Mercurial > hg > vamp-build-and-test
comparison DEPENDENCIES/generic/include/boost/numeric/odeint/stepper/runge_kutta_dopri5.hpp @ 16:2665513ce2d3
Add boost headers
author | Chris Cannam |
---|---|
date | Tue, 05 Aug 2014 11:11:38 +0100 |
parents | |
children | c530137014c0 |
comparison
equal
deleted
inserted
replaced
15:663ca0da4350 | 16:2665513ce2d3 |
---|---|
1 /* | |
2 [auto_generated] | |
3 boost/numeric/odeint/stepper/runge_kutta_dopri5.hpp | |
4 | |
5 [begin_description] | |
6 Implementation of the Dormand-Prince 5(4) method. This stepper can also be used with the dense-output controlled stepper. | |
7 [end_description] | |
8 | |
9 Copyright 2009-2011 Karsten Ahnert | |
10 Copyright 2009-2011 Mario Mulansky | |
11 | |
12 Distributed under the Boost Software License, Version 1.0. | |
13 (See accompanying file LICENSE_1_0.txt or | |
14 copy at http://www.boost.org/LICENSE_1_0.txt) | |
15 */ | |
16 | |
17 | |
18 #ifndef BOOST_NUMERIC_ODEINT_STEPPER_RUNGE_KUTTA_DOPRI5_HPP_INCLUDED | |
19 #define BOOST_NUMERIC_ODEINT_STEPPER_RUNGE_KUTTA_DOPRI5_HPP_INCLUDED | |
20 | |
21 | |
22 #include <boost/numeric/odeint/util/bind.hpp> | |
23 | |
24 #include <boost/numeric/odeint/stepper/base/explicit_error_stepper_fsal_base.hpp> | |
25 #include <boost/numeric/odeint/algebra/range_algebra.hpp> | |
26 #include <boost/numeric/odeint/algebra/default_operations.hpp> | |
27 #include <boost/numeric/odeint/stepper/stepper_categories.hpp> | |
28 | |
29 #include <boost/numeric/odeint/util/state_wrapper.hpp> | |
30 #include <boost/numeric/odeint/util/is_resizeable.hpp> | |
31 #include <boost/numeric/odeint/util/resizer.hpp> | |
32 #include <boost/numeric/odeint/util/same_instance.hpp> | |
33 | |
34 namespace boost { | |
35 namespace numeric { | |
36 namespace odeint { | |
37 | |
38 | |
39 | |
40 template< | |
41 class State , | |
42 class Value = double , | |
43 class Deriv = State , | |
44 class Time = Value , | |
45 class Algebra = range_algebra , | |
46 class Operations = default_operations , | |
47 class Resizer = initially_resizer | |
48 > | |
49 class runge_kutta_dopri5 | |
50 #ifndef DOXYGEN_SKIP | |
51 : public explicit_error_stepper_fsal_base< | |
52 runge_kutta_dopri5< State , Value , Deriv , Time , Algebra , Operations , Resizer > , | |
53 5 , 5 , 4 , State , Value , Deriv , Time , Algebra , Operations , Resizer > | |
54 #else | |
55 : public explicit_error_stepper_fsal_base | |
56 #endif | |
57 { | |
58 | |
59 public : | |
60 | |
61 #ifndef DOXYGEN_SKIP | |
62 typedef explicit_error_stepper_fsal_base< | |
63 runge_kutta_dopri5< State , Value , Deriv , Time , Algebra , Operations , Resizer > , | |
64 5 , 5 , 4 , State , Value , Deriv , Time , Algebra , Operations , Resizer > stepper_base_type; | |
65 #else | |
66 typedef explicit_error_stepper_fsal_base< runge_kutta_dopri5< ... > , ... > stepper_base_type; | |
67 #endif | |
68 | |
69 typedef typename stepper_base_type::state_type state_type; | |
70 typedef typename stepper_base_type::value_type value_type; | |
71 typedef typename stepper_base_type::deriv_type deriv_type; | |
72 typedef typename stepper_base_type::time_type time_type; | |
73 typedef typename stepper_base_type::algebra_type algebra_type; | |
74 typedef typename stepper_base_type::operations_type operations_type; | |
