comparison DEPENDENCIES/generic/include/boost/lockfree/queue.hpp @ 16:2665513ce2d3

Add boost headers
author Chris Cannam
date Tue, 05 Aug 2014 11:11:38 +0100
parents
children c530137014c0
comparison
equal deleted inserted replaced
15:663ca0da4350 16:2665513ce2d3
1 // lock-free queue from
2 // Michael, M. M. and Scott, M. L.,
3 // "simple, fast and practical non-blocking and blocking concurrent queue algorithms"
4 //
5 // Copyright (C) 2008-2013 Tim Blechmann
6 //
7 // Distributed under the Boost Software License, Version 1.0. (See
8 // accompanying file LICENSE_1_0.txt or copy at
9 // http://www.boost.org/LICENSE_1_0.txt)
10
11 #ifndef BOOST_LOCKFREE_FIFO_HPP_INCLUDED
12 #define BOOST_LOCKFREE_FIFO_HPP_INCLUDED
13
14 #include <boost/assert.hpp>
15 #ifdef BOOST_NO_CXX11_DELETED_FUNCTIONS
16 #include <boost/noncopyable.hpp>
17 #endif
18 #include <boost/static_assert.hpp>
19 #include <boost/type_traits/has_trivial_assign.hpp>
20 #include <boost/type_traits/has_trivial_destructor.hpp>
21
22 #include <boost/lockfree/detail/atomic.hpp>
23 #include <boost/lockfree/detail/copy_payload.hpp>
24 #include <boost/lockfree/detail/freelist.hpp>
25 #include <boost/lockfree/detail/parameter.hpp>
26 #include <boost/lockfree/detail/tagged_ptr.hpp>
27
28 #if defined(_MSC_VER)
29 #pragma warning(push)
30 #pragma warning(disable: 4324) // structure was padded due to __declspec(align())
31 #endif
32
33
34 namespace boost {
35 namespace lockfree {
36 namespace detail {
37
38 typedef parameter::parameters<boost::parameter::optional<tag::allocator>,
39 boost::parameter::optional<tag::capacity>
40 > queue_signature;
41
42 } /* namespace detail */
43
44
45 /** The queue class provides a multi-writer/multi-reader queue, pushing and popping is lock-free,
46 * construction/destruction has to be synchronized. It uses a freelist for memory management,
47 * freed nodes are pushed to the freelist and not returned to the OS before the queue is destroyed.
48 *
49 * \b Policies:
50 * - \ref boost::lockfree::fixed_sized, defaults to \c boost::lockfree::fixed_sized<false> \n
51 * Can be used to completely disable dynamic memory allocations during push in order to ensure lockfree behavior. \n
52 * If the data structure is configured as fixed-sized, the internal nodes are stored inside an array and they are addressed
53 * by array indexing. This limits the possible size of the queue to the number of elements that can be addressed by the index
54 * type (usually 2**16-2), but on platforms that lack double-width compare-and-exchange instructions, this is the best way
55 * to achieve lock-freedom.
