comparison DEPENDENCIES/mingw32/Python27/Lib/site-packages/numpy/doc/constants.py @ 87:2a2c65a20a8b

Add Python libs and headers
author Chris Cannam
date Wed, 25 Feb 2015 14:05:22 +0000
parents
children
comparison
equal deleted inserted replaced
86:413a9d26189e 87:2a2c65a20a8b
1 """
2 =========
3 Constants
4 =========
5
6 Numpy includes several constants:
7
8 %(constant_list)s
9 """
10 #
11 # Note: the docstring is autogenerated.
12 #
13 from __future__ import division, absolute_import, print_function
14
15 import textwrap, re
16
17 # Maintain same format as in numpy.add_newdocs
18 constants = []
19 def add_newdoc(module, name, doc):
20 constants.append((name, doc))
21
22 add_newdoc('numpy', 'Inf',
23 """
24 IEEE 754 floating point representation of (positive) infinity.
25
26 Use `inf` because `Inf`, `Infinity`, `PINF` and `infty` are aliases for
27 `inf`. For more details, see `inf`.
28
29 See Also
30 --------
31 inf
32
33 """)
34
35 add_newdoc('numpy', 'Infinity',
36 """
37 IEEE 754 floating point representation of (positive) infinity.
38
39 Use `inf` because `Inf`, `Infinity`, `PINF` and `infty` are aliases for
40 `inf`. For more details, see `inf`.
41
42 See Also
43 --------
44 inf
45
46 """)
47
48 add_newdoc('numpy', 'NAN',
49 """
50 IEEE 754 floating point representation of Not a Number (NaN).
51
52 `NaN` and `NAN` are equivalent definitions of `nan`. Please use
53 `nan` instead of `NAN`.
54
55 See Also
56 --------
57 nan
58
59 """)
60
61 add_newdoc('numpy', 'NINF',
62 """
63 IEEE 754 floating point representation of negative infinity.
64
65 Returns
66 -------
67 y : float
68 A floating point representation of negative infinity.
69
70 See Also
71 --------
72 isinf : Shows which elements are positive or negative infinity
73
74 isposinf : Shows which elements are positive infinity
75
76 isneginf : Shows which elements are negative infinity
77
78 isnan : Shows which elements are Not a Number
79
80 isfinite : Shows which elements are finite (not one of Not a Number,
81 positive infinity and negative infinity)
82
83 Notes
84 -----
85 Numpy uses the IEEE Standard for Binary Floating-Point for Arithmetic
86 (IEEE 754). This means that Not a Number is not equivalent to infinity.
87 Also that positive infinity is not equivalent to negative infinity. But
88 infinity is equivalent to positive infinity.
89
90 Examples
91 --------
92 >>> np.NINF
93 -inf
94 >>> np.log(0)
95 -inf
96
97 """)
98
99 add_newdoc('numpy', 'NZERO',
100 """
101 IEEE 754 floating point representation of negative zero.
102
103 Returns
104 -------
105 y : float
106 A floating point representation of negative zero.
107
108 See Also
109 --------
110 PZERO : Defines positive zero.
111
112 isinf : Shows which elements are positive or negative infinity.
113
114 isposinf : Shows which elements are positive infinity.
115
116 isneginf : Shows which elements are negative infinity.
117
118 isnan : Shows which elements are Not a Number.
119
120 isfinite : Shows which elements are finite - not one of
121 Not a Number, positive infinity and negative infinity.
122
123 Notes
124 -----
125 Numpy uses the IEEE Standard for Binary Floating-Point for Arithmetic
126 (IEEE 754). Negative zero is considered to be a finite number.
127
128 Examples
129 --------
130 >>> np.NZERO
131 -0.0
132 >>> np.PZERO
133 0.0
134
135 >>> np.isfinite([np.NZERO])
136 array([ True], dtype=bool)
137 >>> np.isnan([np.NZERO])
138 array([False], dtype=bool)
139 >>> np.isinf([np.NZERO])
140 array([False], dtype=bool)
141
142 """)
143
144 add_newdoc('numpy', 'NaN',
145 """
146 IEEE 754 floating point representation of Not a Number (NaN).
147
148 `NaN` and `NAN` are equivalent definitions of `nan`. Please use
149 `nan` instead of `NaN`.
150
151 See Also
152 --------
153 nan
154
155 """)
156
157 add_newdoc('numpy', 'PINF',
158 """
159 IEEE 754 floating point representation of (positive) infinity.
160
161 Use `inf` because `Inf`, `Infinity`, `PINF` and `infty` are aliases for
162 `inf`. For more details, see `inf`.
163
164 See Also
165 --------
166 inf
167
168 """)
169
170 add_newdoc('numpy', 'PZERO',
171 """
172 IEEE 754 floating point representation of positive zero.
173
174 Returns
175 -------
176 y : float
177 A floating point representation of positive zero.
178
179 See Also
180 --------
181 NZERO : Defines negative zero.
182
183 isinf : Shows which elements are positive or negative infinity.
184
185 isposinf : Shows which elements are positive infinity.
186
187 isneginf : Shows which elements are negative infinity.
188
189 isnan : Shows which elements are Not a Number.
190
191 isfinite : Shows which elements are finite - not one of
192 Not a Number, positive infinity and negative infinity.
193
194 Notes
195 -----
196 Numpy uses the IEEE Standard for Binary Floating-Point for Arithmetic
197 (IEEE 754). Positive zero is considered to be a finite number.