75 typedef typename stepper_base_type::resizer_type resizer_type; | |
76 | |
77 #ifndef DOXYGEN_SKIP | |
78 typedef typename stepper_base_type::stepper_type stepper_type; | |
79 typedef typename stepper_base_type::wrapped_state_type wrapped_state_type; | |
80 typedef typename stepper_base_type::wrapped_deriv_type wrapped_deriv_type; | |
81 #endif // DOXYGEN_SKIP | |
82 | |
83 | |
84 runge_kutta_dopri5( const algebra_type &algebra = algebra_type() ) : stepper_base_type( algebra ) | |
85 { } | |
86 | |
87 | |
88 template< class System , class StateIn , class DerivIn , class StateOut , class DerivOut > | |
89 void do_step_impl( System system , const StateIn &in , const DerivIn &dxdt_in , time_type t , | |
90 StateOut &out , DerivOut &dxdt_out , time_type dt ) | |
91 { | |
92 const value_type a2 = static_cast<value_type> ( 1 ) / static_cast<value_type>( 5 ); | |
93 const value_type a3 = static_cast<value_type> ( 3 ) / static_cast<value_type> ( 10 ); | |
94 const value_type a4 = static_cast<value_type> ( 4 ) / static_cast<value_type> ( 5 ); | |
95 const value_type a5 = static_cast<value_type> ( 8 )/static_cast<value_type> ( 9 ); | |
96 | |
97 const value_type b21 = static_cast<value_type> ( 1 ) / static_cast<value_type> ( 5 ); | |
98 | |
99 const value_type b31 = static_cast<value_type> ( 3 ) / static_cast<value_type>( 40 ); | |
100 const value_type b32 = static_cast<value_type> ( 9 ) / static_cast<value_type>( 40 ); | |
101 | |
102 const value_type b41 = static_cast<value_type> ( 44 ) / static_cast<value_type> ( 45 ); | |
103 const value_type b42 = static_cast<value_type> ( -56 ) / static_cast<value_type> ( 15 ); | |
104 const value_type b43 = static_cast<value_type> ( 32 ) / static_cast<value_type> ( 9 ); | |
105 | |
106 const value_type b51 = static_cast<value_type> ( 19372 ) / static_cast<value_type>( 6561 ); | |
107 const value_type b52 = static_cast<value_type> ( -25360 ) / static_cast<value_type> ( 2187 ); | |
108 const value_type b53 = static_cast<value_type> ( 64448 ) / static_cast<value_type>( 6561 ); | |
109 const value_type b54 = static_cast<value_type> ( -212 ) / static_cast<value_type>( 729 ); | |
110 | |
111 const value_type b61 = static_cast<value_type> ( 9017 ) / static_cast<value_type>( 3168 ); | |
112 const value_type b62 = static_cast<value_type> ( -355 ) / static_cast<value_type>( 33 ); | |
113 const value_type b63 = static_cast<value_type> ( 46732 ) / static_cast<value_type>( 5247 ); | |
114 const value_type b64 = static_cast<value_type> ( 49 ) / static_cast<value_type>( 176 ); | |
115 const value_type b65 = static_cast<value_type> ( -5103 ) / static_cast<value_type>( 18656 ); | |
116 | |
117 const value_type c1 = static_cast<value_type> ( 35 ) / static_cast<value_type>( 384 ); | |
118 const value_type c3 = static_cast<value_type> ( 500 ) / static_cast<value_type>( 1113 ); | |
119 const value_type c4 = static_cast<value_type> ( 125 ) / static_cast<value_type>( 192 ); | |
120 const value_type c5 = static_cast<value_type> ( -2187 ) / static_cast<value_type>( 6784 ); | |
121 const value_type c6 = static_cast<value_type> ( 11 ) / static_cast<value_type>( 84 ); | |
122 | |
123 typename odeint::unwrap_reference< System >::type &sys = system; | |
