comparison DEPENDENCIES/generic/include/boost/math/special_functions/sinhc.hpp @ 16:2665513ce2d3

Add boost headers
author Chris Cannam
date Tue, 05 Aug 2014 11:11:38 +0100
parents
children c530137014c0
comparison
equal deleted inserted replaced
15:663ca0da4350 16:2665513ce2d3
1 // boost sinhc.hpp header file
2
3 // (C) Copyright Hubert Holin 2001.
4 // Distributed under the Boost Software License, Version 1.0. (See
5 // accompanying file LICENSE_1_0.txt or copy at
6 // http://www.boost.org/LICENSE_1_0.txt)
7
8 // See http://www.boost.org for updates, documentation, and revision history.
9
10 #ifndef BOOST_SINHC_HPP
11 #define BOOST_SINHC_HPP
12
13
14 #ifdef _MSC_VER
15 #pragma once
16 #endif
17
18 #include <boost/math/tools/config.hpp>
19 #include <boost/math/tools/precision.hpp>
20 #include <boost/math/special_functions/math_fwd.hpp>
21 #include <boost/config/no_tr1/cmath.hpp>
22 #include <boost/limits.hpp>
23 #include <string>
24 #include <stdexcept>
25
26 #include <boost/config.hpp>
27
28
29 // These are the the "Hyperbolic Sinus Cardinal" functions.
30
31 namespace boost
32 {
33 namespace math
34 {
35 namespace detail
36 {
37 #if defined(__GNUC__) && (__GNUC__ < 3)
38 // gcc 2.x ignores function scope using declarations,
39 // put them in the scope of the enclosing namespace instead:
40
41 using ::std::abs;
42 using ::std::sqrt;
43 using ::std::sinh;
44
45 using ::std::numeric_limits;
46 #endif /* defined(__GNUC__) && (__GNUC__ < 3) */
47
48 // This is the "Hyperbolic Sinus Cardinal" of index Pi.
49
50 template<typename T>
51 inline T sinhc_pi_imp(const T x)
52 {
53 #if defined(BOOST_NO_STDC_NAMESPACE) && !defined(__SUNPRO_CC)
54 using ::abs;
55 using ::sinh;
56 using ::sqrt;
57 #else /* BOOST_NO_STDC_NAMESPACE */
58 using ::std::abs;
59 using ::std::sinh;
60 using ::std::sqrt;
61 #endif /* BOOST_NO_STDC_NAMESPACE */
62
63 static T const taylor_0_bound = tools::epsilon<T>();
64 static T const taylor_2_bound = sqrt(taylor_0_bound);
65 static T const taylor_n_bound = sqrt(taylor_2_bound);
66
67 if (abs(x) >= taylor_n_bound)
68 {
69 return(sinh(x)/x);
70 }
71 else
72 {
73 // approximation by taylor series in x at 0 up to order 0
74 T result = static_cast<T>(1);
75
76 if (abs(x) >= taylor_0_bound)
77 {
78 T x2 = x*x;
79
80 // approximation by taylor series in x at 0 up to order 2
81 result += x2/static_cast<T>(6);
82
83 if (abs(x) >= taylor_2_bound)
84 {
85 // approximation by taylor series in x at 0 up to order 4
86 result += (x2*x2)/static_cast<T>(120);
87 }
88 }
89
90 return(result);
91 }
92 }
93
94 } // namespace detail
95
96 template <class T>
97 inline typename tools::promote_args<T>::type sinhc_pi(T x)
98 {
99 typedef typename tools::promote_args<T>::type result_type;
100 return detail::sinhc_pi_imp(static_cast<result_type>(x));
101 }
102
103 template <class T, class Policy>
104 inline typename tools::promote_args<T>::type sinhc_pi(T x, const Policy&)
105 {
106 return boost::math::sinhc_pi(x);
107 }
108
109 #ifdef BOOST_NO_TEMPLATE_TEMPLATES
110 #else /* BOOST_NO_TEMPLATE_TEMPLATES */
111 template<typename T, template<typename> class U>
112 inline U<T> sinhc_pi(const U<T> x)
113 {
114 #if defined(BOOST_FUNCTION_SCOPE_USING_DECLARATION_BREAKS_ADL) || defined(__GNUC__)
115 using namespace std;
116 #elif defined(BOOST_NO_STDC_NAMESPACE) && !defined(__SUNPRO_CC)
117 using ::abs;
118 using ::sinh;
119 using ::sqrt;
120 #else /* BOOST_NO_STDC_NAMESPACE */
121 using ::std::abs;
122 using ::std::sinh;
123 using ::std::sqrt;
124 #endif /* BOOST_NO_STDC_NAMESPACE */
125
126 using ::std::numeric_limits;
127
128 static T const taylor_0_bound = tools::epsilon<T>();
129 static T const taylor_2_bound = sqrt(taylor_0_bound);
130 static T const taylor_n_bound = sqrt(taylor_2_bound);
131
132 if (abs(x) >= taylor_n_bound)
133 {
134 return(sinh(x)/x);
135 }
136 else
137 {
138 // approximation by taylor series in x at 0 up to order 0
139 #ifdef __MWERKS__
140 U<T> result = static_cast<U<T> >(1);
141 #else
142 U<T> result = U<T>(1);
143 #endif
144
145 if (abs(x) >= taylor_0_bound)
146 {
147 U<T> x2 = x*x;
148
149 // approximation by taylor series in x at 0 up to order 2
150 result += x2/static_cast<T>(6);
151
152 if (abs(x) >= taylor_2_bound)
153 {
154 // approximation by taylor series in x at 0 up to order 4
155 result += (x2*x2)/static_cast<T>(120);
156 }
157 }
158
159 return(result);
160 }
161 }
162 #endif /* BOOST_NO_TEMPLATE_TEMPLATES */
163 }
164 }
165
166 #endif /* BOOST_SINHC_HPP */
167