comparison DEPENDENCIES/generic/include/boost/pending/relaxed_heap.hpp @ 16:2665513ce2d3

Add boost headers
author Chris Cannam
date Tue, 05 Aug 2014 11:11:38 +0100
parents
children c530137014c0
comparison
equal deleted inserted replaced
15:663ca0da4350 16:2665513ce2d3
1 // Copyright 2004 The Trustees of Indiana University.
2
3 // Use, modification and distribution is subject to the Boost Software
4 // License, Version 1.0. (See accompanying file LICENSE_1_0.txt or copy at
5 // http://www.boost.org/LICENSE_1_0.txt)
6
7 // Authors: Douglas Gregor
8 // Andrew Lumsdaine
9 #ifndef BOOST_RELAXED_HEAP_HEADER
10 #define BOOST_RELAXED_HEAP_HEADER
11
12 #include <functional>
13 #include <boost/property_map/property_map.hpp>
14 #include <boost/optional.hpp>
15 #include <vector>
16 #include <climits> // for CHAR_BIT
17 #include <boost/none.hpp>
18
19 #ifdef BOOST_RELAXED_HEAP_DEBUG
20 # include <iostream>
21 #endif // BOOST_RELAXED_HEAP_DEBUG
22
23 #if defined(BOOST_MSVC)
24 # pragma warning(push)
25 # pragma warning(disable:4355) // complaint about using 'this' to
26 #endif // initialize a member
27
28 namespace boost {
29
30 template<typename IndexedType,
31 typename Compare = std::less<IndexedType>,
32 typename ID = identity_property_map>
33 class relaxed_heap
34 {
35 struct group;
36
37 typedef relaxed_heap self_type;
38 typedef std::size_t rank_type;
39
40 public:
41 typedef IndexedType value_type;
42 typedef rank_type size_type;
43
44 private:
45 /**
46 * The kind of key that a group has. The actual values are discussed
47 * in-depth in the documentation of the @c kind field of the @c group
48 * structure. Note that the order of the enumerators *IS* important
49 * and must not be changed.
50 */
51 enum group_key_kind { smallest_key, stored_key, largest_key };
52
53 struct group {
54 explicit group(group_key_kind kind = largest_key)
55 : kind(kind), parent(this), rank(0) { }
56
57 /** The value associated with this group. This value is only valid
58 * when @c kind!=largest_key (which indicates a deleted
59 * element). Note that the use of boost::optional increases the
60 * memory requirements slightly but does not result in extraneous
61 * memory allocations or deallocations. The optional could be
62 * eliminated when @c value_type is a model of
63 * DefaultConstructible.
64 */
65 ::boost::optional<value_type> value;
66
67 /**
68 * The kind of key stored at this group. This may be @c
69 * smallest_key, which indicates that the key is infinitely small;
70 * @c largest_key, which indicates that the key is infinitely
71 * large; or @c stored_key, which means that the key is unknown,
72 * but its relationship to other keys can be determined via the
73 * comparison function object.
74 */
75 group_key_kind kind;
76
77 /// The parent of this group. Will only be NULL for the dummy root group
78 group* parent;
79
80 /// The rank of this group. Equivalent to the number of children in
81 /// the group.
82 rank_type rank;
83
84 /** The children of this group. For the dummy root group, these are
85 * the roots. This is an array of length log n containing pointers
86 * to the child groups.
87 */
88 group** children;
89 };
90
91 size_type log_base_2(size_type n) // log2 is a macro on some platforms
92 {
93 size_type leading_zeroes = 0;
94 do {
95 size_type next = n << 1;
96 if (n == (next >> 1)) {
97 ++leading_zeroes;
98 n = next;
99 } else {
100 break;
101 }
102 } while (true);
103 return sizeof(size_type) * CHAR_BIT - leading_zeroes - 1;
104 }
105
106 public:
107 relaxed_heap(size_type n, const Compare& compare = Compare(),
108 const ID& id = ID())
109 : compare(compare), id(id), root(smallest_key), groups(n),
110 smallest_value(0)
111 {
112 if (n == 0) {
113 root.children = new group*[1];
114 return;
115 }
116
117 log_n = log_base_2(n);
118 if (log_n == 0) log_n = 1;
119 size_type g = n / log_n;
120 if (n % log_n > 0) ++g;
121 size_type log_g = log_base_2(g);
122 size_type r = log_g;
123
124 // Reserve an appropriate amount of space for data structures, so
125 // that we do not need to expand them.