124 | |
125 m_k_x_tmp_resizer.adjust_size( in , detail::bind( &stepper_type::template resize_k_x_tmp_impl<StateIn> , detail::ref( *this ) , detail::_1 ) ); | |
126 | |
127 //m_x_tmp = x + dt*b21*dxdt | |
128 stepper_base_type::m_algebra.for_each3( m_x_tmp.m_v , in , dxdt_in , | |
129 typename operations_type::template scale_sum2< value_type , time_type >( 1.0 , dt*b21 ) ); | |
130 | |
131 sys( m_x_tmp.m_v , m_k2.m_v , t + dt*a2 ); | |
132 // m_x_tmp = x + dt*b31*dxdt + dt*b32*m_k2 | |
133 stepper_base_type::m_algebra.for_each4( m_x_tmp.m_v , in , dxdt_in , m_k2.m_v , | |
134 typename operations_type::template scale_sum3< value_type , time_type , time_type >( 1.0 , dt*b31 , dt*b32 )); | |
135 | |
136 sys( m_x_tmp.m_v , m_k3.m_v , t + dt*a3 ); | |
137 // m_x_tmp = x + dt * (b41*dxdt + b42*m_k2 + b43*m_k3) | |
138 stepper_base_type::m_algebra.for_each5( m_x_tmp.m_v , in , dxdt_in , m_k2.m_v , m_k3.m_v , | |
139 typename operations_type::template scale_sum4< value_type , time_type , time_type , time_type >( 1.0 , dt*b41 , dt*b42 , dt*b43 )); | |
140 | |
141 sys( m_x_tmp.m_v, m_k4.m_v , t + dt*a4 ); | |
142 stepper_base_type::m_algebra.for_each6( m_x_tmp.m_v , in , dxdt_in , m_k2.m_v , m_k3.m_v , m_k4.m_v , | |
143 typename operations_type::template scale_sum5< value_type , time_type , time_type , time_type , time_type >( 1.0 , dt*b51 , dt*b52 , dt*b53 , dt*b54 )); | |
144 | |
145 sys( m_x_tmp.m_v , m_k5.m_v , t + dt*a5 ); | |
146 stepper_base_type::m_algebra.for_each7( m_x_tmp.m_v , in , dxdt_in , m_k2.m_v , m_k3.m_v , m_k4.m_v , m_k5.m_v , | |
147 typename operations_type::template scale_sum6< value_type , time_type , time_type , time_type , time_type , time_type >( 1.0 , dt*b61 , dt*b62 , dt*b63 , dt*b64 , dt*b65 )); | |
148 | |
149 sys( m_x_tmp.m_v , m_k6.m_v , t + dt ); | |
150 stepper_base_type::m_algebra.for_each7( out , in , dxdt_in , m_k3.m_v , m_k4.m_v , m_k5.m_v , m_k6.m_v , | |
151 typename operations_type::template scale_sum6< value_type , time_type , time_type , time_type , time_type , time_type >( 1.0 , dt*c1 , dt*c3 , dt*c4 , dt*c5 , dt*c6 )); | |
152 | |
153 // the new derivative | |
154 sys( out , dxdt_out , t + dt ); | |
155 } | |
156 | |
157 | |
158 | |
159 template< class System , class StateIn , class DerivIn , class StateOut , class DerivOut , class Err > | |
160 void do_step_impl( System system , const StateIn &in , const DerivIn &dxdt_in , time_type t , | |
161 StateOut &out , DerivOut &dxdt_out , time_type dt , Err &xerr ) | |
162 { | |
163 const value_type c1 = static_cast<value_type> ( 35 ) / static_cast<value_type>( 384 ); | |
164 const value_type c3 = static_cast<value_type> ( 500 ) / static_cast<value_type>( 1113 ); | |
165 const value_type c4 = static_cast<value_type> ( 125 ) / static_cast<value_type>( 192 ); | |
166 const value_type c5 = static_cast<value_type> ( -2187 ) / static_cast<value_type>( 6784 ); | |
167 const value_type c6 = static_cast<value_type> ( 11 ) / static_cast<value_type>( 84 ); | |
168 | |
169 const value_type dc1 = c1 - static_cast<value_type> ( 5179 ) / static_cast<value_type>( 57600 ); | |
170 const value_type dc3 = c3 - static_cast<value_type> ( 7571 ) / static_cast<value_type>( 16695 ); | |
