Mercurial > hg > vamp-build-and-test
comparison DEPENDENCIES/generic/include/boost/math/bindings/e_float.hpp @ 16:2665513ce2d3
Add boost headers
author | Chris Cannam |
---|---|
date | Tue, 05 Aug 2014 11:11:38 +0100 |
parents | |
children |
comparison
equal
deleted
inserted
replaced
15:663ca0da4350 | 16:2665513ce2d3 |
---|---|
1 // Copyright John Maddock 2008. | |
2 // Use, modification and distribution are subject to the | |
3 // Boost Software License, Version 1.0. (See accompanying file | |
4 // LICENSE_1_0.txt or copy at http://www.boost.org/LICENSE_1_0.txt) | |
5 // | |
6 // Wrapper that works with mpfr_class defined in gmpfrxx.h | |
7 // See http://math.berkeley.edu/~wilken/code/gmpfrxx/ | |
8 // Also requires the gmp and mpfr libraries. | |
9 // | |
10 | |
11 #ifndef BOOST_MATH_E_FLOAT_BINDINGS_HPP | |
12 #define BOOST_MATH_E_FLOAT_BINDINGS_HPP | |
13 | |
14 #include <boost/config.hpp> | |
15 | |
16 | |
17 #include <e_float/e_float.h> | |
18 #include <functions/functions.h> | |
19 | |
20 #include <boost/math/tools/precision.hpp> | |
21 #include <boost/math/tools/real_cast.hpp> | |
22 #include <boost/math/policies/policy.hpp> | |
23 #include <boost/math/distributions/fwd.hpp> | |
24 #include <boost/math/special_functions/math_fwd.hpp> | |
25 #include <boost/math/special_functions/fpclassify.hpp> | |
26 #include <boost/math/bindings/detail/big_digamma.hpp> | |
27 #include <boost/math/bindings/detail/big_lanczos.hpp> | |
28 #include <boost/lexical_cast.hpp> | |
29 | |
30 | |
31 namespace boost{ namespace math{ namespace ef{ | |
32 | |
33 class e_float | |
34 { | |
35 public: | |
36 // Constructors: | |
37 e_float() {} | |
38 e_float(const ::e_float& c) : m_value(c){} | |
39 e_float(char c) | |
40 { | |
41 m_value = ::e_float(c); | |
42 } | |
43 #ifndef BOOST_NO_INTRINSIC_WCHAR_T | |
44 e_float(wchar_t c) | |
45 { | |
46 m_value = ::e_float(c); | |
47 } | |
48 #endif | |
49 e_float(unsigned char c) | |
50 { | |
51 m_value = ::e_float(c); | |
52 } | |
53 e_float(signed char c) | |
54 { | |
55 m_value = ::e_float(c); | |
56 } | |
57 e_float(unsigned short c) | |
58 { | |
59 m_value = ::e_float(c); | |
60 } | |
61 e_float(short c) | |
62 { | |
63 m_value = ::e_float(c); | |
64 } | |
65 e_float(unsigned int c) | |
66 { | |
67 m_value = ::e_float(c); | |
68 } | |
69 e_float(int c) | |
70 { | |
71 m_value = ::e_float(c); | |
72 } | |
73 e_float(unsigned long c) | |
74 { | |
75 m_value = ::e_float((UINT64)c); | |
76 } | |
77 e_float(long c) | |
78 { | |
79 m_value = ::e_float((INT64)c); | |
80 } | |
81 #ifdef BOOST_HAS_LONG_LONG | |
82 e_float(boost::ulong_long_type c) | |
83 { | |
84 m_value = ::e_float(c); | |
85 } | |
86 e_float(boost::long_long_type c) | |
87 { | |
88 m_value = ::e_float(c); | |
89 } | |
90 #endif | |
91 e_float(float c) | |
92 { | |
93 assign_large_real(c); | |
94 } | |
95 e_float(double c) | |
96 { | |
97 assign_large_real(c); | |
98 } | |
99 e_float(long double c) | |
100 { | |
101 assign_large_real(c); | |
102 } | |
103 | |
104 // Assignment: | |
105 e_float& operator=(char c) { m_value = ::e_float(c); return *this; } | |
106 e_float& operator=(unsigned char c) { m_value = ::e_float(c); return *this; } | |
107 e_float& operator=(signed char c) { m_value = ::e_float(c); return *this; } | |
108 #ifndef BOOST_NO_INTRINSIC_WCHAR_T | |
109 e_float& operator=(wchar_t c) { m_value = ::e_float(c); return *this; } | |
110 #endif | |
111 e_float& operator=(short c) { m_value = ::e_float(c); return *this; } | |
112 e_float& operator=(unsigned short c) { m_value = ::e_float(c); return *this; } | |
113 e_float& operator=(int c) { m_value = ::e_float(c); return *this; } | |
114 e_float& operator=(unsigned int c) { m_value = ::e_float(c); return *this; } | |
