Mercurial > hg > vamp-build-and-test
comparison DEPENDENCIES/generic/include/boost/math/bindings/rr.hpp @ 16:2665513ce2d3
Add boost headers
author | Chris Cannam |
---|---|
date | Tue, 05 Aug 2014 11:11:38 +0100 |
parents | |
children |
comparison
equal
deleted
inserted
replaced
15:663ca0da4350 | 16:2665513ce2d3 |
---|---|
1 // Copyright John Maddock 2007. | |
2 // Use, modification and distribution are subject to the | |
3 // Boost Software License, Version 1.0. (See accompanying file | |
4 // LICENSE_1_0.txt or copy at http://www.boost.org/LICENSE_1_0.txt) | |
5 | |
6 #ifndef BOOST_MATH_NTL_RR_HPP | |
7 #define BOOST_MATH_NTL_RR_HPP | |
8 | |
9 #include <boost/config.hpp> | |
10 #include <boost/limits.hpp> | |
11 #include <boost/math/tools/real_cast.hpp> | |
12 #include <boost/math/tools/precision.hpp> | |
13 #include <boost/math/constants/constants.hpp> | |
14 #include <boost/math/tools/roots.hpp> | |
15 #include <boost/math/special_functions/fpclassify.hpp> | |
16 #include <boost/math/bindings/detail/big_digamma.hpp> | |
17 #include <boost/math/bindings/detail/big_lanczos.hpp> | |
18 | |
19 #include <ostream> | |
20 #include <istream> | |
21 #include <boost/config/no_tr1/cmath.hpp> | |
22 #include <NTL/RR.h> | |
23 | |
24 namespace boost{ namespace math{ | |
25 | |
26 namespace ntl | |
27 { | |
28 | |
29 class RR; | |
30 | |
31 RR ldexp(RR r, int exp); | |
32 RR frexp(RR r, int* exp); | |
33 | |
34 class RR | |
35 { | |
36 public: | |
37 // Constructors: | |
38 RR() {} | |
39 RR(const ::NTL::RR& c) : m_value(c){} | |
40 RR(char c) | |
41 { | |
42 m_value = c; | |
43 } | |
44 #ifndef BOOST_NO_INTRINSIC_WCHAR_T | |
45 RR(wchar_t c) | |
46 { | |
47 m_value = c; | |
48 } | |
49 #endif | |
50 RR(unsigned char c) | |
51 { | |
52 m_value = c; | |
53 } | |
54 RR(signed char c) | |
55 { | |
56 m_value = c; | |
57 } | |
58 RR(unsigned short c) | |
59 { | |
60 m_value = c; | |
61 } | |
62 RR(short c) | |
63 { | |
64 m_value = c; | |
65 } | |
66 RR(unsigned int c) | |
67 { | |
68 assign_large_int(c); | |
69 } | |
70 RR(int c) | |
71 { | |
72 assign_large_int(c); | |
73 } | |
74 RR(unsigned long c) | |
75 { | |
76 assign_large_int(c); | |
77 } | |
78 RR(long c) | |
79 { | |
80 assign_large_int(c); | |
81 } | |
82 #ifdef BOOST_HAS_LONG_LONG | |
83 RR(boost::ulong_long_type c) | |
84 { | |
85 assign_large_int(c); | |
86 } | |
87 RR(boost::long_long_type c) | |
88 { | |
89 assign_large_int(c); | |
90 } | |
91 #endif | |
92 RR(float c) | |
93 { | |
94 m_value = c; | |
95 } | |
96 RR(double c) | |
97 { | |
98 m_value = c; | |
99 } | |
100 RR(long double c) | |
101 { | |
102 assign_large_real(c); | |
103 } | |
104 | |
105 // Assignment: | |
106 RR& operator=(char c) { m_value = c; return *this; } | |
107 RR& operator=(unsigned char c) { m_value = c; return *this; } | |
108 RR& operator=(signed char c) { m_value = c; return *this; } | |
109 #ifndef BOOST_NO_INTRINSIC_WCHAR_T | |
110 RR& operator=(wchar_t c) { m_value = c; return *this; } | |
111 #endif | |
112 RR& operator=(short c) { m_value = c; return *this; } | |
113 RR& operator=(unsigned short c) { m_value = c; return *this; } | |
114 RR& operator=(int c) { assign_large_int(c); return *this; } | |
