Mercurial > hg > vamp-build-and-test
comparison DEPENDENCIES/generic/include/boost/graph/tiernan_all_cycles.hpp @ 16:2665513ce2d3
Add boost headers
author | Chris Cannam |
---|---|
date | Tue, 05 Aug 2014 11:11:38 +0100 |
parents | |
children |
comparison
equal
deleted
inserted
replaced
15:663ca0da4350 | 16:2665513ce2d3 |
---|---|
1 // (C) Copyright 2007-2009 Andrew Sutton | |
2 // | |
3 // Use, modification and distribution are subject to the | |
4 // Boost Software License, Version 1.0 (See accompanying file | |
5 // LICENSE_1_0.txt or http://www.boost.org/LICENSE_1_0.txt) | |
6 | |
7 #ifndef BOOST_GRAPH_CYCLE_HPP | |
8 #define BOOST_GRAPH_CYCLE_HPP | |
9 | |
10 #include <vector> | |
11 | |
12 #include <boost/config.hpp> | |
13 #include <boost/graph/graph_concepts.hpp> | |
14 #include <boost/graph/graph_traits.hpp> | |
15 #include <boost/graph/properties.hpp> | |
16 #include <boost/concept/assert.hpp> | |
17 | |
18 #include <boost/concept/detail/concept_def.hpp> | |
19 namespace boost { | |
20 namespace concepts { | |
21 BOOST_concept(CycleVisitor,(Visitor)(Path)(Graph)) | |
22 { | |
23 BOOST_CONCEPT_USAGE(CycleVisitor) | |
24 { | |
25 vis.cycle(p, g); | |
26 } | |
27 private: | |
28 Visitor vis; | |
29 Graph g; | |
30 Path p; | |
31 }; | |
32 } /* namespace concepts */ | |
33 using concepts::CycleVisitorConcept; | |
34 } /* namespace boost */ | |
35 #include <boost/concept/detail/concept_undef.hpp> | |
36 | |
37 | |
38 namespace boost | |
39 { | |
40 | |
41 // The implementation of this algorithm is a reproduction of the Teirnan | |
42 // approach for directed graphs: bibtex follows | |
43 // | |
44 // @article{362819, | |
45 // author = {James C. Tiernan}, | |
46 // title = {An efficient search algorithm to find the elementary circuits of a graph}, | |
47 // journal = {Commun. ACM}, | |
48 // volume = {13}, | |
49 // number = {12}, | |
50 // year = {1970}, | |
51 // issn = {0001-0782}, | |
52 // pages = {722--726}, | |
53 // doi = {http://doi.acm.org/10.1145/362814.362819}, | |
54 // publisher = {ACM Press}, | |
55 // address = {New York, NY, USA}, | |
56 // } | |
57 // | |
58 // It should be pointed out that the author does not provide a complete analysis for | |
59 // either time or space. This is in part, due to the fact that it's a fairly input | |
60 // sensitive problem related to the density and construction of the graph, not just | |
61 // its size. | |
62 // | |
63 // I've also taken some liberties with the interpretation of the algorithm - I've | |
64 // basically modernized it to use real data structures (no more arrays and matrices). | |
65 // Oh... and there's explicit control structures - not just gotos. | |
66 // | |
67 // The problem is definitely NP-complete, an unbounded implementation of this | |
68 // will probably run for quite a while on a large graph. The conclusions | |
69 // of this paper also reference a Paton algorithm for undirected graphs as being | |
70 // much more efficient (apparently based on spanning trees). Although not implemented, | |
71 // it can be found here: | |
72 // | |
73 // @article{363232, | |
74 // author = {Keith Paton}, | |
75 // title = {An algorithm for finding a fundamental set of cycles of a graph}, | |
76 // journal = {Commun. ACM}, | |
77 // volume = {12}, | |
78 // number = {9}, | |
79 // year = {1969}, | |
80 // issn = {0001-0782}, | |
81 // pages = {514--518}, | |
82 // doi = {http://doi.acm.org/10.1145/363219.363232}, | |
83 // publisher = {ACM Press}, | |
84 // address = {New York, NY, USA}, | |
85 // } | |
86 | |
87 /** | |
88 * The default cycle visitor provides an empty visit function for cycle | |
89 * visitors. | |
90 */ | |
91 struct cycle_visitor | |
92 { | |
93 template <typename Path, typename Graph> | |
94 inline void cycle(const Path& p, const Graph& g) | |
95 { } | |
96 }; | |
97 | |
98 /** | |
99 * The min_max_cycle_visitor simultaneously records the minimum and maximum | |