115 e_float& operator=(long c) { m_value = ::e_float((INT64)c); return *this; } | |
116 e_float& operator=(unsigned long c) { m_value = ::e_float((UINT64)c); return *this; } | |
117 #ifdef BOOST_HAS_LONG_LONG | |
118 e_float& operator=(boost::long_long_type c) { m_value = ::e_float(c); return *this; } | |
119 e_float& operator=(boost::ulong_long_type c) { m_value = ::e_float(c); return *this; } | |
120 #endif | |
121 e_float& operator=(float c) { assign_large_real(c); return *this; } | |
122 e_float& operator=(double c) { assign_large_real(c); return *this; } | |
123 e_float& operator=(long double c) { assign_large_real(c); return *this; } | |
124 | |
125 // Access: | |
126 ::e_float& value(){ return m_value; } | |
127 ::e_float const& value()const{ return m_value; } | |
128 | |
129 // Member arithmetic: | |
130 e_float& operator+=(const e_float& other) | |
131 { m_value += other.value(); return *this; } | |
132 e_float& operator-=(const e_float& other) | |
133 { m_value -= other.value(); return *this; } | |
134 e_float& operator*=(const e_float& other) | |
135 { m_value *= other.value(); return *this; } | |
136 e_float& operator/=(const e_float& other) | |
137 { m_value /= other.value(); return *this; } | |
138 e_float operator-()const | |
139 { return -m_value; } | |
140 e_float const& operator+()const | |
141 { return *this; } | |
142 | |
143 private: | |
144 ::e_float m_value; | |
145 | |
146 template <class V> | |
147 void assign_large_real(const V& a) | |
148 { | |
149 using std::frexp; | |
150 using std::ldexp; | |
151 using std::floor; | |
152 if (a == 0) { | |
153 m_value = ::ef::zero(); | |
154 return; | |
155 } | |
156 | |
157 if (a == 1) { | |
158 m_value = ::ef::one(); | |
159 return; | |
160 } | |
161 | |
162 if ((boost::math::isinf)(a)) | |
163 { | |
164 m_value = a > 0 ? m_value.my_value_inf() : -m_value.my_value_inf(); | |
165 return; | |
166 } | |
167 if((boost::math::isnan)(a)) | |
168 { | |
169 m_value = m_value.my_value_nan(); | |
170 return; | |
171 } | |
172 | |
173 int e; | |
174 long double f, term; | |
175 ::e_float t; | |
176 m_value = ::ef::zero(); | |
177 | |
178 f = frexp(a, &e); | |
179 | |
180 ::e_float shift = ::ef::pow2(30); | |
181 | |
182 while(f) | |
183 { | |
184 // extract 30 bits from f: | |
185 f = ldexp(f, 30); | |
186 term = floor(f); | |
187 e -= 30; | |
188 m_value *= shift; | |
189 m_value += ::e_float(static_cast<INT64>(term)); | |
190 f -= term; | |
191 } | |
192 m_value *= ::ef::pow2(e); | |
193 } | |
194 }; | |
195 | |
196 | |
197 // Non-member arithmetic: | |
198 inline e_float operator+(const e_float& a, const e_float& b) | |
199 { | |
200 e_float result(a); | |
201 result += b; | |
202 return result; | |
203 } | |
204 inline e_float operator-(const e_float& a, const e_float& b) | |
205 { | |
206 e_float result(a); | |
207 result -= b; | |
208 return result; | |
209 } | |
210 inline e_float operator*(const e_float& a, const e_float& b) | |
211 { | |
212 e_float result(a); | |
213 result *= b; | |
214 return result; | |
215 } | |
216 inline e_float operator/(const e_float& a, const e_float& b) | |
217 { | |
218 e_float result(a); | |
219 result /= b; | |
220 return result; | |
221 } | |
222 | |
223 // Comparison: | |
224 inline bool operator == (const e_float& a, const e_float& b) | |
225 { return a.value() == b.value() ? true : false; } | |
226 inline bool operator != (const e_float& a, const e_float& b) | |
227 { return a.value() != b.value() ? true : false;} | |
228 inline bool operator < (const e_float& a, const e_float& b) | |
229 { return a.value() < b.value() ? true : false; } | |
230 inline bool operator <= (const e_float& a, const e_float& b) | |