56 *
57 * - \ref boost::lockfree::capacity, optional \n
58 * If this template argument is passed to the options, the size of the queue is set at compile-time.\n
59 * It this option implies \c fixed_sized<true>
60 *
61 * - \ref boost::lockfree::allocator, defaults to \c boost::lockfree::allocator<std::allocator<void>> \n
62 * Specifies the allocator that is used for the internal freelist
63 *
64 * \b Requirements:
65 * - T must have a copy constructor
66 * - T must have a trivial assignment operator
67 * - T must have a trivial destructor
68 *
69 * */
70 #ifndef BOOST_DOXYGEN_INVOKED
71 template <typename T,
72 class A0 = boost::parameter::void_,
73 class A1 = boost::parameter::void_,
74 class A2 = boost::parameter::void_>
75 #else
76 template <typename T, ...Options>
77 #endif
78 class queue
79 #ifdef BOOST_NO_CXX11_DELETED_FUNCTIONS
80 : boost::noncopyable
81 #endif
82 {
83 private:
84 #ifndef BOOST_DOXYGEN_INVOKED
85
86 #ifdef BOOST_HAS_TRIVIAL_DESTRUCTOR
87 BOOST_STATIC_ASSERT((boost::has_trivial_destructor<T>::value));
88 #endif
89
90 #ifdef BOOST_HAS_TRIVIAL_ASSIGN
91 BOOST_STATIC_ASSERT((boost::has_trivial_assign<T>::value));
92 #endif
93
94 typedef typename detail::queue_signature::bind<A0, A1, A2>::type bound_args;
95
96 static const bool has_capacity = detail::extract_capacity<bound_args>::has_capacity;
97 static const size_t capacity = detail::extract_capacity<bound_args>::capacity + 1; // the queue uses one dummy node
98 static const bool fixed_sized = detail::extract_fixed_sized<bound_args>::value;
99 static const bool node_based = !(has_capacity || fixed_sized);
100 static const bool compile_time_sized = has_capacity;
101
102 struct BOOST_LOCKFREE_CACHELINE_ALIGNMENT node
103 {
104 typedef typename detail::select_tagged_handle<node, node_based>::tagged_handle_type tagged_node_handle;
105 typedef typename detail::select_tagged_handle<node, node_based>::handle_type handle_type;
106
107 node(T const & v, handle_type null_handle):
108 data(v)//, next(tagged_node_handle(0, 0))
109 {
110 /* increment tag to avoid ABA problem */
111 tagged_node_handle old_next = next.load(memory_order_relaxed);
112 tagged_node_handle new_next (null_handle, old_next.get_next_tag());
113 next.store(new_next, memory_order_release);
114 }
115
116 node (handle_type null_handle):
117 next(tagged_node_handle(null_handle, 0))
118 {}
119
120 node(void)
121 {}
122
123 atomic<tagged_node_handle> next;
124 T data;
125 };
126
127 typedef typename detail::extract_allocator<bound_args, node>::type node_allocator;
128 typedef typename detail::select_freelist<node, node_allocator, compile_time_sized, fixed_sized, capacity>::type pool_t;
129 typedef typename pool_t::tagged_node_handle tagged_node_handle;
130 typedef typename detail::select_tagged_handle<node, node_based>::handle_type handle_type;
131
132 void initialize(void)
133 {
134 node * n = pool.template construct<true, false>(pool.null_handle());
135 tagged_node_handle dummy_node(pool.get_handle(n), 0);
136 head_.store(dummy_node, memory_order_relaxed);
137 tail_.store(dummy_node, memory_order_release);
138 }
139
140 struct implementation_defined
141 {
142 typedef node_allocator allocator;
143 typedef std::size_t size_type;
144 };
145
146 #endif
147
148 #ifndef BOOST_NO_CXX11_DELETED_FUNCTIONS
149 queue(queue const &) = delete;
150 queue(queue &&) = delete;
151 const queue& operator=( const queue& ) = delete;
152 #endif
153
154 public:
155 typedef T value_type;
156 typedef typename implementation_defined::allocator allocator;
157 typedef typename implementation_defined::size_type size_type;
158
159 /**
160 * \return true, if implementation is lock-free.
161 *
162 * \warning It only checks, if the queue head and tail nodes and the freelist can be modified in a lock-free manner.
163 * On most platforms, the whole implementation is lock-free, if this is true. Using c++0x-style atomics, there is
164 * no possibility to provide a completely accurate implementation, because one would need to test every internal
165 * node, which is impossible if further nodes will be allocated from the operating system.