198
199 Examples
200 --------
201 >>> np.PZERO
202 0.0
203 >>> np.NZERO
204 -0.0
205
206 >>> np.isfinite([np.PZERO])
207 array([ True], dtype=bool)
208 >>> np.isnan([np.PZERO])
209 array([False], dtype=bool)
210 >>> np.isinf([np.PZERO])
211 array([False], dtype=bool)
212
213 """)
214
215 add_newdoc('numpy', 'e',
216 """
217 Euler's constant, base of natural logarithms, Napier's constant.
218
219 ``e = 2.71828182845904523536028747135266249775724709369995...``
220
221 See Also
222 --------
223 exp : Exponential function
224 log : Natural logarithm
225
226 References
227 ----------
228 .. [1] http://en.wikipedia.org/wiki/Napier_constant
229
230 """)
231
232 add_newdoc('numpy', 'inf',
233 """
234 IEEE 754 floating point representation of (positive) infinity.
235
236 Returns
237 -------
238 y : float
239 A floating point representation of positive infinity.
240
241 See Also
242 --------
243 isinf : Shows which elements are positive or negative infinity
244
245 isposinf : Shows which elements are positive infinity
246
247 isneginf : Shows which elements are negative infinity
248
249 isnan : Shows which elements are Not a Number
250
251 isfinite : Shows which elements are finite (not one of Not a Number,
252 positive infinity and negative infinity)
253
254 Notes
255 -----
256 Numpy uses the IEEE Standard for Binary Floating-Point for Arithmetic
257 (IEEE 754). This means that Not a Number is not equivalent to infinity.
258 Also that positive infinity is not equivalent to negative infinity. But
259 infinity is equivalent to positive infinity.
260
261 `Inf`, `Infinity`, `PINF` and `infty` are aliases for `inf`.
262
263 Examples
264 --------
265 >>> np.inf
266 inf
267 >>> np.array([1]) / 0.
268 array([ Inf])
269
270 """)
271
272 add_newdoc('numpy', 'infty',
273 """
274 IEEE 754 floating point representation of (positive) infinity.
275
276 Use `inf` because `Inf`, `Infinity`, `PINF` and `infty` are aliases for
277 `inf`. For more details, see `inf`.
278
279 See Also
280 --------
281 inf
282
283 """)
284
285 add_newdoc('numpy', 'nan',
286 """
287 IEEE 754 floating point representation of Not a Number (NaN).
288
289 Returns
290 -------
291 y : A floating point representation of Not a Number.
292
293 See Also
294 --------
295 isnan : Shows which elements are Not a Number.
296 isfinite : Shows which elements are finite (not one of
297 Not a Number, positive infinity and negative infinity)
298
299 Notes
300 -----
301 Numpy uses the IEEE Standard for Binary Floating-Point for Arithmetic
302 (IEEE 754). This means that Not a Number is not equivalent to infinity.
303
304 `NaN` and `NAN` are aliases of `nan`.
305
306 Examples
307 --------
308 >>> np.nan
309 nan
310 >>> np.log(-1)
311 nan
312 >>> np.log([-1, 1, 2])
313 array([ NaN, 0. , 0.69314718])
314
315 """)
316
317 add_newdoc('numpy', 'newaxis',
318 """
319 A convenient alias for None, useful for indexing arrays.
320
321 See Also
322 --------
323 `numpy.doc.indexing`
324
325 Examples
326 --------
327 >>> newaxis is None
328 True
329 >>> x = np.arange(3)
330 >>> x
331 array([0, 1, 2])
332 >>> x[:, newaxis]
333 array([[0],
334 [1],
335 [2]])
336 >>> x[:, newaxis, newaxis]
337 array([[[0]],
338 [[1]],
339 [[2]]])
340 >>> x[:, newaxis] * x
341 array([[0, 0, 0],
342 [0, 1, 2],
343 [0, 2, 4]])
344
345 Outer product, same as ``outer(x, y)``:
346
347 >>> y = np.arange(3, 6)
348 >>> x[:, newaxis] * y
349 array([[ 0, 0, 0],
350 [ 3, 4, 5],
351 [ 6, 8, 10]])
352
353 ``x[newaxis, :]`` is equivalent to ``x[newaxis]`` and ``x[None]``:
354
355 >>> x[newaxis, :].shape
356 (1, 3)
357 >>> x[newaxis].shape
358 (1, 3)
359 >>> x[None].shape
360 (1, 3)
361 >>> x[:, newaxis].shape
362 (3, 1)
363
364 """)
365
366 if __doc__:
367 constants_str = []
368 constants.sort()
369 for name, doc in constants:
370 s = textwrap.dedent(doc).replace("\n", "\n ")
371
372 # Replace sections by rubrics
373 lines = s.split("\n")
374 new_lines = []
375 for line in lines:
376 m = re.match(r'^(\s+)[-=]+\s*$', line)
377 if m and new_lines:
378 prev = textwrap.dedent(new_lines.pop())
379 new_lines.append('%s.. rubric:: %s' % (m.group(1), prev))
380 new_lines.append('')
381 else:
382 new_lines.append(line)
383 s = "\n".join(new_lines)
384
385 # Done.
386 constants_str.append(""".. const:: %s\n %s""" % (name, s))
387 constants_str = "\n".join(constants_str)
388
389 __doc__ = __doc__ % dict(constant_list=constants_str)
390 del constants_str, name, doc
391 del line, lines, new_lines, m, s, prev
392
393 del constants, add_newdoc