231 { return a.value() <= b.value() ? true : false; } | |
232 inline bool operator > (const e_float& a, const e_float& b) | |
233 { return a.value() > b.value() ? true : false; } | |
234 inline bool operator >= (const e_float& a, const e_float& b) | |
235 { return a.value() >= b.value() ? true : false; } | |
236 | |
237 std::istream& operator >> (std::istream& is, e_float& f) | |
238 { | |
239 return is >> f.value(); | |
240 } | |
241 | |
242 std::ostream& operator << (std::ostream& os, const e_float& f) | |
243 { | |
244 return os << f.value(); | |
245 } | |
246 | |
247 inline e_float fabs(const e_float& v) | |
248 { | |
249 return ::ef::fabs(v.value()); | |
250 } | |
251 | |
252 inline e_float abs(const e_float& v) | |
253 { | |
254 return ::ef::fabs(v.value()); | |
255 } | |
256 | |
257 inline e_float floor(const e_float& v) | |
258 { | |
259 return ::ef::floor(v.value()); | |
260 } | |
261 | |
262 inline e_float ceil(const e_float& v) | |
263 { | |
264 return ::ef::ceil(v.value()); | |
265 } | |
266 | |
267 inline e_float pow(const e_float& v, const e_float& w) | |
268 { | |
269 return ::ef::pow(v.value(), w.value()); | |
270 } | |
271 | |
272 inline e_float pow(const e_float& v, int i) | |
273 { | |
274 return ::ef::pow(v.value(), ::e_float(i)); | |
275 } | |
276 | |
277 inline e_float exp(const e_float& v) | |
278 { | |
279 return ::ef::exp(v.value()); | |
280 } | |
281 | |
282 inline e_float log(const e_float& v) | |
283 { | |
284 return ::ef::log(v.value()); | |
285 } | |
286 | |
287 inline e_float sqrt(const e_float& v) | |
288 { | |
289 return ::ef::sqrt(v.value()); | |
290 } | |
291 | |
292 inline e_float sin(const e_float& v) | |
293 { | |
294 return ::ef::sin(v.value()); | |
295 } | |
296 | |
297 inline e_float cos(const e_float& v) | |
298 { | |
299 return ::ef::cos(v.value()); | |
300 } | |
301 | |
302 inline e_float tan(const e_float& v) | |
303 { | |
304 return ::ef::tan(v.value()); | |
305 } | |
306 | |
307 inline e_float acos(const e_float& v) | |
308 { | |
309 return ::ef::acos(v.value()); | |
310 } | |
311 | |
312 inline e_float asin(const e_float& v) | |
313 { | |
314 return ::ef::asin(v.value()); | |
315 } | |
316 | |
317 inline e_float atan(const e_float& v) | |
318 { | |
319 return ::ef::atan(v.value()); | |
320 } | |
321 | |
322 inline e_float atan2(const e_float& v, const e_float& u) | |
323 { | |
324 return ::ef::atan2(v.value(), u.value()); | |
325 } | |
326 | |
327 inline e_float ldexp(const e_float& v, int e) | |
328 { | |
329 return v.value() * ::ef::pow2(e); | |
330 } | |
331 | |
332 inline e_float frexp(const e_float& v, int* expon) | |
333 { | |
334 double d; | |
335 INT64 i; | |
336 v.value().extract_parts(d, i); | |
337 *expon = static_cast<int>(i); | |
338 return v.value() * ::ef::pow2(-i); | |
339 } | |
340 | |
341 inline e_float sinh (const e_float& x) | |
342 { | |
343 return ::ef::sinh(x.value()); | |
344 } | |
345 | |
346 inline e_float cosh (const e_float& x) | |
347 { | |
348 return ::ef::cosh(x.value()); | |
349 } | |
350 | |
351 inline e_float tanh (const e_float& x) | |
352 { | |
353 return ::ef::tanh(x.value()); | |
354 } | |
355 | |
356 inline e_float asinh (const e_float& x) | |
357 { | |
358 return ::ef::asinh(x.value()); | |
359 } | |
360 | |
361 inline e_float acosh (const e_float& x) | |
362 { | |
363 return ::ef::acosh(x.value()); | |
364 } | |
365 | |
366 inline e_float atanh (const e_float& x) | |
367 { | |
368 return ::ef::atanh(x.value()); | |
369 } | |
370 | |
371 e_float fmod(const e_float& v1, const e_float& v2) | |
372 { | |
373 e_float n; | |
374 if(v1 < 0) | |
375 n = ceil(v1 / v2); | |
376 else | |
377 n = floor(v1 / v2); | |
378 return v1 - n * v2; | |
379 } | |
380 | |
381 } namespace detail{ | |
382 | |