166 * */
167 bool is_lock_free (void) const
168 {
169 return head_.is_lock_free() && tail_.is_lock_free() && pool.is_lock_free();
170 }
171
172 //! Construct queue
173 // @{
174 queue(void):
175 head_(tagged_node_handle(0, 0)),
176 tail_(tagged_node_handle(0, 0)),
177 pool(node_allocator(), capacity)
178 {
179 BOOST_ASSERT(has_capacity);
180 initialize();
181 }
182
183 template <typename U>
184 explicit queue(typename node_allocator::template rebind<U>::other const & alloc):
185 head_(tagged_node_handle(0, 0)),
186 tail_(tagged_node_handle(0, 0)),
187 pool(alloc, capacity)
188 {
189 BOOST_STATIC_ASSERT(has_capacity);
190 initialize();
191 }
192
193 explicit queue(allocator const & alloc):
194 head_(tagged_node_handle(0, 0)),
195 tail_(tagged_node_handle(0, 0)),
196 pool(alloc, capacity)
197 {
198 BOOST_ASSERT(has_capacity);
199 initialize();
200 }
201 // @}
202
203 //! Construct queue, allocate n nodes for the freelist.
204 // @{
205 explicit queue(size_type n):
206 head_(tagged_node_handle(0, 0)),
207 tail_(tagged_node_handle(0, 0)),
208 pool(node_allocator(), n + 1)
209 {
210 BOOST_ASSERT(!has_capacity);
211 initialize();
212 }
213
214 template <typename U>
215 queue(size_type n, typename node_allocator::template rebind<U>::other const & alloc):
216 head_(tagged_node_handle(0, 0)),
217 tail_(tagged_node_handle(0, 0)),
218 pool(alloc, n + 1)
219 {
220 BOOST_STATIC_ASSERT(!has_capacity);
221 initialize();
222 }
223 // @}
224
225 /** \copydoc boost::lockfree::stack::reserve
226 * */
227 void reserve(size_type n)
228 {
229 pool.template reserve<true>(n);
230 }
231
232 /** \copydoc boost::lockfree::stack::reserve_unsafe
233 * */
234 void reserve_unsafe(size_type n)
235 {
236 pool.template reserve<false>(n);
237 }
238
239 /** Destroys queue, free all nodes from freelist.
240 * */
241 ~queue(void)
242 {
243 T dummy;
244 while(unsynchronized_pop(dummy))
245 {}
246
247 pool.template destruct<false>(head_.load(memory_order_relaxed));
248 }
249
250 /** Check if the queue is empty
251 *
252 * \return true, if the queue is empty, false otherwise
253 * \note The result is only accurate, if no other thread modifies the queue. Therefore it is rarely practical to use this
254 * value in program logic.
255 * */
256 bool empty(void)
257 {
258 return pool.get_handle(head_.load()) == pool.get_handle(tail_.load());
259 }
260
261 /** Pushes object t to the queue.
262 *
263 * \post object will be pushed to the queue, if internal node can be allocated
264 * \returns true, if the push operation is successful.
265 *
266 * \note Thread-safe. If internal memory pool is exhausted and the memory pool is not fixed-sized, a new node will be allocated
267 * from the OS. This may not be lock-free.
268 * */
269 bool push(T const & t)
270 {
271 return do_push<false>(t);
272 }
273
274 /** Pushes object t to the queue.
275 *
276 * \post object will be pushed to the queue, if internal node can be allocated
277 * \returns true, if the push operation is successful.
278 *
279 * \note Thread-safe and non-blocking. If internal memory pool is exhausted, operation will fail
280 * \throws if memory allocator throws
281 * */
282 bool bounded_push(T const & t)
283 {
284 return do_push<true>(t);
285 }
286
287
288 private:
289 #ifndef BOOST_DOXYGEN_INVOKED
290 template <bool Bounded>
291 bool do_push(T const & t)
292 {
293 using detail::likely;
294
295 node * n = pool.template construct<true, Bounded>(t, pool.null_handle());
296 handle_type node_handle = pool.get_handle(n);
297
298 if (n == NULL)
299 return false;
300
301 for (;;) {
302 tagged_node_handle tail = tail_.load(memory_order_acquire);
303 node * tail_node = pool.get_pointer(tail);
304 tagged_node_handle next = tail_node->next.load(memory_order_acquire);
305 node * next_ptr = pool.get_pointer(next);
306
307 tagged_node_handle tail2 = tail_.load(memory_order_acquire);
308 if (likely(tail == tail2)) {
309 if (next_ptr == 0) {
310 tagged_node_handle new_tail_next(node_handle, next.get_next_tag());
311 if ( tail_node->next.compare_exchange_weak(next, new_tail_next) ) {
312 tagged_node_handle new_tail(node_handle, tail.get_next_tag());
313 tail_.compare_exchange_strong(tail, new_tail);
314 return true;
315 }
316 }
317 else {
318 tagged_node_handle new_tail(pool.get_handle(next_ptr), tail.get_next_tag());
319 tail_.compare_exchange_strong(tail, new_tail);
320 }
321 }
322 }
323 }
324 #endif
325
326 public:
327
328 /** Pushes object t to the queue.