115 RR& operator=(unsigned int c) { assign_large_int(c); return *this; } | |
116 RR& operator=(long c) { assign_large_int(c); return *this; } | |
117 RR& operator=(unsigned long c) { assign_large_int(c); return *this; } | |
118 #ifdef BOOST_HAS_LONG_LONG | |
119 RR& operator=(boost::long_long_type c) { assign_large_int(c); return *this; } | |
120 RR& operator=(boost::ulong_long_type c) { assign_large_int(c); return *this; } | |
121 #endif | |
122 RR& operator=(float c) { m_value = c; return *this; } | |
123 RR& operator=(double c) { m_value = c; return *this; } | |
124 RR& operator=(long double c) { assign_large_real(c); return *this; } | |
125 | |
126 // Access: | |
127 NTL::RR& value(){ return m_value; } | |
128 NTL::RR const& value()const{ return m_value; } | |
129 | |
130 // Member arithmetic: | |
131 RR& operator+=(const RR& other) | |
132 { m_value += other.value(); return *this; } | |
133 RR& operator-=(const RR& other) | |
134 { m_value -= other.value(); return *this; } | |
135 RR& operator*=(const RR& other) | |
136 { m_value *= other.value(); return *this; } | |
137 RR& operator/=(const RR& other) | |
138 { m_value /= other.value(); return *this; } | |
139 RR operator-()const | |
140 { return -m_value; } | |
141 RR const& operator+()const | |
142 { return *this; } | |
143 | |
144 // RR compatibity: | |
145 const ::NTL::ZZ& mantissa() const | |
146 { return m_value.mantissa(); } | |
147 long exponent() const | |
148 { return m_value.exponent(); } | |
149 | |
150 static void SetPrecision(long p) | |
151 { ::NTL::RR::SetPrecision(p); } | |
152 | |
153 static long precision() | |
154 { return ::NTL::RR::precision(); } | |
155 | |
156 static void SetOutputPrecision(long p) | |
157 { ::NTL::RR::SetOutputPrecision(p); } | |
158 static long OutputPrecision() | |
159 { return ::NTL::RR::OutputPrecision(); } | |
160 | |
161 | |
162 private: | |
163 ::NTL::RR m_value; | |
164 | |
165 template <class V> | |
166 void assign_large_real(const V& a) | |
167 { | |
168 using std::frexp; | |
169 using std::ldexp; | |
170 using std::floor; | |
171 if (a == 0) { | |
172 clear(m_value); | |
173 return; | |
174 } | |
175 | |
176 if (a == 1) { | |
177 NTL::set(m_value); | |
178 return; | |
179 } | |
180 | |
181 if (!(boost::math::isfinite)(a)) | |
182 { | |
183 throw std::overflow_error("Cannot construct an instance of NTL::RR with an infinite value."); | |
184 } | |
185 | |
186 int e; | |
187 long double f, term; | |
188 ::NTL::RR t; | |
189 clear(m_value); | |
190 | |
191 f = frexp(a, &e); | |
192 | |
193 while(f) | |
194 { | |
195 // extract 30 bits from f: | |
196 f = ldexp(f, 30); | |
197 term = floor(f); | |
198 e -= 30; | |
199 conv(t.x, (int)term); | |
200 t.e = e; | |
201 m_value += t; | |
202 f -= term; | |
203 } | |
204 } | |
205 | |
206 template <class V> | |
207 void assign_large_int(V a) | |
208 { | |
209 #ifdef BOOST_MSVC | |
210 #pragma warning(push) | |
211 #pragma warning(disable:4146) | |
212 #endif | |
213 clear(m_value); | |
214 int exp = 0; | |
215 NTL::RR t; | |
216 bool neg = a < V(0) ? true : false; | |
217 if(neg) | |
218 a = -a; | |
219 while(a) | |
220 { | |
