def test_longdouble_norm(self): | |
913 # Non-regression test: p-norm of longdouble would previously raise | |
914 # UnboundLocalError. | |
915 x = np.arange(10, dtype=np.longdouble) | |
916 old_assert_almost_equal(norm(x, ord=3), 12.65, decimal=2) | |
917 | |
918 def test_intmin(self): | |
919 # Non-regression test: p-norm of signed integer would previously do | |
920 # float cast and abs in the wrong order. | |
921 x = np.array([-2 ** 31], dtype=np.int32) | |
922 old_assert_almost_equal(norm(x, ord=3), 2 ** 31, decimal=5) | |
923 | |
924 def test_complex_high_ord(self): | |
925 # gh-4156 | |
926 d = np.empty((2,), dtype=np.clongdouble) | |
927 d[0] = 6+7j | |
928 d[1] = -6+7j | |
929 res = 11.615898132184 | |
930 old_assert_almost_equal(np.linalg.norm(d, ord=3), res, decimal=10) | |
931 d = d.astype(np.complex128) | |
932 old_assert_almost_equal(np.linalg.norm(d, ord=3), res, decimal=9) | |
933 d = d.astype(np.complex64) | |
934 old_assert_almost_equal(np.linalg.norm(d, ord=3), res, decimal=5) | |
935 | |
936 | |
937 class TestNormDouble(_TestNorm): | |
938 dt = np.double | |
939 dec = 12 | |
940 | |
941 | |
942 class TestNormSingle(_TestNorm): | |
943 dt = np.float32 | |
944 dec = 6 | |
945 | |
946 | |
947 class TestNormInt64(_TestNorm): | |
948 dt = np.int64 | |
949 dec = 12 | |
950 | |
951 | |
952 class TestMatrixRank(object): | |
953 def test_matrix_rank(self): | |
954 # Full rank matrix | |
955 yield assert_equal, 4, matrix_rank(np.eye(4)) | |
956 # rank deficient matrix | |
957 I=np.eye(4); I[-1, -1] = 0. | |
958 yield assert_equal, matrix_rank(I), 3 | |
959 # All zeros - zero rank | |
960 yield assert_equal, matrix_rank(np.zeros((4, 4))), 0 | |
961 # 1 dimension - rank 1 unless all 0 | |
962 yield assert_equal, matrix_rank([1, 0, 0, 0]), 1 | |
963 yield assert_equal, matrix_rank(np.zeros((4,))), 0 | |
964 # accepts array-like | |
965 yield assert_equal, matrix_rank([1]), 1 | |
966 # greater than 2 dimensions raises error | |
967 yield assert_raises, TypeError, matrix_rank, np.zeros((2, 2, 2)) | |
968 # works on scalar | |
969 yield assert_equal, matrix_rank(1), 1 | |
970 | |
971 | |
972 def test_reduced_rank(): | |
973 # Test matrices with reduced rank | |
974 rng = np.random.RandomState(20120714) | |
975 for i in range(100): | |
976 # Make a rank deficient matrix | |
977 X = rng.normal(size=(40, 10)) | |
978 X[:, 0] = X[:, 1] + X[:, 2] | |
979 # Assert that matrix_rank detected deficiency | |
980 assert_equal(matrix_rank(X), 9) | |
981 X[:, 3] = X[:, 4] + X[:, 5] | |
982 assert_equal(matrix_rank(X), 8) | |
983 | |
984 | |
985 class TestQR(object): | |
986 | |
987 def check_qr(self, a): | |
988 # This test expects the argument `a` to be an ndarray or | |
989 # a subclass of an ndarray of inexact type. | |
990 a_type = type(a) | |
991 a_dtype = a.dtype | |
992 m, n = a.shape | |
993 k = min(m, n) | |
994 | |
995 # mode == 'complete' | |
996 q, r = linalg.qr(a, mode='complete') | |
997 assert_(q.dtype == a_dtype) | |
998 assert_(r.dtype == a_dtype) | |
999 assert_(isinstance(q, a_type)) | |
1000 assert_(isinstance(r, a_type)) | |
1001 assert_(q.shape == (m, m)) | |
1002 assert_(r.shape == (m, n)) | |
1003 assert_almost_equal(dot(q, r), a) | |
1004 assert_almost_equal(dot(q.T.conj(), q), np.eye(m)) | |
1005 assert_almost_equal(np.triu(r), r) | |
1006 | |
1007 # mode == 'reduced' | |
1008 q1, r1 = linalg.qr(a, mode='reduced') | |
1009 assert_(q1.dtype == a_dtype) | |
1010 assert_(r1.dtype == a_dtype) | |
1011 assert_(isinstance(q1, a_type)) | |
1012 assert_(isinstance(r1, a_type)) | |
1013 assert_(q1.shape == (m, k)) | |
1014 assert_(r1.shape == (k, n)) | |
1015 assert_almost_equal(dot(q1, r1), a) | |
1016 assert_almost_equal(dot(q1.T.conj(), q1), np.eye(k)) | |
1017 assert_almost_equal(np.triu(r1), r1) | |
1018 | |
1019 # mode == 'r' | |
1020 r2 = linalg.qr(a, mode='r') | |
1021 assert_(r2.dtype == a_dtype) | |
1022 assert_(isinstance(r2, a_type)) | |
1023 assert_almost_equal(r2, r1) | |
1024 | |
1025 def test_qr_empty(self): | |
1026 a = np.zeros((0, 2)) | |
1027 assert_raises(linalg.LinAlgError, linalg.qr, a) | |
1028 | |
1029 def test_mode_raw(self): | |
1030 # The factorization is not unique and varies between libraries, | |