171 const value_type dc4 = c4 - static_cast<value_type> ( 393 ) / static_cast<value_type>( 640 ); | |
172 const value_type dc5 = c5 - static_cast<value_type> ( -92097 ) / static_cast<value_type>( 339200 ); | |
173 const value_type dc6 = c6 - static_cast<value_type> ( 187 ) / static_cast<value_type>( 2100 ); | |
174 const value_type dc7 = static_cast<value_type>( -1 ) / static_cast<value_type> ( 40 ); | |
175 | |
176 /* ToDo: copy only if &dxdt_in == &dxdt_out ? */ | |
177 if( same_instance( dxdt_in , dxdt_out ) ) | |
178 { | |
179 m_dxdt_tmp_resizer.adjust_size( in , detail::bind( &stepper_type::template resize_dxdt_tmp_impl<StateIn> , detail::ref( *this ) , detail::_1 ) ); | |
180 boost::numeric::odeint::copy( dxdt_in , m_dxdt_tmp.m_v ); | |
181 do_step_impl( system , in , dxdt_in , t , out , dxdt_out , dt ); | |
182 //error estimate | |
183 stepper_base_type::m_algebra.for_each7( xerr , m_dxdt_tmp.m_v , m_k3.m_v , m_k4.m_v , m_k5.m_v , m_k6.m_v , dxdt_out , | |
184 typename operations_type::template scale_sum6< time_type , time_type , time_type , time_type , time_type , time_type >( dt*dc1 , dt*dc3 , dt*dc4 , dt*dc5 , dt*dc6 , dt*dc7 ) ); | |
185 | |
186 } | |
187 else | |
188 { | |
189 do_step_impl( system , in , dxdt_in , t , out , dxdt_out , dt ); | |
190 //error estimate | |
191 stepper_base_type::m_algebra.for_each7( xerr , dxdt_in , m_k3.m_v , m_k4.m_v , m_k5.m_v , m_k6.m_v , dxdt_out , | |
192 typename operations_type::template scale_sum6< time_type , time_type , time_type , time_type , time_type , time_type >( dt*dc1 , dt*dc3 , dt*dc4 , dt*dc5 , dt*dc6 , dt*dc7 ) ); | |
193 | |
194 } | |
195 | |
196 } | |
197 | |
198 | |
199 /* | |
200 * Calculates Dense-Output for Dopri5 | |
201 * | |
202 * See Hairer, Norsett, Wanner: Solving Ordinary Differential Equations, Nonstiff Problems. I, p.191/192 | |
203 * | |
204 * y(t+theta) = y(t) + h * sum_i^7 b_i(theta) * k_i | |
205 * | |
206 * A = theta^2 * ( 3 - 2 theta ) | |
207 * B = theta^2 * ( theta - 1 ) | |
208 * C = theta^2 * ( theta - 1 )^2 | |
209 * D = theta * ( theta - 1 )^2 | |
210 * | |
211 * b_1( theta ) = A * b_1 - C * X1( theta ) + D | |
212 * b_2( theta ) = 0 | |
213 * b_3( theta ) = A * b_3 + C * X3( theta ) | |
214 * b_4( theta ) = A * b_4 - C * X4( theta ) | |
215 * b_5( theta ) = A * b_5 + C * X5( theta ) | |
216 * b_6( theta ) = A * b_6 - C * X6( theta ) | |
217 * b_7( theta ) = B + C * X7( theta ) | |
218 * | |
219 * An alternative Method is described in: | |
220 * | |
221 * www-m2.ma.tum.de/homepages/simeon/numerik3/kap3.ps | |
222 */ | |
223 template< class StateOut , class StateIn1 , class DerivIn1 , class StateIn2 , class DerivIn2 > | |
224 void calc_state( time_type t , StateOut &x , | |
225 const StateIn1 &x_old , const DerivIn1 &deriv_old , time_type t_old , | |
226 const StateIn2 & /* x_new */ , const DerivIn2 &deriv_new , time_type t_new ) const | |
227 { | |
228 const value_type b1 = static_cast<value_type> ( 35 ) / static_cast<value_type>( 384 ); | |
229 const value_type b3 = static_cast<value_type> ( 500 ) / static_cast<value_type>( 1113 ); | |
230 const value_type b4 = static_cast<value_type> ( 125 ) / static_cast<value_type>( 192 ); | |
231 const value_type b5 = static_cast<value_type> ( -2187 ) / static_cast<value_type>( 6784 ); | |