383 template <> | |
384 inline int fpclassify_imp< boost::math::ef::e_float> BOOST_NO_MACRO_EXPAND(boost::math::ef::e_float x, const generic_tag<true>&) | |
385 { | |
386 if(x.value().isnan()) | |
387 return FP_NAN; | |
388 if(x.value().isinf()) | |
389 return FP_INFINITE; | |
390 if(x == 0) | |
391 return FP_ZERO; | |
392 return FP_NORMAL; | |
393 } | |
394 | |
395 } namespace ef{ | |
396 | |
397 template <class Policy> | |
398 inline int itrunc(const e_float& v, const Policy& pol) | |
399 { | |
400 BOOST_MATH_STD_USING | |
401 e_float r = boost::math::trunc(v, pol); | |
402 if(fabs(r) > (std::numeric_limits<int>::max)()) | |
403 return static_cast<int>(policies::raise_rounding_error("boost::math::itrunc<%1%>(%1%)", 0, 0, v, pol)); | |
404 return static_cast<int>(r.value().extract_int64()); | |
405 } | |
406 | |
407 template <class Policy> | |
408 inline long ltrunc(const e_float& v, const Policy& pol) | |
409 { | |
410 BOOST_MATH_STD_USING | |
411 e_float r = boost::math::trunc(v, pol); | |
412 if(fabs(r) > (std::numeric_limits<long>::max)()) | |
413 return static_cast<long>(policies::raise_rounding_error("boost::math::ltrunc<%1%>(%1%)", 0, 0L, v, pol)); | |
414 return static_cast<long>(r.value().extract_int64()); | |
415 } | |
416 | |
417 #ifdef BOOST_HAS_LONG_LONG | |
418 template <class Policy> | |
419 inline boost::long_long_type lltrunc(const e_float& v, const Policy& pol) | |
420 { | |
421 BOOST_MATH_STD_USING | |
422 e_float r = boost::math::trunc(v, pol); | |
423 if(fabs(r) > (std::numeric_limits<boost::long_long_type>::max)()) | |
424 return static_cast<boost::long_long_type>(policies::raise_rounding_error("boost::math::lltrunc<%1%>(%1%)", 0, v, 0LL, pol).value().extract_int64()); | |
425 return static_cast<boost::long_long_type>(r.value().extract_int64()); | |
426 } | |
427 #endif | |
428 | |
429 template <class Policy> | |
430 inline int iround(const e_float& v, const Policy& pol) | |
431 { | |
432 BOOST_MATH_STD_USING | |
433 e_float r = boost::math::round(v, pol); | |
434 if(fabs(r) > (std::numeric_limits<int>::max)()) | |
435 return static_cast<int>(policies::raise_rounding_error("boost::math::iround<%1%>(%1%)", 0, v, 0, pol).value().extract_int64()); | |
436 return static_cast<int>(r.value().extract_int64()); | |
437 } | |
438 | |
439 template <class Policy> | |
440 inline long lround(const e_float& v, const Policy& pol) | |
441 { | |
442 BOOST_MATH_STD_USING | |
443 e_float r = boost::math::round(v, pol); | |
444 if(fabs(r) > (std::numeric_limits<long>::max)()) | |
445 return static_cast<long int>(policies::raise_rounding_error("boost::math::lround<%1%>(%1%)", 0, v, 0L, pol).value().extract_int64()); | |
446 return static_cast<long int>(r.value().extract_int64()); | |
447 } | |
448 | |
449 #ifdef BOOST_HAS_LONG_LONG | |
450 template <class Policy> | |
451 inline boost::long_long_type llround(const e_float& v, const Policy& pol) | |
452 { | |
453 BOOST_MATH_STD_USING | |
454 e_float r = boost::math::round(v, pol); | |
455 if(fabs(r) > (std::numeric_limits<boost::long_long_type>::max)()) | |
456 return static_cast<boost::long_long_type>(policies::raise_rounding_error("boost::math::llround<%1%>(%1%)", 0, v, 0LL, pol).value().extract_int64()); | |
457 return static_cast<boost::long_long_type>(r.value().extract_int64()); | |
458 } | |
459 #endif | |
460 | |
461 }}} | |
462 | |
463 namespace std{ | |
464 | |
465 template<> | |
466 class numeric_limits< ::boost::math::ef::e_float> : public numeric_limits< ::e_float> | |
467 { | |
468 public: | |
469 static const ::boost::math::ef::e_float (min) (void) | |
470 { | |
471 return (numeric_limits< ::e_float>::min)(); | |
472 } | |
473 static const ::boost::math::ef::e_float (max) (void) | |