221 t = static_cast<double>(a & 0xffff); | |
222 m_value += ldexp(RR(t), exp).value(); | |
223 a >>= 16; | |
224 exp += 16; | |
225 } | |
226 if(neg) | |
227 m_value = -m_value; | |
228 #ifdef BOOST_MSVC | |
229 #pragma warning(pop) | |
230 #endif | |
231 } | |
232 }; | |
233 | |
234 // Non-member arithmetic: | |
235 inline RR operator+(const RR& a, const RR& b) | |
236 { | |
237 RR result(a); | |
238 result += b; | |
239 return result; | |
240 } | |
241 inline RR operator-(const RR& a, const RR& b) | |
242 { | |
243 RR result(a); | |
244 result -= b; | |
245 return result; | |
246 } | |
247 inline RR operator*(const RR& a, const RR& b) | |
248 { | |
249 RR result(a); | |
250 result *= b; | |
251 return result; | |
252 } | |
253 inline RR operator/(const RR& a, const RR& b) | |
254 { | |
255 RR result(a); | |
256 result /= b; | |
257 return result; | |
258 } | |
259 | |
260 // Comparison: | |
261 inline bool operator == (const RR& a, const RR& b) | |
262 { return a.value() == b.value() ? true : false; } | |
263 inline bool operator != (const RR& a, const RR& b) | |
264 { return a.value() != b.value() ? true : false;} | |
265 inline bool operator < (const RR& a, const RR& b) | |
266 { return a.value() < b.value() ? true : false; } | |
267 inline bool operator <= (const RR& a, const RR& b) | |
268 { return a.value() <= b.value() ? true : false; } | |
269 inline bool operator > (const RR& a, const RR& b) | |
270 { return a.value() > b.value() ? true : false; } | |
271 inline bool operator >= (const RR& a, const RR& b) | |
272 { return a.value() >= b.value() ? true : false; } | |
273 | |
274 #if 0 | |
275 // Non-member mixed compare: | |
276 template <class T> | |
277 inline bool operator == (const T& a, const RR& b) | |
278 { | |
279 return a == b.value(); | |
280 } | |
281 template <class T> | |
282 inline bool operator != (const T& a, const RR& b) | |
283 { | |
284 return a != b.value(); | |
285 } | |
286 template <class T> | |
287 inline bool operator < (const T& a, const RR& b) | |
288 { | |
289 return a < b.value(); | |
290 } | |
291 template <class T> | |
292 inline bool operator > (const T& a, const RR& b) | |
293 { | |
294 return a > b.value(); | |
295 } | |
296 template <class T> | |
297 inline bool operator <= (const T& a, const RR& b) | |
298 { | |
299 return a <= b.value(); | |
300 } | |
301 template <class T> | |
302 inline bool operator >= (const T& a, const RR& b) | |
303 { | |
304 return a >= b.value(); | |
305 } | |
306 #endif // Non-member mixed compare: | |
307 | |
308 // Non-member functions: | |
309 /* | |
310 inline RR acos(RR a) | |
311 { return ::NTL::acos(a.value()); } | |
312 */ | |
313 inline RR cos(RR a) | |
314 { return ::NTL::cos(a.value()); } | |
315 /* | |
316 inline RR asin(RR a) | |
317 { return ::NTL::asin(a.value()); } | |
318 inline RR atan(RR a) | |
319 { return ::NTL::atan(a.value()); } | |
320 inline RR atan2(RR a, RR b) | |
321 { return ::NTL::atan2(a.value(), b.value()); } | |
322 */ | |
323 inline RR ceil(RR a) | |
324 { return ::NTL::ceil(a.value()); } | |
325 /* | |
326 inline RR fmod(RR a, RR b) | |
327 { return ::NTL::fmod(a.value(), b.value()); } | |
328 inline RR cosh(RR a) | |