1031 # so it is not possible to check against known values. Functional | |
1032 # testing is a possibility, but awaits the exposure of more | |
1033 # of the functions in lapack_lite. Consequently, this test is | |
1034 # very limited in scope. Note that the results are in FORTRAN | |
1035 # order, hence the h arrays are transposed. | |
1036 a = array([[1, 2], [3, 4], [5, 6]], dtype=np.double) | |
1037 b = a.astype(np.single) | |
1038 | |
1039 # Test double | |
1040 h, tau = linalg.qr(a, mode='raw') | |
1041 assert_(h.dtype == np.double) | |
1042 assert_(tau.dtype == np.double) | |
1043 assert_(h.shape == (2, 3)) | |
1044 assert_(tau.shape == (2,)) | |
1045 | |
1046 h, tau = linalg.qr(a.T, mode='raw') | |
1047 assert_(h.dtype == np.double) | |
1048 assert_(tau.dtype == np.double) | |
1049 assert_(h.shape == (3, 2)) | |
1050 assert_(tau.shape == (2,)) | |
1051 | |
1052 def test_mode_all_but_economic(self): | |
1053 a = array([[1, 2], [3, 4]]) | |
1054 b = array([[1, 2], [3, 4], [5, 6]]) | |
1055 for dt in "fd": | |
1056 m1 = a.astype(dt) | |
1057 m2 = b.astype(dt) | |
1058 self.check_qr(m1) | |
1059 self.check_qr(m2) | |
1060 self.check_qr(m2.T) | |
1061 self.check_qr(matrix(m1)) | |
1062 for dt in "fd": | |
1063 m1 = 1 + 1j * a.astype(dt) | |
1064 m2 = 1 + 1j * b.astype(dt) | |
1065 self.check_qr(m1) | |
1066 self.check_qr(m2) | |
1067 self.check_qr(m2.T) | |
1068 self.check_qr(matrix(m1)) | |
1069 | |
1070 | |
1071 def test_byteorder_check(): | |
1072 # Byte order check should pass for native order | |
1073 if sys.byteorder == 'little': | |
1074 native = '<' | |
1075 else: | |
1076 native = '>' | |
1077 | |
1078 for dtt in (np.float32, np.float64): | |
1079 arr = np.eye(4, dtype=dtt) | |
1080 n_arr = arr.newbyteorder(native) | |
1081 sw_arr = arr.newbyteorder('S').byteswap() | |
1082 assert_equal(arr.dtype.byteorder, '=') | |
1083 for routine in (linalg.inv, linalg.det, linalg.pinv): | |
1084 # Normal call | |
1085 res = routine(arr) | |
1086 # Native but not '=' | |
1087 assert_array_equal(res, routine(n_arr)) | |
1088 # Swapped | |
1089 assert_array_equal(res, routine(sw_arr)) | |
1090 | |
1091 | |
1092 def test_generalized_raise_multiloop(): | |
1093 # It should raise an error even if the error doesn't occur in the | |
1094 # last iteration of the ufunc inner loop | |
1095 | |
1096 invertible = np.array([[1, 2], [3, 4]]) | |
1097 non_invertible = np.array([[1, 1], [1, 1]]) | |
1098 | |
1099 x = np.zeros([4, 4, 2, 2])[1::2] | |
1100 x[...] = invertible | |
1101 x[0, 0] = non_invertible | |
1102 | |
1103 assert_raises(np.linalg.LinAlgError, np.linalg.inv, x) | |
1104 | |
1105 def test_xerbla_override(): | |
1106 # Check that our xerbla has been successfully linked in. If it is not, | |
1107 # the default xerbla routine is called, which prints a message to stdout | |
1108 # and may, or may not, abort the process depending on the LAPACK package. | |
1109 from nose import SkipTest | |
1110 | |
1111 try: | |
1112 pid = os.fork() | |
1113 except (OSError, AttributeError): | |
1114 # fork failed, or not running on POSIX | |
1115 raise SkipTest("Not POSIX or fork failed.") | |
1116 | |
1117 if pid == 0: | |
1118 # child; close i/o file handles | |
1119 os.close(1) | |
1120 os.close(0) | |
1121 # Avoid producing core files. | |
1122 import resource | |
1123 resource.setrlimit(resource.RLIMIT_CORE, (0, 0)) | |
1124 # These calls may abort. | |
1125 try: | |
1126 np.linalg.lapack_lite.xerbla() | |
1127 except ValueError: | |
1128 pass | |
1129 except: | |
1130 os._exit(os.EX_CONFIG) | |
1131 | |
1132 try: | |
1133 a = np.array([[1.]]) | |
1134 np.linalg.lapack_lite.dorgqr( | |
1135 1, 1, 1, a, | |
1136 0, # <- invalid value | |
1137 a, a, 0, 0) | |
1138 except ValueError as e: | |
1139 if "DORGQR parameter number 5" in str(e): | |
1140 # success | |
1141 os._exit(os.EX_OK) | |
1142 | |
1143 # Did not abort, but our xerbla was not linked in. | |
1144 os._exit(os.EX_CONFIG) | |
1145 else: | |
1146 # parent | |
1147 pid, status = os.wait() | |
1148 if os.WEXITSTATUS(status) != os.EX_OK or os.WIFSIGNALED(status): | |
1149 raise SkipTest('Numpy xerbla not linked in.') | |
1150 | |
1151 | |
1152 if __name__ == "__main__": | |
1153 run_module_suite() |