474 { | |
475 return (numeric_limits< ::e_float>::max)(); | |
476 } | |
477 static const ::boost::math::ef::e_float epsilon (void) | |
478 { | |
479 return (numeric_limits< ::e_float>::epsilon)(); | |
480 } | |
481 static const ::boost::math::ef::e_float round_error(void) | |
482 { | |
483 return (numeric_limits< ::e_float>::round_error)(); | |
484 } | |
485 static const ::boost::math::ef::e_float infinity (void) | |
486 { | |
487 return (numeric_limits< ::e_float>::infinity)(); | |
488 } | |
489 static const ::boost::math::ef::e_float quiet_NaN (void) | |
490 { | |
491 return (numeric_limits< ::e_float>::quiet_NaN)(); | |
492 } | |
493 // | |
494 // e_float's supplied digits member is wrong | |
495 // - it should be same the same as digits 10 | |
496 // - given that radix is 10. | |
497 // | |
498 static const int digits = digits10; | |
499 }; | |
500 | |
501 } // namespace std | |
502 | |
503 namespace boost{ namespace math{ | |
504 | |
505 namespace policies{ | |
506 | |
507 template <class Policy> | |
508 struct precision< ::boost::math::ef::e_float, Policy> | |
509 { | |
510 typedef typename Policy::precision_type precision_type; | |
511 typedef digits2<((::std::numeric_limits< ::boost::math::ef::e_float>::digits10 + 1) * 1000L) / 301L> digits_2; | |
512 typedef typename mpl::if_c< | |
513 ((digits_2::value <= precision_type::value) | |
514 || (Policy::precision_type::value <= 0)), | |
515 // Default case, full precision for RealType: | |
516 digits_2, | |
517 // User customised precision: | |
518 precision_type | |
519 >::type type; | |
520 }; | |
521 | |
522 } | |
523 | |
524 namespace tools{ | |
525 | |
526 template <> | |
527 inline int digits< ::boost::math::ef::e_float>(BOOST_MATH_EXPLICIT_TEMPLATE_TYPE_SPEC( ::boost::math::ef::e_float)) | |
528 { | |
529 return ((::std::numeric_limits< ::boost::math::ef::e_float>::digits10 + 1) * 1000L) / 301L; | |
530 } | |
531 | |
532 template <> | |
533 inline ::boost::math::ef::e_float root_epsilon< ::boost::math::ef::e_float>() | |
534 { | |
535 return detail::root_epsilon_imp(static_cast< ::boost::math::ef::e_float const*>(0), mpl::int_<0>()); | |
536 } | |
537 | |
538 template <> | |
539 inline ::boost::math::ef::e_float forth_root_epsilon< ::boost::math::ef::e_float>() | |
540 { | |
541 return detail::forth_root_epsilon_imp(static_cast< ::boost::math::ef::e_float const*>(0), mpl::int_<0>()); | |
542 } | |
543 | |
544 } | |
545 | |
546 namespace lanczos{ | |
547 | |
548 template<class Policy> | |
549 struct lanczos<boost::math::ef::e_float, Policy> | |
550 { | |
551 typedef typename mpl::if_c< | |
552 std::numeric_limits< ::e_float>::digits10 < 22, | |
553 lanczos13UDT, | |
554 typename mpl::if_c< | |
555 std::numeric_limits< ::e_float>::digits10 < 36, | |
556 lanczos22UDT, | |
557 typename mpl::if_c< | |
558 std::numeric_limits< ::e_float>::digits10 < 50, | |
559 lanczos31UDT, | |
560 typename mpl::if_c< | |
561 std::numeric_limits< ::e_float>::digits10 < 110, | |
562 lanczos61UDT, | |
563 undefined_lanczos | |
564 >::type | |
565 >::type | |
566 >::type | |
567 >::type type; | |
568 }; | |
569 | |
570 } // namespace lanczos | |
571 | |
572 template <class Policy> | |
573 inline boost::math::ef::e_float skewness(const extreme_value_distribution<boost::math::ef::e_float, Policy>& /*dist*/) | |
574 { | |
575 // | |
576 // This is 12 * sqrt(6) * zeta(3) / pi^3: | |
577 // See http://mathworld.wolfram.com/ExtremeValueDistribution.html | |
578 // | |
579 return boost::lexical_cast<boost::math::ef::e_float>("1.1395470994046486574927930193898461120875997958366"); | |
580 } | |
581 | |
582 template <class Policy> | |
583 inline boost::math::ef::e_float skewness(const rayleigh_distribution<boost::math::ef::e_float, Policy>& /*dist*/) | |