329 { return ::NTL::cosh(a.value()); } | |
330 */ | |
331 inline RR exp(RR a) | |
332 { return ::NTL::exp(a.value()); } | |
333 inline RR fabs(RR a) | |
334 { return ::NTL::fabs(a.value()); } | |
335 inline RR abs(RR a) | |
336 { return ::NTL::abs(a.value()); } | |
337 inline RR floor(RR a) | |
338 { return ::NTL::floor(a.value()); } | |
339 /* | |
340 inline RR modf(RR a, RR* ipart) | |
341 { | |
342 ::NTL::RR ip; | |
343 RR result = modf(a.value(), &ip); | |
344 *ipart = ip; | |
345 return result; | |
346 } | |
347 inline RR frexp(RR a, int* expon) | |
348 { return ::NTL::frexp(a.value(), expon); } | |
349 inline RR ldexp(RR a, int expon) | |
350 { return ::NTL::ldexp(a.value(), expon); } | |
351 */ | |
352 inline RR log(RR a) | |
353 { return ::NTL::log(a.value()); } | |
354 inline RR log10(RR a) | |
355 { return ::NTL::log10(a.value()); } | |
356 /* | |
357 inline RR tan(RR a) | |
358 { return ::NTL::tan(a.value()); } | |
359 */ | |
360 inline RR pow(RR a, RR b) | |
361 { return ::NTL::pow(a.value(), b.value()); } | |
362 inline RR pow(RR a, int b) | |
363 { return ::NTL::power(a.value(), b); } | |
364 inline RR sin(RR a) | |
365 { return ::NTL::sin(a.value()); } | |
366 /* | |
367 inline RR sinh(RR a) | |
368 { return ::NTL::sinh(a.value()); } | |
369 */ | |
370 inline RR sqrt(RR a) | |
371 { return ::NTL::sqrt(a.value()); } | |
372 /* | |
373 inline RR tanh(RR a) | |
374 { return ::NTL::tanh(a.value()); } | |
375 */ | |
376 inline RR pow(const RR& r, long l) | |
377 { | |
378 return ::NTL::power(r.value(), l); | |
379 } | |
380 inline RR tan(const RR& a) | |
381 { | |
382 return sin(a)/cos(a); | |
383 } | |
384 inline RR frexp(RR r, int* exp) | |
385 { | |
386 *exp = r.value().e; | |
387 r.value().e = 0; | |
388 while(r >= 1) | |
389 { | |
390 *exp += 1; | |
391 r.value().e -= 1; | |
392 } | |
393 while(r < 0.5) | |
394 { | |
395 *exp -= 1; | |
396 r.value().e += 1; | |
397 } | |
398 BOOST_ASSERT(r < 1); | |
399 BOOST_ASSERT(r >= 0.5); | |
400 return r; | |
401 } | |
402 inline RR ldexp(RR r, int exp) | |
403 { | |
404 r.value().e += exp; | |
405 return r; | |
406 } | |
407 | |
408 // Streaming: | |
409 template <class charT, class traits> | |
410 inline std::basic_ostream<charT, traits>& operator<<(std::basic_ostream<charT, traits>& os, const RR& a) | |
411 { | |
412 return os << a.value(); | |
413 } | |
414 template <class charT, class traits> | |
415 inline std::basic_istream<charT, traits>& operator>>(std::basic_istream<charT, traits>& is, RR& a) | |
416 { | |
417 ::NTL::RR v; | |
418 is >> v; | |
419 a = v; | |
420 return is; | |
421 } | |
422 | |
423 } // namespace ntl | |
424 | |
425 namespace lanczos{ | |
426 | |
427 struct ntl_lanczos | |
428 { | |
429 static ntl::RR lanczos_sum(const ntl::RR& z) | |
430 { | |
431 unsigned long p = ntl::RR::precision(); | |
432 if(p <= 72) | |
433 return lanczos13UDT::lanczos_sum(z); | |
434 else if(p <= 120) | |
435 return lanczos22UDT::lanczos_sum(z); | |
436 else if(p <= 170) | |
437 return lanczos31UDT::lanczos_sum(z); | |
438 else //if(p <= 370) approx 100 digit precision: | |
439 return lanczos61UDT::lanczos_sum(z); | |
440 } | |