100 * cycles in a graph. | |
101 */ | |
102 struct min_max_cycle_visitor | |
103 { | |
104 min_max_cycle_visitor(std::size_t& min_, std::size_t& max_) | |
105 : minimum(min_), maximum(max_) | |
106 { } | |
107 | |
108 template <typename Path, typename Graph> | |
109 inline void cycle(const Path& p, const Graph& g) | |
110 { | |
111 BOOST_USING_STD_MIN(); | |
112 BOOST_USING_STD_MAX(); | |
113 std::size_t len = p.size(); | |
114 minimum = min BOOST_PREVENT_MACRO_SUBSTITUTION (minimum, len); | |
115 maximum = max BOOST_PREVENT_MACRO_SUBSTITUTION (maximum, len); | |
116 } | |
117 std::size_t& minimum; | |
118 std::size_t& maximum; | |
119 }; | |
120 | |
121 inline min_max_cycle_visitor | |
122 find_min_max_cycle(std::size_t& min_, std::size_t& max_) | |
123 { return min_max_cycle_visitor(min_, max_); } | |
124 | |
125 namespace detail | |
126 { | |
127 template <typename Graph, typename Path> | |
128 inline bool | |
129 is_vertex_in_path(const Graph&, | |
130 typename graph_traits<Graph>::vertex_descriptor v, | |
131 const Path& p) | |
132 { | |
133 return (std::find(p.begin(), p.end(), v) != p.end()); | |
134 } | |
135 | |
136 template <typename Graph, typename ClosedMatrix> | |
137 inline bool | |
138 is_path_closed(const Graph& g, | |
139 typename graph_traits<Graph>::vertex_descriptor u, | |
140 typename graph_traits<Graph>::vertex_descriptor v, | |
141 const ClosedMatrix& closed) | |
142 { | |
143 // the path from u to v is closed if v can be found in the list | |
144 // of closed vertices associated with u. | |
145 typedef typename ClosedMatrix::const_reference Row; | |
146 Row r = closed[get(vertex_index, g, u)]; | |
147 if(find(r.begin(), r.end(), v) != r.end()) { | |
148 return true; | |
149 } | |
150 return false; | |
151 } | |
152 | |
153 template <typename Graph, typename Path, typename ClosedMatrix> | |
154 inline bool | |
155 can_extend_path(const Graph& g, | |
156 typename graph_traits<Graph>::edge_descriptor e, | |
157 const Path& p, | |
158 const ClosedMatrix& m) | |
159 { | |
160 BOOST_CONCEPT_ASSERT(( IncidenceGraphConcept<Graph> )); | |
161 BOOST_CONCEPT_ASSERT(( VertexIndexGraphConcept<Graph> )); | |
162 typedef typename graph_traits<Graph>::vertex_descriptor Vertex; | |
163 | |
164 // get the vertices in question | |
165 Vertex | |
166 u = source(e, g), | |
167 v = target(e, g); | |
168 | |
169 // conditions for allowing a traversal along this edge are: | |
170 // 1. the index of v must be greater than that at which the | |
171 // path is rooted (p.front()). | |
172 // 2. the vertex v cannot already be in the path | |
173 // 3. the vertex v cannot be closed to the vertex u | |
174 | |
175 bool indices = get(vertex_index, g, p.front()) < get(vertex_index, g, v); | |
176 bool path = !is_vertex_in_path(g, v, p); | |
177 bool closed = !is_path_closed(g, u, v, m); | |
178 return indices && path && closed; | |
179 } | |
180 | |
181 template <typename Graph, typename Path> | |
182 inline bool | |
183 can_wrap_path(const Graph& g, const Path& p) | |
184 { | |
185 BOOST_CONCEPT_ASSERT(( IncidenceGraphConcept<Graph> )); | |
186 typedef typename graph_traits<Graph>::vertex_descriptor Vertex; | |
187 typedef typename graph_traits<Graph>::out_edge_iterator OutIterator; | |
188 | |
189 // iterate over the out-edges of the back, looking for the | |
190 // front of the path. also, we can't travel along the same | |
191 // edge that we did on the way here, but we don't quite have the | |
192 // stringent requirements that we do in can_extend_path(). | |
193 Vertex | |
194 u = p.back(), | |
195 v = p.front(); | |
196 OutIterator i, end; | |
197 for(boost::tie(i, end) = out_edges(u, g); i != end; ++i) { | |
198 if((target(*i, g) == v)) { | |
199 return true; | |
200 } | |
201 } | |
202 return false; | |
203 } | |
204 | |
205 template <typename Graph, | |
206 typename Path, | |
