comparison DEPENDENCIES/generic/include/boost/math/distributions/chi_squared.hpp @ 16:2665513ce2d3

Add boost headers
author Chris Cannam
date Tue, 05 Aug 2014 11:11:38 +0100
parents
children c530137014c0
comparison
equal deleted inserted replaced
15:663ca0da4350 16:2665513ce2d3
1 // Copyright John Maddock 2006, 2007.
2 // Copyright Paul A. Bristow 2008, 2010.
3
4 // Use, modification and distribution are subject to the
5 // Boost Software License, Version 1.0.
6 // (See accompanying file LICENSE_1_0.txt
7 // or copy at http://www.boost.org/LICENSE_1_0.txt)
8
9 #ifndef BOOST_MATH_DISTRIBUTIONS_CHI_SQUARED_HPP
10 #define BOOST_MATH_DISTRIBUTIONS_CHI_SQUARED_HPP
11
12 #include <boost/math/distributions/fwd.hpp>
13 #include <boost/math/special_functions/gamma.hpp> // for incomplete beta.
14 #include <boost/math/distributions/complement.hpp> // complements
15 #include <boost/math/distributions/detail/common_error_handling.hpp> // error checks
16 #include <boost/math/special_functions/fpclassify.hpp>
17
18 #include <utility>
19
20 namespace boost{ namespace math{
21
22 template <class RealType = double, class Policy = policies::policy<> >
23 class chi_squared_distribution
24 {
25 public:
26 typedef RealType value_type;
27 typedef Policy policy_type;
28
29 chi_squared_distribution(RealType i) : m_df(i)
30 {
31 RealType result;
32 detail::check_df(
33 "boost::math::chi_squared_distribution<%1%>::chi_squared_distribution", m_df, &result, Policy());
34 } // chi_squared_distribution
35
36 RealType degrees_of_freedom()const
37 {
38 return m_df;
39 }
40
41 // Parameter estimation:
42 static RealType find_degrees_of_freedom(
43 RealType difference_from_variance,
44 RealType alpha,
45 RealType beta,
46 RealType variance,
47 RealType hint = 100);
48
49 private:
50 //
51 // Data member:
52 //
53 RealType m_df; // degrees of freedom is a positive real number.
54 }; // class chi_squared_distribution
55
56 typedef chi_squared_distribution<double> chi_squared;
57
58 template <class RealType, class Policy>
59 inline const std::pair<RealType, RealType> range(const chi_squared_distribution<RealType, Policy>& /*dist*/)
60 { // Range of permissible values for random variable x.
61 if (std::numeric_limits<RealType>::has_infinity)
62 {
63 return std::pair<RealType, RealType>(static_cast<RealType>(0), std::numeric_limits<RealType>::infinity()); // 0 to + infinity.
64 }
65 else
66 {
67 using boost::math::tools::max_value;
68 return std::pair<RealType, RealType>(static_cast<RealType>(0), max_value<RealType>()); // 0 to + max.
69 }
70 }
71
72 template <class RealType, class Policy>
73 inline const std::pair<RealType, RealType> support(const chi_squared_distribution<RealType, Policy>& /*dist*/)
74 { // Range of supported values for random variable x.
75 // This is range where cdf rises from 0 to 1, and outside it, the pdf is zero.
76 return std::pair<RealType, RealType>(static_cast<RealType>(0), tools::max_value<RealType>()); // 0 to + infinity.