126 index_to_group.resize(g);
127 A.resize(r + 1, 0);
128 root.rank = r + 1;
129 root.children = new group*[(log_g + 1) * (g + 1)];
130 for (rank_type i = 0; i < r+1; ++i) root.children[i] = 0;
131
132 // Build initial heap
133 size_type idx = 0;
134 while (idx < g) {
135 root.children[r] = &index_to_group[idx];
136 idx = build_tree(root, idx, r, log_g + 1);
137 if (idx != g)
138 r = static_cast<size_type>(log_base_2(g-idx));
139 }
140 }
141
142 ~relaxed_heap() { delete [] root.children; }
143
144 void push(const value_type& x)
145 {
146 groups[get(id, x)] = x;
147 update(x);
148 }
149
150 void update(const value_type& x)
151 {
152 group* a = &index_to_group[get(id, x) / log_n];
153 if (!a->value
154 || *a->value == x
155 || compare(x, *a->value)) {
156 if (a != smallest_value) smallest_value = 0;
157 a->kind = stored_key;
158 a->value = x;
159 promote(a);
160 }
161 }
162
163 void remove(const value_type& x)
164 {
165 group* a = &index_to_group[get(id, x) / log_n];
166 assert(groups[get(id, x)] != 0);
167 a->value = x;
168 a->kind = smallest_key;
169 promote(a);
170 smallest_value = a;
171 pop();
172 }
173
174 value_type& top()
175 {
176 find_smallest();
177 assert(smallest_value->value != none);
178 return *smallest_value->value;
179 }
180
181 const value_type& top() const
182 {
183 find_smallest();
184 assert(smallest_value->value != none);
185 return *smallest_value->value;
186 }
187
188 bool empty() const
189 {
190 find_smallest();
191 return !smallest_value || (smallest_value->kind == largest_key);
192 }
193
194 bool contains(const value_type& x) const { return groups[get(id, x)]; }
195
196 void pop()
197 {
198 // Fill in smallest_value. This is the group x.
199 find_smallest();
200 group* x = smallest_value;
201 smallest_value = 0;
202
203 // Make x a leaf, giving it the smallest value within its group
204 rank_type r = x->rank;
205 group* p = x->parent;
206 {
207 assert(x->value != none);
208
209 // Find x's group
210 size_type start = get(id, *x->value) - get(id, *x->value) % log_n;
211 size_type end = start + log_n;
212 if (end > groups.size()) end = groups.size();
213
214 // Remove the smallest value from the group, and find the new
215 // smallest value.