441 static ntl::RR lanczos_sum_expG_scaled(const ntl::RR& z) | |
442 { | |
443 unsigned long p = ntl::RR::precision(); | |
444 if(p <= 72) | |
445 return lanczos13UDT::lanczos_sum_expG_scaled(z); | |
446 else if(p <= 120) | |
447 return lanczos22UDT::lanczos_sum_expG_scaled(z); | |
448 else if(p <= 170) | |
449 return lanczos31UDT::lanczos_sum_expG_scaled(z); | |
450 else //if(p <= 370) approx 100 digit precision: | |
451 return lanczos61UDT::lanczos_sum_expG_scaled(z); | |
452 } | |
453 static ntl::RR lanczos_sum_near_1(const ntl::RR& z) | |
454 { | |
455 unsigned long p = ntl::RR::precision(); | |
456 if(p <= 72) | |
457 return lanczos13UDT::lanczos_sum_near_1(z); | |
458 else if(p <= 120) | |
459 return lanczos22UDT::lanczos_sum_near_1(z); | |
460 else if(p <= 170) | |
461 return lanczos31UDT::lanczos_sum_near_1(z); | |
462 else //if(p <= 370) approx 100 digit precision: | |
463 return lanczos61UDT::lanczos_sum_near_1(z); | |
464 } | |
465 static ntl::RR lanczos_sum_near_2(const ntl::RR& z) | |
466 { | |
467 unsigned long p = ntl::RR::precision(); | |
468 if(p <= 72) | |
469 return lanczos13UDT::lanczos_sum_near_2(z); | |
470 else if(p <= 120) | |
471 return lanczos22UDT::lanczos_sum_near_2(z); | |
472 else if(p <= 170) | |
473 return lanczos31UDT::lanczos_sum_near_2(z); | |
474 else //if(p <= 370) approx 100 digit precision: | |
475 return lanczos61UDT::lanczos_sum_near_2(z); | |
476 } | |
477 static ntl::RR g() | |
478 { | |
479 unsigned long p = ntl::RR::precision(); | |
480 if(p <= 72) | |
481 return lanczos13UDT::g(); | |
482 else if(p <= 120) | |
483 return lanczos22UDT::g(); | |
484 else if(p <= 170) | |
485 return lanczos31UDT::g(); | |
486 else //if(p <= 370) approx 100 digit precision: | |
487 return lanczos61UDT::g(); | |
488 } | |
489 }; | |
490 | |
491 template<class Policy> | |
492 struct lanczos<ntl::RR, Policy> | |
493 { | |
494 typedef ntl_lanczos type; | |
495 }; | |
496 | |
497 } // namespace lanczos | |
498 | |
499 namespace tools | |
500 { | |
501 | |
502 template<> | |
503 inline int digits<boost::math::ntl::RR>(BOOST_MATH_EXPLICIT_TEMPLATE_TYPE_SPEC(boost::math::ntl::RR)) | |
504 { | |
505 return ::NTL::RR::precision(); | |
506 } | |
507 | |
508 template <> | |
509 inline float real_cast<float, boost::math::ntl::RR>(boost::math::ntl::RR t) | |
510 { | |
511 double r; | |
512 conv(r, t.value()); | |
513 return static_cast<float>(r); | |
514 } | |
515 template <> | |
516 inline double real_cast<double, boost::math::ntl::RR>(boost::math::ntl::RR t) | |
517 { | |
518 double r; | |
519 conv(r, t.value()); | |
520 return r; | |
521 } | |
522 | |
523 namespace detail{ | |
524 | |
525 template<class I> | |
526 void convert_to_long_result(NTL::RR const& r, I& result) | |
527 { | |
528 result = 0; | |
529 I last_result(0); | |
530 NTL::RR t(r); | |
531 double term; | |
532 do | |
533 { | |
534 conv(term, t); | |
535 last_result = result; | |
536 result += static_cast<I>(term); | |
537 t -= term; | |
538 }while(result != last_result); | |
539 } | |
540 | |
541 } | |
542 | |
543 template <> | |
544 inline long double real_cast<long double, boost::math::ntl::RR>(boost::math::ntl::RR t) | |
545 { | |
546 long double result(0); | |