77 }
78
79 template <class RealType, class Policy>
80 RealType pdf(const chi_squared_distribution<RealType, Policy>& dist, const RealType& chi_square)
81 {
82 BOOST_MATH_STD_USING // for ADL of std functions
83 RealType degrees_of_freedom = dist.degrees_of_freedom();
84 // Error check:
85 RealType error_result;
86
87 static const char* function = "boost::math::pdf(const chi_squared_distribution<%1%>&, %1%)";
88
89 if(false == detail::check_df(
90 function, degrees_of_freedom, &error_result, Policy()))
91 return error_result;
92
93 if((chi_square < 0) || !(boost::math::isfinite)(chi_square))
94 {
95 return policies::raise_domain_error<RealType>(
96 function, "Chi Square parameter was %1%, but must be > 0 !", chi_square, Policy());
97 }
98
99 if(chi_square == 0)
100 {
101 // Handle special cases:
102 if(degrees_of_freedom < 2)
103 {
104 return policies::raise_overflow_error<RealType>(
105 function, 0, Policy());
106 }
107 else if(degrees_of_freedom == 2)
108 {
109 return 0.5f;
110 }
111 else
112 {
113 return 0;
114 }
115 }
116
117 return gamma_p_derivative(degrees_of_freedom / 2, chi_square / 2, Policy()) / 2;
118 } // pdf
119
120 template <class RealType, class Policy>
121 inline RealType cdf(const chi_squared_distribution<RealType, Policy>& dist, const RealType& chi_square)
122 {
123 RealType degrees_of_freedom = dist.degrees_of_freedom();
124 // Error check:
125 RealType error_result;
126 static const char* function = "boost::math::cdf(const chi_squared_distribution<%1%>&, %1%)";
127
128 if(false == detail::check_df(
129 function, degrees_of_freedom, &error_result, Policy()))
130 return error_result;
131
132 if((chi_square < 0) || !(boost::math::isfinite)(chi_square))
133 {
134 return policies::raise_domain_error<RealType>(
135 function, "Chi Square parameter was %1%, but must be > 0 !", chi_square, Policy());
136 }
137
138 return boost::math::gamma_p(degrees_of_freedom / 2, chi_square / 2, Policy());
139 } // cdf
140
141 template <class RealType, class Policy>
142 inline RealType quantile(const chi_squared_distribution<RealType, Policy>& dist, const RealType& p)
143 {
144 RealType degrees_of_freedom = dist.degrees_of_freedom();
145 static const char* function = "boost::math::quantile(const chi_squared_distribution<%1%>&, %1%)";
146 // Error check:
147 RealType error_result;
148 if(false ==
149 (
150 detail::check_df(function, degrees_of_freedom, &error_result, Policy())
151 && detail::check_probability(function, p, &error_result, Policy()))
152 )
153 return error_result;
154
155 return 2 * boost::math::gamma_p_inv(degrees_of_freedom / 2, p, Policy());
156 } // quantile
157
158 template <class RealType, class Policy>
159 inline RealType cdf(const complemented2_type<chi_squared_distribution<RealType, Policy>, RealType>& c)
160 {
161 RealType const& degrees_of_freedom = c.dist.degrees_of_freedom();
162 RealType const& chi_square = c.param;
163 static const char* function = "boost::math::cdf(const chi_squared_distribution<%1%>&, %1%)";
164 // Error check:
165 RealType error_result;
166 if(false == detail::check_df(
167 function, degrees_of_freedom, &error_result, Policy()))
168 return error_result;
169
170 if((chi_square < 0) || !(boost::math::isfinite)(chi_square))
171 {
172 return policies::raise_domain_error<RealType>(
173 function, "Chi Square parameter was %1%, but must be > 0 !", chi_square, Policy());
174 }
175
176 return boost::math::gamma_q(degrees_of_freedom / 2, chi_square / 2, Policy());
177 }
178
179 template <class RealType, class Policy>
180 inline RealType quantile(const complemented2_type<chi_squared_distribution<RealType, Policy>, RealType>& c)
181 {
182 RealType const& degrees_of_freedom = c.dist.degrees_of_freedom();
183 RealType const& q = c.param;
184 static const char* function = "boost::math::quantile(const chi_squared_distribution<%1%>&, %1%)";
185 // Error check:
186 RealType error_result;
187 if(false == (
188 detail::check_df(function, degrees_of_freedom, &error_result, Policy())
189 && detail::check_probability(function, q, &error_result, Policy()))
190 )
191 return error_result;
192
193 return 2 * boost::math::gamma_q_inv(degrees_of_freedom / 2, q, Policy());
194 }
195
196 template <class RealType, class Policy>
197 inline RealType mean(const chi_squared_distribution<RealType, Policy>& dist)
198 { // Mean of Chi-Squared distribution = v.
199 return dist.degrees_of_freedom();
200 } // mean
201
202 template <class RealType, class Policy>
203 inline RealType variance(const chi_squared_distribution<RealType, Policy>& dist)
204 { // Variance of Chi-Squared distribution = 2v.
205 return 2 * dist.degrees_of_freedom();
206 } // variance
207
208 template <class RealType, class Policy>
209 inline RealType mode(const chi_squared_distribution<RealType, Policy>& dist)
210 {
211 RealType df = dist.degrees_of_freedom();
212 static const char* function = "boost::math::mode(const chi_squared_distribution<%1%>&)";
213 // Most sources only define mode for df >= 2,
214 // but for 0 <= df <= 2, the pdf maximum actually occurs at random variate = 0;
215 // So one could extend the definition of mode thus:
216 //if(df < 0)
217 //{
218 // return policies::raise_domain_error<RealType>(
219 // function,
220 // "Chi-Squared distribution only has a mode for degrees of freedom >= 0, but got degrees of freedom = %1%.",
221 // df, Policy());
222 //}
223 //return (df <= 2) ? 0 : df - 2;
224
225 if(df < 2)
226 return policies::raise_domain_error<RealType>(
227 function,
228 "Chi-Squared distribution only has a mode for degrees of freedom >= 2, but got degrees of freedom = %1%.",
229 df, Policy());
230 return df - 2;
231 }
232
233 //template <class RealType, class Policy>
234 //inline RealType median(const chi_squared_distribution<RealType, Policy>& dist)
235 //{ // Median is given by Quantile[dist, 1/2]
236 // RealType df = dist.degrees_of_freedom();
237 // if(df <= 1)
238 // return tools::domain_error<RealType>(
239 // BOOST_CURRENT_FUNCTION,
240 // "The Chi-Squared distribution only has a mode for degrees of freedom >= 2, but got degrees of freedom = %1%.",
241 // df);
242 // return df - RealType(2)/3;
243 //}
244 // Now implemented via quantile(half) in derived accessors.