216 groups[get(id, *x->value)].reset();
217 x->value.reset();
218 x->kind = largest_key;
219 for (size_type i = start; i < end; ++i) {
220 if (groups[i] && (!x->value || compare(*groups[i], *x->value))) {
221 x->kind = stored_key;
222 x->value = groups[i];
223 }
224 }
225 }
226 x->rank = 0;
227
228 // Combine prior children of x with x
229 group* y = x;
230 for (size_type c = 0; c < r; ++c) {
231 group* child = x->children[c];
232 if (A[c] == child) A[c] = 0;
233 y = combine(y, child);
234 }
235
236 // If we got back something other than x, let y take x's place
237 if (y != x) {
238 y->parent = p;
239 p->children[r] = y;
240
241 assert(r == y->rank);
242 if (A[y->rank] == x)
243 A[y->rank] = do_compare(y, p)? y : 0;
244 }
245 }
246
247 #ifdef BOOST_RELAXED_HEAP_DEBUG
248 /*************************************************************************
249 * Debugging support *
250 *************************************************************************/
251 void dump_tree() { dump_tree(std::cout); }
252 void dump_tree(std::ostream& out) { dump_tree(out, &root); }
253
254 void dump_tree(std::ostream& out, group* p, bool in_progress = false)
255 {
256 if (!in_progress) {
257 out << "digraph heap {\n"
258 << " edge[dir=\"back\"];\n";
259 }
260
261 size_type p_index = 0;
262 if (p != &root) while (&index_to_group[p_index] != p) ++p_index;
263
264 for (size_type i = 0; i < p->rank; ++i) {
265 group* c = p->children[i];
266 if (c) {
267 size_type c_index = 0;
268 if (c != &root) while (&index_to_group[c_index] != c) ++c_index;
269
270 out << " ";
271 if (p == &root) out << 'p'; else out << p_index;
272 out << " -> ";
273 if (c == &root) out << 'p'; else out << c_index;
274 if (A[c->rank] == c) out << " [style=\"dotted\"]";
275 out << ";\n";
276 dump_tree(out, c, true);
277
278 // Emit node information
279 out << " ";
280 if (c == &root) out << 'p'; else out << c_index;
281 out << " [label=\"";
282 if (c == &root) out << 'p'; else out << c_index;
283 out << ":";
284 size_type start = c_index * log_n;
285 size_type end = start + log_n;
286 if (end > groups.size()) end = groups.size();
287 while (start != end) {
288 if (groups[start]) {
289 out << " " << get(id, *groups[start]);
290 if (*groups[start] == *c->value) out << "(*)";
291 }
292 ++start;
293 }
294 out << '"';
295
296 if (do_compare(c, p)) {
297 out << " ";
298 if (c == &root) out << 'p'; else out << c_index;
299 out << ", style=\"filled\", fillcolor=\"gray\"";
300 }
301 out << "];\n";
302 } else {
303 assert(p->parent == p);
304 }
305 }
306 if (!in_progress) out << "}\n";
307 }
308
309 bool valid()
310 {
311 // Check that the ranks in the A array match the ranks of the
312 // groups stored there. Also, the active groups must be the last
313 // child of their parent.
314 for (size_type r = 0; r < A.size(); ++r) {
315 if (A[r] && A[r]->rank != r) return false;
316
317 if (A[r] && A[r]->parent->children[A[r]->parent->rank-1] != A[r])
318 return false;
319 }
320
321 // The root must have no value and a key of -Infinity
322 if (root.kind != smallest_key) return false;
323
324 return valid(&root);
325 }
326
327 bool valid(group* p)
328 {
329 for (size_type i = 0; i < p->rank; ++i) {
330 group* c = p->children[i];
331 if (c) {
332 // Check link structure
333 if (c->parent != p) return false;
334 if (c->rank != i) return false;
335
336 // A bad group must be active
337 if (do_compare(c, p) && A[i] != c) return false;
338
339 // Check recursively
340 if (!valid(c)) return false;
341 } else {
342 // Only the root may
343 if (p != &root) return false;
344 }
345 }
346 return true;
347 }
348
349 #endif // BOOST_RELAXED_HEAP_DEBUG
350
351 private:
352 size_type