547 detail::convert_to_long_result(t.value(), result); | |
548 return result; | |
549 } | |
550 template <> | |
551 inline boost::math::ntl::RR real_cast<boost::math::ntl::RR, boost::math::ntl::RR>(boost::math::ntl::RR t) | |
552 { | |
553 return t; | |
554 } | |
555 template <> | |
556 inline unsigned real_cast<unsigned, boost::math::ntl::RR>(boost::math::ntl::RR t) | |
557 { | |
558 unsigned result; | |
559 detail::convert_to_long_result(t.value(), result); | |
560 return result; | |
561 } | |
562 template <> | |
563 inline int real_cast<int, boost::math::ntl::RR>(boost::math::ntl::RR t) | |
564 { | |
565 int result; | |
566 detail::convert_to_long_result(t.value(), result); | |
567 return result; | |
568 } | |
569 template <> | |
570 inline long real_cast<long, boost::math::ntl::RR>(boost::math::ntl::RR t) | |
571 { | |
572 long result; | |
573 detail::convert_to_long_result(t.value(), result); | |
574 return result; | |
575 } | |
576 template <> | |
577 inline long long real_cast<long long, boost::math::ntl::RR>(boost::math::ntl::RR t) | |
578 { | |
579 long long result; | |
580 detail::convert_to_long_result(t.value(), result); | |
581 return result; | |
582 } | |
583 | |
584 template <> | |
585 inline boost::math::ntl::RR max_value<boost::math::ntl::RR>(BOOST_MATH_EXPLICIT_TEMPLATE_TYPE_SPEC(boost::math::ntl::RR)) | |
586 { | |
587 static bool has_init = false; | |
588 static NTL::RR val; | |
589 if(!has_init) | |
590 { | |
591 val = 1; | |
592 val.e = NTL_OVFBND-20; | |
593 has_init = true; | |
594 } | |
595 return val; | |
596 } | |
597 | |
598 template <> | |
599 inline boost::math::ntl::RR min_value<boost::math::ntl::RR>(BOOST_MATH_EXPLICIT_TEMPLATE_TYPE_SPEC(boost::math::ntl::RR)) | |
600 { | |
601 static bool has_init = false; | |
602 static NTL::RR val; | |
603 if(!has_init) | |
604 { | |
605 val = 1; | |
606 val.e = -NTL_OVFBND+20; | |
607 has_init = true; | |
608 } | |
609 return val; | |
610 } | |
611 | |
612 template <> | |
613 inline boost::math::ntl::RR log_max_value<boost::math::ntl::RR>(BOOST_MATH_EXPLICIT_TEMPLATE_TYPE_SPEC(boost::math::ntl::RR)) | |
614 { | |
615 static bool has_init = false; | |
616 static NTL::RR val; | |
617 if(!has_init) | |
618 { | |
619 val = 1; | |
620 val.e = NTL_OVFBND-20; | |
621 val = log(val); | |
622 has_init = true; | |
623 } | |
624 return val; | |
625 } | |
626 | |
627 template <> | |
628 inline boost::math::ntl::RR log_min_value<boost::math::ntl::RR>(BOOST_MATH_EXPLICIT_TEMPLATE_TYPE_SPEC(boost::math::ntl::RR)) | |
629 { | |
630 static bool has_init = false; | |
631 static NTL::RR val; | |
632 if(!has_init) | |
633 { | |
634 val = 1; | |
635 val.e = -NTL_OVFBND+20; | |
636 val = log(val); | |
637 has_init = true; | |
638 } | |
639 return val; | |
640 } | |
641 | |
642 template <> | |
643 inline boost::math::ntl::RR epsilon<boost::math::ntl::RR>(BOOST_MATH_EXPLICIT_TEMPLATE_TYPE_SPEC(boost::math::ntl::RR)) | |
644 { | |
645 return ldexp(boost::math::ntl::RR(1), 1-boost::math::policies::digits<boost::math::ntl::RR, boost::math::policies::policy<> >()); | |
646 } | |
647 | |
648 } // namespace tools | |
649 | |
650 // | |