245
246 template <class RealType, class Policy>
247 inline RealType skewness(const chi_squared_distribution<RealType, Policy>& dist)
248 {
249 BOOST_MATH_STD_USING // For ADL
250 RealType df = dist.degrees_of_freedom();
251 return sqrt (8 / df); // == 2 * sqrt(2 / df);
252 }
253
254 template <class RealType, class Policy>
255 inline RealType kurtosis(const chi_squared_distribution<RealType, Policy>& dist)
256 {
257 RealType df = dist.degrees_of_freedom();
258 return 3 + 12 / df;
259 }
260
261 template <class RealType, class Policy>
262 inline RealType kurtosis_excess(const chi_squared_distribution<RealType, Policy>& dist)
263 {
264 RealType df = dist.degrees_of_freedom();
265 return 12 / df;
266 }
267
268 //
269 // Parameter estimation comes last:
270 //
271 namespace detail
272 {
273
274 template <class RealType, class Policy>
275 struct df_estimator
276 {
277 df_estimator(RealType a, RealType b, RealType variance, RealType delta)
278 : alpha(a), beta(b), ratio(delta/variance)
279 { // Constructor
280 }
281
282 RealType operator()(const RealType& df)
283 {
284 if(df <= tools::min_value<RealType>())
285 return 1;
286 chi_squared_distribution<RealType, Policy> cs(df);
287
288 RealType result;
289 if(ratio > 0)
290 {
291 RealType r = 1 + ratio;
292 result = cdf(cs, quantile(complement(cs, alpha)) / r) - beta;
293 }
294 else
295 { // ratio <= 0
296 RealType r = 1 + ratio;
297 result = cdf(complement(cs, quantile(cs, alpha) / r)) - beta;
298 }
299 return result;
300 }
301 private:
302 RealType alpha;
303 RealType beta;
304 RealType ratio; // Difference from variance / variance, so fractional.
305 };
306
307 } // namespace detail
308
309 template <class RealType, class Policy>
310 RealType chi_squared_distribution<RealType, Policy>::find_degrees_of_freedom(
311 RealType difference_from_variance,
312 RealType alpha,
313 RealType beta,
314 RealType variance,
315 RealType hint)
316 {
317 static const char* function = "boost::math::chi_squared_distribution<%1%>::find_degrees_of_freedom(%1%,%1%,%1%,%1%,%1%)";
318 // Check for domain errors:
319 RealType error_result;
320 if(false ==
321 detail::check_probability(function, alpha, &error_result, Policy())
322 && detail::check_probability(function, beta, &error_result, Policy()))
323 { // Either probability is outside 0 to 1.
324 return error_result;
325 }
326
327 if(hint <= 0)
328 { // No hint given, so guess df = 1.
329 hint = 1;
330 }
331
332 detail::df_estimator<RealType, Policy> f(alpha, beta, variance, difference_from_variance);
333 tools::eps_tolerance<RealType> tol(policies::digits<RealType, Policy>());
334 boost::uintmax_t max_iter = policies::get_max_root_iterations<Policy>();
335 std::pair<RealType, RealType> r =
336 tools::bracket_and_solve_root(f, hint, RealType(2), false, tol, max_iter, Policy());
337 RealType result = r.first + (r.second - r.first) / 2;
338 if(max_iter >= policies::get_max_root_iterations<Policy>())
339 {
340 policies::raise_evaluation_error<RealType>(function, "Unable to locate solution in a reasonable time:"
341 " either there is no answer to how many degrees of freedom are required"
342 " or the answer is infinite. Current best guess is %1%", result, Policy());
343 }
344 return result;
345 }
346
347 } // namespace math
348 } // namespace boost
349
350 // This include must be at the end, *after* the accessors
351 // for this distribution have been defined, in order to
352 // keep compilers that support two-phase lookup happy.
353 #include <boost/math/distributions/detail/derived_accessors.hpp>
354
355 #endif // BOOST_MATH_DISTRIBUTIONS_CHI_SQUARED_HPP