584 { | |
585 // using namespace boost::math::constants; | |
586 return boost::lexical_cast<boost::math::ef::e_float>("0.63111065781893713819189935154422777984404221106391"); | |
587 // Computed using NTL at 150 bit, about 50 decimal digits. | |
588 // return 2 * root_pi<RealType>() * pi_minus_three<RealType>() / pow23_four_minus_pi<RealType>(); | |
589 } | |
590 | |
591 template <class Policy> | |
592 inline boost::math::ef::e_float kurtosis(const rayleigh_distribution<boost::math::ef::e_float, Policy>& /*dist*/) | |
593 { | |
594 // using namespace boost::math::constants; | |
595 return boost::lexical_cast<boost::math::ef::e_float>("3.2450893006876380628486604106197544154170667057995"); | |
596 // Computed using NTL at 150 bit, about 50 decimal digits. | |
597 // return 3 - (6 * pi<RealType>() * pi<RealType>() - 24 * pi<RealType>() + 16) / | |
598 // (four_minus_pi<RealType>() * four_minus_pi<RealType>()); | |
599 } | |
600 | |
601 template <class Policy> | |
602 inline boost::math::ef::e_float kurtosis_excess(const rayleigh_distribution<boost::math::ef::e_float, Policy>& /*dist*/) | |
603 { | |
604 //using namespace boost::math::constants; | |
605 // Computed using NTL at 150 bit, about 50 decimal digits. | |
606 return boost::lexical_cast<boost::math::ef::e_float>("0.2450893006876380628486604106197544154170667057995"); | |
607 // return -(6 * pi<RealType>() * pi<RealType>() - 24 * pi<RealType>() + 16) / | |
608 // (four_minus_pi<RealType>() * four_minus_pi<RealType>()); | |
609 } // kurtosis | |
610 | |
611 namespace detail{ | |
612 | |
613 // | |
614 // Version of Digamma accurate to ~100 decimal digits. | |
615 // | |
616 template <class Policy> | |
617 boost::math::ef::e_float digamma_imp(boost::math::ef::e_float x, const mpl::int_<0>* , const Policy& pol) | |
618 { | |
619 // | |
620 // This handles reflection of negative arguments, and all our | |
621 // eboost::math::ef::e_floator handling, then forwards to the T-specific approximation. | |
622 // | |
623 BOOST_MATH_STD_USING // ADL of std functions. | |
624 | |
625 boost::math::ef::e_float result = 0; | |
626 // | |
627 // Check for negative arguments and use reflection: | |
628 // | |
629 if(x < 0) | |
630 { | |
631 // Reflect: | |
632 x = 1 - x; | |
633 // Argument reduction for tan: | |
634 boost::math::ef::e_float remainder = x - floor(x); | |
635 // Shift to negative if > 0.5: | |
636 if(remainder > 0.5) | |
637 { | |
638 remainder -= 1; | |
639 } | |
640 // | |
641 // check for evaluation at a negative pole: | |
642 // | |
643 if(remainder == 0) | |
644 { | |
645 return policies::raise_pole_error<boost::math::ef::e_float>("boost::math::digamma<%1%>(%1%)", 0, (1-x), pol); | |
646 } | |
647 result = constants::pi<boost::math::ef::e_float>() / tan(constants::pi<boost::math::ef::e_float>() * remainder); | |
648 } | |
649 result += big_digamma(x); | |
650 return result; | |
651 } | |
652 boost::math::ef::e_float bessel_i0(boost::math::ef::e_float x) | |
653 { | |
654 static const boost::math::ef::e_float P1[] = { | |
655 boost::lexical_cast<boost::math::ef::e_float>("-2.2335582639474375249e+15"), | |
656 boost::lexical_cast<boost::math::ef::e_float>("-5.5050369673018427753e+14"), | |
657 boost::lexical_cast<boost::math::ef::e_float>("-3.2940087627407749166e+13"), | |
658 boost::lexical_cast<boost::math::ef::e_float>("-8.4925101247114157499e+11"), | |
659 boost::lexical_cast<boost::math::ef::e_float>("-1.1912746104985237192e+10"), | |
660 boost::lexical_cast<boost::math::ef::e_float>("-1.0313066708737980747e+08"), | |
661 boost::lexical_cast<boost::math::ef::e_float>("-5.9545626019847898221e+05"), | |
662 boost::lexical_cast<boost::math::ef::e_float>("-2.4125195876041896775e+03"), | |