232 const value_type b6 = static_cast<value_type> ( 11 ) / static_cast<value_type>( 84 ); | |
233 | |
234 const time_type dt = ( t_new - t_old ); | |
235 const value_type theta = ( t - t_old ) / dt; | |
236 const value_type X1 = static_cast< value_type >( 5 ) * ( static_cast< value_type >( 2558722523LL ) - static_cast< value_type >( 31403016 ) * theta ) / static_cast< value_type >( 11282082432LL ); | |
237 const value_type X3 = static_cast< value_type >( 100 ) * ( static_cast< value_type >( 882725551 ) - static_cast< value_type >( 15701508 ) * theta ) / static_cast< value_type >( 32700410799LL ); | |
238 const value_type X4 = static_cast< value_type >( 25 ) * ( static_cast< value_type >( 443332067 ) - static_cast< value_type >( 31403016 ) * theta ) / static_cast< value_type >( 1880347072LL ) ; | |
239 const value_type X5 = static_cast< value_type >( 32805 ) * ( static_cast< value_type >( 23143187 ) - static_cast< value_type >( 3489224 ) * theta ) / static_cast< value_type >( 199316789632LL ); | |
240 const value_type X6 = static_cast< value_type >( 55 ) * ( static_cast< value_type >( 29972135 ) - static_cast< value_type >( 7076736 ) * theta ) / static_cast< value_type >( 822651844 ); | |
241 const value_type X7 = static_cast< value_type >( 10 ) * ( static_cast< value_type >( 7414447 ) - static_cast< value_type >( 829305 ) * theta ) / static_cast< value_type >( 29380423 ); | |
242 | |
243 const value_type theta_m_1 = theta - static_cast< value_type >( 1 ); | |
244 const value_type theta_sq = theta * theta; | |
245 const value_type A = theta_sq * ( static_cast< value_type >( 3 ) - static_cast< value_type >( 2 ) * theta ); | |
246 const value_type B = theta_sq * theta_m_1; | |
247 const value_type C = theta_sq * theta_m_1 * theta_m_1; | |
248 const value_type D = theta * theta_m_1 * theta_m_1; | |
249 | |
250 const value_type b1_theta = A * b1 - C * X1 + D; | |
251 const value_type b3_theta = A * b3 + C * X3; | |
252 const value_type b4_theta = A * b4 - C * X4; | |
253 const value_type b5_theta = A * b5 + C * X5; | |
254 const value_type b6_theta = A * b6 - C * X6; | |
255 const value_type b7_theta = B + C * X7; | |
256 | |
257 // const state_type &k1 = *m_old_deriv; | |
258 // const state_type &k3 = dopri5().m_k3; | |
259 // const state_type &k4 = dopri5().m_k4; | |
260 // const state_type &k5 = dopri5().m_k5; | |
261 // const state_type &k6 = dopri5().m_k6; | |
262 // const state_type &k7 = *m_current_deriv; | |
263 | |
264 stepper_base_type::m_algebra.for_each8( x , x_old , deriv_old , m_k3.m_v , m_k4.m_v , m_k5.m_v , m_k6.m_v , deriv_new , | |
265 typename operations_type::template scale_sum7< value_type , time_type , time_type , time_type , time_type , time_type , time_type >( 1.0 , dt * b1_theta , dt * b3_theta , dt * b4_theta , dt * b5_theta , dt * b6_theta , dt * b7_theta ) ); | |
266 } | |
267 | |
268 | |
269 template< class StateIn > | |
270 void adjust_size( const StateIn &x ) | |
271 { | |
272 resize_k_x_tmp_impl( x ); | |
273 resize_dxdt_tmp_impl( x ); | |
274 stepper_base_type::adjust_size( x ); | |
275 } | |
276 | |
277 | |
278 private: | |
279 | |
280 template< class StateIn > | |
281 bool resize_k_x_tmp_impl( const StateIn &x ) | |
282 { | |
283 bool resized = false; | |