329 *
330 * \post object will be pushed to the queue, if internal node can be allocated
331 * \returns true, if the push operation is successful.
332 *
333 * \note Not Thread-safe. If internal memory pool is exhausted and the memory pool is not fixed-sized, a new node will be allocated
334 * from the OS. This may not be lock-free.
335 * \throws if memory allocator throws
336 * */
337 bool unsynchronized_push(T const & t)
338 {
339 node * n = pool.template construct<false, false>(t, pool.null_handle());
340
341 if (n == NULL)
342 return false;
343
344 for (;;) {
345 tagged_node_handle tail = tail_.load(memory_order_relaxed);
346 tagged_node_handle next = tail->next.load(memory_order_relaxed);
347 node * next_ptr = next.get_ptr();
348
349 if (next_ptr == 0) {
350 tail->next.store(tagged_node_handle(n, next.get_next_tag()), memory_order_relaxed);
351 tail_.store(tagged_node_handle(n, tail.get_next_tag()), memory_order_relaxed);
352 return true;
353 }
354 else
355 tail_.store(tagged_node_handle(next_ptr, tail.get_next_tag()), memory_order_relaxed);
356 }
357 }
358
359 /** Pops object from queue.
360 *
361 * \post if pop operation is successful, object will be copied to ret.
362 * \returns true, if the pop operation is successful, false if queue was empty.
363 *
364 * \note Thread-safe and non-blocking
365 * */
366 bool pop (T & ret)
367 {
368 return pop<T>(ret);
369 }
370
371 /** Pops object from queue.
372 *
373 * \pre type U must be constructible by T and copyable, or T must be convertible to U
374 * \post if pop operation is successful, object will be copied to ret.
375 * \returns true, if the pop operation is successful, false if queue was empty.
376 *
377 * \note Thread-safe and non-blocking
378 * */
379 template <typename U>
380 bool pop (U & ret)
381 {
382 using detail::likely;
383 for (;;) {
384 tagged_node_handle head = head_.load(memory_order_acquire);
385 node * head_ptr = pool.get_pointer(head);
386
387 tagged_node_handle tail = tail_.load(memory_order_acquire);
388 tagged_node_handle next = head_ptr->next.load(memory_order_acquire);
389 node * next_ptr = pool.get_pointer(next);
390
391 tagged_node_handle head2 = head_.load(memory_order_acquire);
392 if (likely(head == head2)) {
393 if (pool.get_handle(head) == pool.get_handle(tail)) {
394 if (next_ptr == 0)
395 return false;
396
397 tagged_node_handle new_tail(pool.get_handle(next), tail.get_next_tag());
398 tail_.compare_exchange_strong(tail, new_tail);
399
400 } else {
401 if (next_ptr == 0)
402 /* this check is not part of the original algorithm as published by michael and scott
403 *
404 * however we reuse the tagged_ptr part for the freelist and clear the next part during node
405 * allocation. we can observe a null-pointer here.
406 * */
407 continue;
408 detail::copy_payload(next_ptr->data, ret);
409
410 tagged_node_handle new_head(pool.get_handle(next), head.get_next_tag());
411 if (head_.compare_exchange_weak(head, new_head)) {
412 pool.template destruct<true>(head);
413 return true;
414 }
415 }
416 }
417 }
418 }
419
420 /** Pops object from queue.
421 *
422 * \post if pop operation is successful, object will be copied to ret.