663 boost::lexical_cast<boost::math::ef::e_float>("-7.0935347449210549190e+00"), | |
664 boost::lexical_cast<boost::math::ef::e_float>("-1.5453977791786851041e-02"), | |
665 boost::lexical_cast<boost::math::ef::e_float>("-2.5172644670688975051e-05"), | |
666 boost::lexical_cast<boost::math::ef::e_float>("-3.0517226450451067446e-08"), | |
667 boost::lexical_cast<boost::math::ef::e_float>("-2.6843448573468483278e-11"), | |
668 boost::lexical_cast<boost::math::ef::e_float>("-1.5982226675653184646e-14"), | |
669 boost::lexical_cast<boost::math::ef::e_float>("-5.2487866627945699800e-18"), | |
670 }; | |
671 static const boost::math::ef::e_float Q1[] = { | |
672 boost::lexical_cast<boost::math::ef::e_float>("-2.2335582639474375245e+15"), | |
673 boost::lexical_cast<boost::math::ef::e_float>("7.8858692566751002988e+12"), | |
674 boost::lexical_cast<boost::math::ef::e_float>("-1.2207067397808979846e+10"), | |
675 boost::lexical_cast<boost::math::ef::e_float>("1.0377081058062166144e+07"), | |
676 boost::lexical_cast<boost::math::ef::e_float>("-4.8527560179962773045e+03"), | |
677 boost::lexical_cast<boost::math::ef::e_float>("1.0"), | |
678 }; | |
679 static const boost::math::ef::e_float P2[] = { | |
680 boost::lexical_cast<boost::math::ef::e_float>("-2.2210262233306573296e-04"), | |
681 boost::lexical_cast<boost::math::ef::e_float>("1.3067392038106924055e-02"), | |
682 boost::lexical_cast<boost::math::ef::e_float>("-4.4700805721174453923e-01"), | |
683 boost::lexical_cast<boost::math::ef::e_float>("5.5674518371240761397e+00"), | |
684 boost::lexical_cast<boost::math::ef::e_float>("-2.3517945679239481621e+01"), | |
685 boost::lexical_cast<boost::math::ef::e_float>("3.1611322818701131207e+01"), | |
686 boost::lexical_cast<boost::math::ef::e_float>("-9.6090021968656180000e+00"), | |
687 }; | |
688 static const boost::math::ef::e_float Q2[] = { | |
689 boost::lexical_cast<boost::math::ef::e_float>("-5.5194330231005480228e-04"), | |
690 boost::lexical_cast<boost::math::ef::e_float>("3.2547697594819615062e-02"), | |
691 boost::lexical_cast<boost::math::ef::e_float>("-1.1151759188741312645e+00"), | |
692 boost::lexical_cast<boost::math::ef::e_float>("1.3982595353892851542e+01"), | |
693 boost::lexical_cast<boost::math::ef::e_float>("-6.0228002066743340583e+01"), | |
694 boost::lexical_cast<boost::math::ef::e_float>("8.5539563258012929600e+01"), | |
695 boost::lexical_cast<boost::math::ef::e_float>("-3.1446690275135491500e+01"), | |
696 boost::lexical_cast<boost::math::ef::e_float>("1.0"), | |
697 }; | |
698 boost::math::ef::e_float value, factor, r; | |
699 | |
700 BOOST_MATH_STD_USING | |
701 using namespace boost::math::tools; | |
702 | |
703 if (x < 0) | |
704 { | |
705 x = -x; // even function | |
706 } | |
707 if (x == 0) | |
708 { | |
709 return static_cast<boost::math::ef::e_float>(1); | |
710 } | |
711 if (x <= 15) // x in (0, 15] | |
712 { | |
713 boost::math::ef::e_float y = x * x; | |
714 value = evaluate_polynomial(P1, y) / evaluate_polynomial(Q1, y); | |
715 } | |
716 else // x in (15, \infty) | |
717 { | |
718 boost::math::ef::e_float y = 1 / x - boost::math::ef::e_float(1) / 15; | |
719 r = evaluate_polynomial(P2, y) / evaluate_polynomial(Q2, y); | |
720 factor = exp(x) / sqrt(x); | |
721 value = factor * r; | |
722 } | |
723 | |
724 return value; | |
725 } | |
726 | |
727 boost::math::ef::e_float bessel_i1(boost::math::ef::e_float x) | |
728 { | |
729 static const boost::math::ef::e_float P1[] = { | |
730 lexical_cast<boost::math::ef::e_float>("-1.4577180278143463643e+15"), | |
731 lexical_cast<boost::math::ef::e_float>("-1.7732037840791591320e+14"), | |
732 lexical_cast<boost::math::ef::e_float>("-6.9876779648010090070e+12"), | |