353 build_tree(group& parent, size_type idx, size_type r, size_type max_rank)
354 {
355 group& this_group = index_to_group[idx];
356 this_group.parent = &parent;
357 ++idx;
358
359 this_group.children = root.children + (idx * max_rank);
360 this_group.rank = r;
361 for (size_type i = 0; i < r; ++i) {
362 this_group.children[i] = &index_to_group[idx];
363 idx = build_tree(this_group, idx, i, max_rank);
364 }
365 return idx;
366 }
367
368 void find_smallest() const
369 {
370 group** roots = root.children;
371
372 if (!smallest_value) {
373 std::size_t i;
374 for (i = 0; i < root.rank; ++i) {
375 if (roots[i] &&
376 (!smallest_value || do_compare(roots[i], smallest_value))) {
377 smallest_value = roots[i];
378 }
379 }
380 for (i = 0; i < A.size(); ++i) {
381 if (A[i] && (!smallest_value || do_compare(A[i], smallest_value)))
382 smallest_value = A[i];
383 }
384 }
385 }
386
387 bool do_compare(group* x, group* y) const
388 {
389 return (x->kind < y->kind
390 || (x->kind == y->kind
391 && x->kind == stored_key
392 && compare(*x->value, *y->value)));
393 }
394
395 void promote(group* a)
396 {
397 assert(a != 0);
398 rank_type r = a->rank;
399 group* p = a->parent;
400 assert(p != 0);
401 if (do_compare(a, p)) {
402 // s is the rank + 1 sibling
403 group* s = p->rank > r + 1? p->children[r + 1] : 0;
404
405 // If a is the last child of p
406 if (r == p->rank - 1) {
407 if (!A[r]) A[r] = a;
408 else if (A[r] != a) pair_transform(a);
409 } else {
410 assert(s != 0);
411 if (A[r + 1] == s) active_sibling_transform(a, s);
412 else good_sibling_transform(a, s);
413 }
414 }
415 }
416
417 group* combine(group* a1, group* a2)
418 {
419 assert(a1->rank == a2->rank);
420 if (do_compare(a2, a1)) do_swap(a1, a2);
421 a1->children[a1->rank++] = a2;
422 a2->parent = a1;
423 clean(a1);
424 return a1;
425 }
426
427 void clean(group* q)
428 {
429 if (2 > q->rank) return;
430 group* qp = q->children[q->rank-1];
431 rank_type s = q->rank - 2;
432 group* x = q->children[s];
433 group* xp = qp->children[s];
434 assert(s == x->rank);
435
436 // If x is active, swap x and xp
437 if (A[s] == x) {
438 q->children[s] = xp;
439 xp->parent = q;
440 qp->children[s] = x;
441 x->parent = qp;
442 }
443 }
444
445 void pair_transform(group* a)
446 {
447 #if defined(BOOST_RELAXED_HEAP_DEBUG) && BOOST_RELAXED_HEAP_DEBUG > 1
448 std::cerr << "- pair transform\n";
449 #endif
450 rank_type r = a->rank;
451
452 // p is a's parent
453 group* p = a->parent;
454 assert(p != 0);
455
456 // g is p's parent (a's grandparent)
457 group* g = p->parent;
458 assert(g != 0);
459
460 // a' <- A(r)
461 assert(A[r] != 0);
462 group* ap = A[r];
463 assert(ap != 0);
464
465 // A(r) <- nil
466 A[r] = 0;
467
468 // let a' have parent p'
469 group* pp = ap->parent;
470 assert(pp != 0);
471
472 // let a' have grandparent g'
473 group* gp = pp->parent;
474 assert(gp != 0);
475
476 // Remove a and a' from their parents
477 assert(ap == pp->children[pp->rank-1]); // Guaranteed because ap is active
478 --pp->rank;
479
480 // Guaranteed by caller
481 assert(a == p->children[p->rank-1]);
482 --p->rank;
483
484 // Note: a, ap, p, pp all have rank r
485 if (do_compare(pp, p)) {
486 do_swap(a, ap);
487 do_swap(p, pp);
488 do_swap(g, gp);
489 }
490
491 // Assuming k(p) <= k(p')
492 // make p' the rank r child of p
493 assert(r == p->rank);
494 p->children[p->rank++] = pp;
495 pp->parent = p;
496
497 // Combine a, ap into a rank r+1 group c
498 group* c = combine(a, ap);
499
500 // make c the rank r+1 child of g'
501 assert(gp->rank > r+1);
502 gp->children[r+1] = c;
503 c->parent = gp;
504
505 #if defined(BOOST_RELAXED_HEAP_DEBUG) && BOOST_RELAXED_HEAP_DEBUG > 1
506 std::cerr << "After pair transform...\n";