423 * \returns true, if the pop operation is successful, false if queue was empty.
424 *
425 * \note Not thread-safe, but non-blocking
426 *
427 * */
428 bool unsynchronized_pop (T & ret)
429 {
430 return unsynchronized_pop<T>(ret);
431 }
432
433 /** Pops object from queue.
434 *
435 * \pre type U must be constructible by T and copyable, or T must be convertible to U
436 * \post if pop operation is successful, object will be copied to ret.
437 * \returns true, if the pop operation is successful, false if queue was empty.
438 *
439 * \note Not thread-safe, but non-blocking
440 *
441 * */
442 template <typename U>
443 bool unsynchronized_pop (U & ret)
444 {
445 for (;;) {
446 tagged_node_handle head = head_.load(memory_order_relaxed);
447 node * head_ptr = pool.get_pointer(head);
448 tagged_node_handle tail = tail_.load(memory_order_relaxed);
449 tagged_node_handle next = head_ptr->next.load(memory_order_relaxed);
450 node * next_ptr = pool.get_pointer(next);
451
452 if (pool.get_handle(head) == pool.get_handle(tail)) {
453 if (next_ptr == 0)
454 return false;
455
456 tagged_node_handle new_tail(pool.get_handle(next), tail.get_next_tag());
457 tail_.store(new_tail);
458 } else {
459 if (next_ptr == 0)
460 /* this check is not part of the original algorithm as published by michael and scott
461 *
462 * however we reuse the tagged_ptr part for the freelist and clear the next part during node
463 * allocation. we can observe a null-pointer here.
464 * */
465 continue;
466 detail::copy_payload(next_ptr->data, ret);
467 tagged_node_handle new_head(pool.get_handle(next), head.get_next_tag());
468 head_.store(new_head);
469 pool.template destruct<false>(head);
470 return true;
471 }
472 }
473 }
474
475 /** consumes one element via a functor
476 *
477 * pops one element from the queue and applies the functor on this object
478 *
479 * \returns true, if one element was consumed
480 *
481 * \note Thread-safe and non-blocking, if functor is thread-safe and non-blocking
482 * */
483 template <typename Functor>
484 bool consume_one(Functor & f)
485 {
486 T element;
487 bool success = pop(element);
488 if (success)
489 f(element);
490
491 return success;
492 }
493
494 /// \copydoc boost::lockfree::queue::consume_one(Functor & rhs)
495 template <typename Functor>
496 bool consume_one(Functor const & f)
497 {
498 T element;
499 bool success = pop(element);
500 if (success)
501 f(element);
502
503 return success;
504 }
505
506 /** consumes all elements via a functor
507 *
508 * sequentially pops all elements from the queue and applies the functor on each object
509 *
510 * \returns number of elements that are consumed
511 *
512 * \note Thread-safe and non-blocking, if functor is thread-safe and non-blocking
513 * */
514 template <typename Functor>
515 size_t consume_all(Functor & f)
516 {
517 size_t element_count = 0;
518 while (consume_one(f))
519 element_count += 1;
520
521 return element_count;
522 }
523
524 /// \copydoc boost::lockfree::queue::consume_all(Functor & rhs)
525 template <typename Functor>
526 size_t consume_all(Functor const & f)
527 {
528 size_t element_count = 0;
529 while (consume_one(f))
530 element_count += 1;
531
532 return element_count;
533 }
534
535 private:
536 #ifndef BOOST_DOXYGEN_INVOKED
537 atomic<tagged_node_handle> head_;
538 static const int padding_size = BOOST_LOCKFREE_CACHELINE_BYTES - sizeof(tagged_node_handle);
539 char padding1[padding_size];
540 atomic<tagged_node_handle> tail_;
541 char padding2[padding_size];
542
543 pool_t pool;
544 #endif
545 };
546
547 } /* namespace lockfree */
548 } /* namespace boost */
549
550 #if defined(_MSC_VER)
551 #pragma warning(pop)
552 #endif
553
554 #endif /* BOOST_LOCKFREE_FIFO_HPP_INCLUDED */