651 // The number of digits precision in RR can vary with each call | |
652 // so we need to recalculate these with each call: | |
653 // | |
654 namespace constants{ | |
655 | |
656 template<> inline boost::math::ntl::RR pi<boost::math::ntl::RR>(BOOST_MATH_EXPLICIT_TEMPLATE_TYPE_SPEC(boost::math::ntl::RR)) | |
657 { | |
658 NTL::RR result; | |
659 ComputePi(result); | |
660 return result; | |
661 } | |
662 template<> inline boost::math::ntl::RR e<boost::math::ntl::RR>(BOOST_MATH_EXPLICIT_TEMPLATE_TYPE_SPEC(boost::math::ntl::RR)) | |
663 { | |
664 NTL::RR result; | |
665 result = 1; | |
666 return exp(result); | |
667 } | |
668 | |
669 } // namespace constants | |
670 | |
671 namespace ntl{ | |
672 // | |
673 // These are some fairly brain-dead versions of the math | |
674 // functions that NTL fails to provide. | |
675 // | |
676 | |
677 | |
678 // | |
679 // Inverse trig functions: | |
680 // | |
681 struct asin_root | |
682 { | |
683 asin_root(RR const& target) : t(target){} | |
684 | |
685 boost::math::tuple<RR, RR, RR> operator()(RR const& p) | |
686 { | |
687 RR f0 = sin(p); | |
688 RR f1 = cos(p); | |
689 RR f2 = -f0; | |
690 f0 -= t; | |
691 return boost::math::make_tuple(f0, f1, f2); | |
692 } | |
693 private: | |
694 RR t; | |
695 }; | |
696 | |
697 inline RR asin(RR z) | |
698 { | |
699 double r; | |
700 conv(r, z.value()); | |
701 return boost::math::tools::halley_iterate( | |
702 asin_root(z), | |
703 RR(std::asin(r)), | |
704 RR(-boost::math::constants::pi<RR>()/2), | |
705 RR(boost::math::constants::pi<RR>()/2), | |
706 NTL::RR::precision()); | |
707 } | |
708 | |
709 struct acos_root | |
710 { | |
711 acos_root(RR const& target) : t(target){} | |
712 | |
713 boost::math::tuple<RR, RR, RR> operator()(RR const& p) | |
714 { | |
715 RR f0 = cos(p); | |
716 RR f1 = -sin(p); | |
717 RR f2 = -f0; | |
718 f0 -= t; | |
719 return boost::math::make_tuple(f0, f1, f2); | |
720 } | |
721 private: | |
722 RR t; | |
723 }; | |
724 | |
725 inline RR acos(RR z) | |
726 { | |
727 double r; | |
728 conv(r, z.value()); | |
729 return boost::math::tools::halley_iterate( | |
730 acos_root(z), | |
731 RR(std::acos(r)), | |
732 RR(-boost::math::constants::pi<RR>()/2), | |
733 RR(boost::math::constants::pi<RR>()/2), | |
734 NTL::RR::precision()); | |
735 } | |
736 | |
737 struct atan_root | |
738 { | |
739 atan_root(RR const& target) : t(target){} | |
740 | |
741 boost::math::tuple<RR, RR, RR> operator()(RR const& p) | |
742 { | |
743 RR c = cos(p); | |
744 RR ta = tan(p); | |
745 RR f0 = ta - t; | |
746 RR f1 = 1 / (c * c); | |
747 RR f2 = 2 * ta / (c * c); | |
748 return boost::math::make_tuple(f0, f1, f2); | |
749 } | |
750 private: | |
751 RR t; | |
752 }; | |
753 | |
754 inline RR atan(RR z) | |
755 { | |
756 double r; | |
757 conv(r, z.value()); | |
758 return boost::math::tools::halley_iterate( | |
759 atan_root(z), | |
760 RR(std::atan(r)), | |
761 -boost::math::constants::pi<RR>()/2, | |
762 boost::math::constants::pi<RR>()/2, | |
763 NTL::RR::precision()); | |
764 } | |
765 | |
766 inline RR atan2(RR y, RR x) | |
767 { | |
768 if(x > 0) | |
769 return atan(y / x); | |
770 if(x < 0) | |
771 { | |