733 lexical_cast<boost::math::ef::e_float>("-1.3357437682275493024e+11"), | |
734 lexical_cast<boost::math::ef::e_float>("-1.4828267606612366099e+09"), | |
735 lexical_cast<boost::math::ef::e_float>("-1.0588550724769347106e+07"), | |
736 lexical_cast<boost::math::ef::e_float>("-5.1894091982308017540e+04"), | |
737 lexical_cast<boost::math::ef::e_float>("-1.8225946631657315931e+02"), | |
738 lexical_cast<boost::math::ef::e_float>("-4.7207090827310162436e-01"), | |
739 lexical_cast<boost::math::ef::e_float>("-9.1746443287817501309e-04"), | |
740 lexical_cast<boost::math::ef::e_float>("-1.3466829827635152875e-06"), | |
741 lexical_cast<boost::math::ef::e_float>("-1.4831904935994647675e-09"), | |
742 lexical_cast<boost::math::ef::e_float>("-1.1928788903603238754e-12"), | |
743 lexical_cast<boost::math::ef::e_float>("-6.5245515583151902910e-16"), | |
744 lexical_cast<boost::math::ef::e_float>("-1.9705291802535139930e-19"), | |
745 }; | |
746 static const boost::math::ef::e_float Q1[] = { | |
747 lexical_cast<boost::math::ef::e_float>("-2.9154360556286927285e+15"), | |
748 lexical_cast<boost::math::ef::e_float>("9.7887501377547640438e+12"), | |
749 lexical_cast<boost::math::ef::e_float>("-1.4386907088588283434e+10"), | |
750 lexical_cast<boost::math::ef::e_float>("1.1594225856856884006e+07"), | |
751 lexical_cast<boost::math::ef::e_float>("-5.1326864679904189920e+03"), | |
752 lexical_cast<boost::math::ef::e_float>("1.0"), | |
753 }; | |
754 static const boost::math::ef::e_float P2[] = { | |
755 lexical_cast<boost::math::ef::e_float>("1.4582087408985668208e-05"), | |
756 lexical_cast<boost::math::ef::e_float>("-8.9359825138577646443e-04"), | |
757 lexical_cast<boost::math::ef::e_float>("2.9204895411257790122e-02"), | |
758 lexical_cast<boost::math::ef::e_float>("-3.4198728018058047439e-01"), | |
759 lexical_cast<boost::math::ef::e_float>("1.3960118277609544334e+00"), | |
760 lexical_cast<boost::math::ef::e_float>("-1.9746376087200685843e+00"), | |
761 lexical_cast<boost::math::ef::e_float>("8.5591872901933459000e-01"), | |
762 lexical_cast<boost::math::ef::e_float>("-6.0437159056137599999e-02"), | |
763 }; | |
764 static const boost::math::ef::e_float Q2[] = { | |
765 lexical_cast<boost::math::ef::e_float>("3.7510433111922824643e-05"), | |
766 lexical_cast<boost::math::ef::e_float>("-2.2835624489492512649e-03"), | |
767 lexical_cast<boost::math::ef::e_float>("7.4212010813186530069e-02"), | |
768 lexical_cast<boost::math::ef::e_float>("-8.5017476463217924408e-01"), | |
769 lexical_cast<boost::math::ef::e_float>("3.2593714889036996297e+00"), | |
770 lexical_cast<boost::math::ef::e_float>("-3.8806586721556593450e+00"), | |
771 lexical_cast<boost::math::ef::e_float>("1.0"), | |
772 }; | |
773 boost::math::ef::e_float value, factor, r, w; | |
774 | |
775 BOOST_MATH_STD_USING | |
776 using namespace boost::math::tools; | |
777 | |
778 w = abs(x); | |
779 if (x == 0) | |
780 { | |
781 return static_cast<boost::math::ef::e_float>(0); | |
782 } | |
783 if (w <= 15) // w in (0, 15] | |
784 { | |
785 boost::math::ef::e_float y = x * x; | |
786 r = evaluate_polynomial(P1, y) / evaluate_polynomial(Q1, y); | |
787 factor = w; | |
788 value = factor * r; | |
789 } | |
790 else // w in (15, \infty) | |
791 { | |
792 boost::math::ef::e_float y = 1 / w - boost::math::ef::e_float(1) / 15; | |
793 r = evaluate_polynomial(P2, y) / evaluate_polynomial(Q2, y); | |
794 factor = exp(w) / sqrt(w); | |
795 value = factor * r; | |
796 } | |
797 | |
798 if (x < 0) | |
799 { | |
800 value *= -value; // odd function | |
801 } | |
802 return value; | |
803 } | |
804 | |
805 } // namespace detail | |
806 | |
807 }} | |
808 #endif // BOOST_MATH_E_FLOAT_BINDINGS_HPP | |
809 |