507 dump_tree();
508 #endif
509
510 if (A[r+1] == pp) A[r+1] = c;
511 else promote(c);
512 }
513
514 void active_sibling_transform(group* a, group* s)
515 {
516 #if defined(BOOST_RELAXED_HEAP_DEBUG) && BOOST_RELAXED_HEAP_DEBUG > 1
517 std::cerr << "- active sibling transform\n";
518 #endif
519 group* p = a->parent;
520 group* g = p->parent;
521
522 // remove a, s from their parents
523 assert(s->parent == p);
524 assert(p->children[p->rank-1] == s);
525 --p->rank;
526 assert(p->children[p->rank-1] == a);
527 --p->rank;
528
529 rank_type r = a->rank;
530 A[r+1] = 0;
531 a = combine(p, a);
532 group* c = combine(a, s);
533
534 // make c the rank r+2 child of g
535 assert(g->children[r+2] == p);
536 g->children[r+2] = c;
537 c->parent = g;
538 if (A[r+2] == p) A[r+2] = c;
539 else promote(c);
540 }
541
542 void good_sibling_transform(group* a, group* s)
543 {
544 #if defined(BOOST_RELAXED_HEAP_DEBUG) && BOOST_RELAXED_HEAP_DEBUG > 1
545 std::cerr << "- good sibling transform\n";
546 #endif
547 rank_type r = a->rank;
548 group* c = s->children[s->rank-1];
549 assert(c->rank == r);
550 if (A[r] == c) {
551 #if defined(BOOST_RELAXED_HEAP_DEBUG) && BOOST_RELAXED_HEAP_DEBUG > 1
552 std::cerr << "- good sibling pair transform\n";
553 #endif
554 A[r] = 0;
555 group* p = a->parent;
556
557 // Remove c from its parent
558 --s->rank;
559
560 // Make s the rank r child of p
561 s->parent = p;
562 p->children[r] = s;
563
564 // combine a, c and let the result by the rank r+1 child of p
565 assert(p->rank > r+1);
566 group* x = combine(a, c);
567 x->parent = p;
568 p->children[r+1] = x;
569
570 if (A[r+1] == s) A[r+1] = x;
571 else promote(x);
572
573 #if defined(BOOST_RELAXED_HEAP_DEBUG) && BOOST_RELAXED_HEAP_DEBUG > 1
574 dump_tree(std::cerr);
575 #endif
576 // pair_transform(a);
577 } else {
578 // Clean operation
579 group* p = a->parent;
580 s->children[r] = a;
581 a->parent = s;
582 p->children[r] = c;
583 c->parent = p;
584
585 promote(a);
586 }
587 }
588
589 static void do_swap(group*& x, group*& y)
590 {
591 group* tmp = x;
592 x = y;
593 y = tmp;
594 }
595
596 /// Function object that compares two values in the heap
597 Compare compare;
598
599 /// Mapping from values to indices in the range [0, n).
600 ID id;
601
602 /** The root group of the queue. This group is special because it will
603 * never store a value, but it acts as a parent to all of the
604 * roots. Thus, its list of children is the list of roots.
605 */
606 group root;
607
608 /** Mapping from the group index of a value to the group associated
609 * with that value. If a value is not in the queue, then the "value"
610 * field will be empty.
611 */
612 std::vector<group> index_to_group;
613
614 /** Flat data structure containing the values in each of the
615 * groups. It will be indexed via the id of the values. The groups
616 * are each log_n long, with the last group potentially being
617 * smaller.
618 */
619 std::vector< ::boost::optional<value_type> > groups;
620
621 /** The list of active groups, indexed by rank. When A[r] is null,
622 * there is no active group of rank r. Otherwise, A[r] is the active
623 * group of rank r.
624 */
625 std::vector<group*> A;
626
627 /** The group containing the smallest value in the queue, which must
628 * be either a root or an active group. If this group is null, then we
629 * will need to search for this group when it is needed.
630 */
631 mutable group* smallest_value;
632
633 /// Cached value log_base_2(n)
634 size_type log_n;
635 };
636
637
638 } // end namespace boost
639
640 #if defined(BOOST_MSVC)
641 # pragma warning(pop)
642 #endif
643
644 #endif // BOOST_RELAXED_HEAP_HEADER