772 return y < 0 ? atan(y / x) - boost::math::constants::pi<RR>() : atan(y / x) + boost::math::constants::pi<RR>(); | |
773 } | |
774 return y < 0 ? -boost::math::constants::half_pi<RR>() : boost::math::constants::half_pi<RR>() ; | |
775 } | |
776 | |
777 inline RR sinh(RR z) | |
778 { | |
779 return (expm1(z.value()) - expm1(-z.value())) / 2; | |
780 } | |
781 | |
782 inline RR cosh(RR z) | |
783 { | |
784 return (exp(z) + exp(-z)) / 2; | |
785 } | |
786 | |
787 inline RR tanh(RR z) | |
788 { | |
789 return sinh(z) / cosh(z); | |
790 } | |
791 | |
792 inline RR fmod(RR x, RR y) | |
793 { | |
794 // This is a really crummy version of fmod, we rely on lots | |
795 // of digits to get us out of trouble... | |
796 RR factor = floor(x/y); | |
797 return x - factor * y; | |
798 } | |
799 | |
800 template <class Policy> | |
801 inline int iround(RR const& x, const Policy& pol) | |
802 { | |
803 return tools::real_cast<int>(round(x, pol)); | |
804 } | |
805 | |
806 template <class Policy> | |
807 inline long lround(RR const& x, const Policy& pol) | |
808 { | |
809 return tools::real_cast<long>(round(x, pol)); | |
810 } | |
811 | |
812 template <class Policy> | |
813 inline long long llround(RR const& x, const Policy& pol) | |
814 { | |
815 return tools::real_cast<long long>(round(x, pol)); | |
816 } | |
817 | |
818 template <class Policy> | |
819 inline int itrunc(RR const& x, const Policy& pol) | |
820 { | |
821 return tools::real_cast<int>(trunc(x, pol)); | |
822 } | |
823 | |
824 template <class Policy> | |
825 inline long ltrunc(RR const& x, const Policy& pol) | |
826 { | |
827 return tools::real_cast<long>(trunc(x, pol)); | |
828 } | |
829 | |
830 template <class Policy> | |
831 inline long long lltrunc(RR const& x, const Policy& pol) | |
832 { | |
833 return tools::real_cast<long long>(trunc(x, pol)); | |
834 } | |
835 | |
836 } // namespace ntl | |
837 | |
838 namespace detail{ | |
839 | |
840 template <class Policy> | |
841 ntl::RR digamma_imp(ntl::RR x, const mpl::int_<0>* , const Policy& pol) | |
842 { | |
843 // | |
844 // This handles reflection of negative arguments, and all our | |
845 // error handling, then forwards to the T-specific approximation. | |
846 // | |
847 BOOST_MATH_STD_USING // ADL of std functions. | |
848 | |
849 ntl::RR result = 0; | |
850 // | |
851 // Check for negative arguments and use reflection: | |
852 // | |
853 if(x < 0) | |
854 { | |
855 // Reflect: | |
856 x = 1 - x; | |
857 // Argument reduction for tan: | |
858 ntl::RR remainder = x - floor(x); | |
859 // Shift to negative if > 0.5: | |
860 if(remainder > 0.5) | |
861 { | |
862 remainder -= 1; | |
863 } | |
864 // | |
865 // check for evaluation at a negative pole: | |
866 // | |
867 if(remainder == 0) | |
868 { | |
869 return policies::raise_pole_error<ntl::RR>("boost::math::digamma<%1%>(%1%)", 0, (1-x), pol); | |
870 } | |
871 result = constants::pi<ntl::RR>() / tan(constants::pi<ntl::RR>() * remainder); | |
872 } | |
873 result += big_digamma(x); | |
874 return result; | |
875 } | |
876 | |
877 } // namespace detail | |
878 | |
879 } // namespace math | |
880 } // namespace boost | |
881 | |
882 #endif // BOOST_MATH_REAL_CONCEPT_HPP | |
883 | |
884 |