284 resized |= adjust_size_by_resizeability( m_x_tmp , x , typename is_resizeable<state_type>::type() ); | |
285 resized |= adjust_size_by_resizeability( m_k2 , x , typename is_resizeable<deriv_type>::type() ); | |
286 resized |= adjust_size_by_resizeability( m_k3 , x , typename is_resizeable<deriv_type>::type() ); | |
287 resized |= adjust_size_by_resizeability( m_k4 , x , typename is_resizeable<deriv_type>::type() ); | |
288 resized |= adjust_size_by_resizeability( m_k5 , x , typename is_resizeable<deriv_type>::type() ); | |
289 resized |= adjust_size_by_resizeability( m_k6 , x , typename is_resizeable<deriv_type>::type() ); | |
290 return resized; | |
291 } | |
292 | |
293 template< class StateIn > | |
294 bool resize_dxdt_tmp_impl( const StateIn &x ) | |
295 { | |
296 return adjust_size_by_resizeability( m_dxdt_tmp , x , typename is_resizeable<deriv_type>::type() ); | |
297 } | |
298 | |
299 | |
300 | |
301 wrapped_state_type m_x_tmp; | |
302 wrapped_deriv_type m_k2 , m_k3 , m_k4 , m_k5 , m_k6 ; | |
303 wrapped_deriv_type m_dxdt_tmp; | |
304 resizer_type m_k_x_tmp_resizer; | |
305 resizer_type m_dxdt_tmp_resizer; | |
306 }; | |
307 | |
308 | |
309 | |
310 /************* DOXYGEN ************/ | |
311 /** | |
312 * \class runge_kutta_dopri5 | |
313 * \brief The Runge-Kutta Dormand-Prince 5 method. | |
314 * | |
315 * The Runge-Kutta Dormand-Prince 5 method is a very popular method for solving ODEs, see | |
316 * <a href=""></a>. | |
317 * The method is explicit and fulfills the Error Stepper concept. Step size control | |
318 * is provided but continuous output is available which make this method favourable for many applications. | |
319 * | |
320 * This class derives from explicit_error_stepper_fsal_base and inherits its interface via CRTP (current recurring | |
321 * template pattern). The method possesses the FSAL (first-same-as-last) property. See | |
322 * explicit_error_stepper_fsal_base for more details. | |
323 * | |
324 * \tparam State The state type. | |
325 * \tparam Value The value type. | |
326 * \tparam Deriv The type representing the time derivative of the state. | |
327 * \tparam Time The time representing the independent variable - the time. | |
328 * \tparam Algebra The algebra type. | |
329 * \tparam Operations The operations type. | |
330 * \tparam Resizer The resizer policy type. | |
331 */ | |
332 | |
333 | |
334 /** | |
335 * \fn runge_kutta_dopri5::runge_kutta_dopri5( const algebra_type &algebra ) | |
336 * \brief Constructs the runge_kutta_dopri5 class. This constructor can be used as a default | |
337 * constructor if the algebra has a default constructor. | |
338 * \param algebra A copy of algebra is made and stored inside explicit_stepper_base. | |
339 */ | |
340 | |
341 /** | |
342 * \fn runge_kutta_dopri5::do_step_impl( System system , const StateIn &in , const DerivIn &dxdt_in , time_type t , StateOut &out , DerivOut &dxdt_out , time_type dt ) | |
343 * \brief This method performs one step. The derivative `dxdt_in` of `in` at the time `t` is passed to the | |
344 * method. The result is updated out-of-place, hence the input is in `in` and the output in `out`. Furthermore, | |
345 * the derivative is update out-of-place, hence the input is assumed to be in `dxdt_in` and the output in | |
346 * `dxdt_out`. | |
347 * Access to this step functionality is provided by explicit_error_stepper_fsal_base and | |
348 * `do_step_impl` should not be called directly. | |
349 * | |
350 * \param system The system function to solve, hence the r.h.s. of the ODE. It must fulfill the | |
351 * Simple System concept. | |
352 * \param in The state of the ODE which should be solved. in is not modified in this method | |
353 * \param dxdt_in The derivative of x at t. dxdt_in is not modified by this method | |
354 * \param t The value of the time, at which the step should be performed. | |
355 * \param out The result of the step is written in out. | |
356 * \param dxdt_out The result of the new derivative at time t+dt. | |
357 * \param dt The step size. | |
358 */ | |
359 | |
360 /** | |
361 * \fn runge_kutta_dopri5::do_step_impl( System system , const StateIn &in , const DerivIn &dxdt_in , time_type t , StateOut &out , DerivOut &dxdt_out , time_type dt , Err &xerr ) | |
362 * \brief This method performs one step. The derivative `dxdt_in` of `in` at the time `t` is passed to the | |
363 * method. The result is updated out-of-place, hence the input is in `in` and the output in `out`. Furthermore, | |
364 * the derivative is update out-of-place, hence the input is assumed to be in `dxdt_in` and the output in | |
365 * `dxdt_out`. | |
366 * Access to this step functionality is provided by explicit_error_stepper_fsal_base and | |
367 * `do_step_impl` should not be called directly. | |
368 * An estimation of the error is calculated. | |
369 * | |
370 * \param system The system function to solve, hence the r.h.s. of the ODE. It must fulfill the | |
371 * Simple System concept. | |
372 * \param in The state of the ODE which should be solved. in is not modified in this method | |
373 * \param dxdt_in The derivative of x at t. dxdt_in is not modified by this method | |
374 * \param t The value of the time, at which the step should be performed. | |
375 * \param out The result of the step is written in out. | |
376 * \param dxdt_out The result of the new derivative at time t+dt. | |
377 * \param dt The step size. | |
378 * \param xerr An estimation of the error. | |
379 */ | |
380 | |
381 /** | |
382 * \fn runge_kutta_dopri5::calc_state( time_type t , StateOut &x , const StateIn1 &x_old , const DerivIn1 &deriv_old , time_type t_old , const StateIn2 & , const DerivIn2 &deriv_new , time_type t_new ) const | |
383 * \brief This method is used for continuous output and it calculates the state `x` at a time `t` from the | |
384 * knowledge of two states `old_state` and `current_state` at time points `t_old` and `t_new`. It also uses | |
385 * internal variables to calculate the result. Hence this method must be called after two successful `do_step` | |
386 * calls. | |
387 */ | |
388 | |
389 /** | |
390 * \fn runge_kutta_dopri5::adjust_size( const StateIn &x ) | |
391 * \brief Adjust the size of all temporaries in the stepper manually. | |
392 * \param x A state from which the size of the temporaries to be resized is deduced. | |
393 */ | |
394 | |
395 } // odeint | |
396 } // numeric | |
397 } // boost | |
398 | |
399 | |
400 #endif // BOOST_NUMERIC_ODEINT_STEPPER_RUNGE_KUTTA_DOPRI5_HPP_INCLUDED |