207 typename ClosedMatrix> | |
208 inline typename graph_traits<Graph>::vertex_descriptor | |
209 extend_path(const Graph& g, | |
210 Path& p, | |
211 ClosedMatrix& closed) | |
212 { | |
213 BOOST_CONCEPT_ASSERT(( IncidenceGraphConcept<Graph> )); | |
214 typedef typename graph_traits<Graph>::vertex_descriptor Vertex; | |
215 typedef typename graph_traits<Graph>::out_edge_iterator OutIterator; | |
216 | |
217 // get the current vertex | |
218 Vertex u = p.back(); | |
219 Vertex ret = graph_traits<Graph>::null_vertex(); | |
220 | |
221 // AdjacencyIterator i, end; | |
222 OutIterator i, end; | |
223 for(boost::tie(i, end) = out_edges(u, g); i != end; ++i) { | |
224 Vertex v = target(*i, g); | |
225 | |
226 // if we can actually extend along this edge, | |
227 // then that's what we want to do | |
228 if(can_extend_path(g, *i, p, closed)) { | |
229 p.push_back(v); // add the vertex to the path | |
230 ret = v; | |
231 break; | |
232 } | |
233 } | |
234 return ret; | |
235 } | |
236 | |
237 template <typename Graph, typename Path, typename ClosedMatrix> | |
238 inline bool | |
239 exhaust_paths(const Graph& g, Path& p, ClosedMatrix& closed) | |
240 { | |
241 BOOST_CONCEPT_ASSERT(( GraphConcept<Graph> )); | |
242 typedef typename graph_traits<Graph>::vertex_descriptor Vertex; | |
243 | |
244 // if there's more than one vertex in the path, this closes | |
245 // of some possible routes and returns true. otherwise, if there's | |
246 // only one vertex left, the vertex has been used up | |
247 if(p.size() > 1) { | |
248 // get the last and second to last vertices, popping the last | |
249 // vertex off the path | |
250 Vertex last, prev; | |
251 last = p.back(); | |
252 p.pop_back(); | |
253 prev = p.back(); | |
254 | |
255 // reset the closure for the last vertex of the path and | |
256 // indicate that the last vertex in p is now closed to | |
257 // the next-to-last vertex in p | |
258 closed[get(vertex_index, g, last)].clear(); | |
259 closed[get(vertex_index, g, prev)].push_back(last); | |
260 return true; | |
261 } | |
262 else { | |
263 return false; | |
264 } | |
265 } | |
266 | |
267 template <typename Graph, typename Visitor> | |
268 inline void | |
269 all_cycles_from_vertex(const Graph& g, | |
270 typename graph_traits<Graph>::vertex_descriptor v, | |
271 Visitor vis, | |
272 std::size_t minlen, | |
273 std::size_t maxlen) | |
274 { | |
275 BOOST_CONCEPT_ASSERT(( VertexListGraphConcept<Graph> )); | |
276 typedef typename graph_traits<Graph>::vertex_descriptor Vertex; | |
277 typedef std::vector<Vertex> Path; | |
278 BOOST_CONCEPT_ASSERT(( CycleVisitorConcept<Visitor,Path,Graph> )); | |
279 typedef std::vector<Vertex> VertexList; | |
280 typedef std::vector<VertexList> ClosedMatrix; | |
281 | |
282 Path p; | |
283 ClosedMatrix closed(num_vertices(g), VertexList()); | |
284 Vertex null = graph_traits<Graph>::null_vertex(); | |
285 | |
286 // each path investigation starts at the ith vertex | |
287 p.push_back(v); | |
288 | |
289 while(1) { | |
290 // extend the path until we've reached the end or the | |
291 // maxlen-sized cycle | |
292 Vertex j = null; | |
293 while(((j = detail::extend_path(g, p, closed)) != null) | |
294 && (p.size() < maxlen)) | |
295 ; // empty loop | |
296 | |
297 // if we're done extending the path and there's an edge | |
298 // connecting the back to the front, then we should have | |
299 // a cycle. | |
300 if(detail::can_wrap_path(g, p) && p.size() >= minlen) { | |
301 vis.cycle(p, g); | |
302 } | |
303 | |
304 if(!detail::exhaust_paths(g, p, closed)) { | |
305 break; | |
306 } | |
307 } | |
308 } | |
309 | |
310 // Select the minimum allowable length of a cycle based on the directedness | |
311 // of the graph - 2 for directed, 3 for undirected. | |
312 template <typename D> struct min_cycles { enum { value = 2 }; }; | |
313 template <> struct min_cycles<undirected_tag> { enum { value = 3 }; }; | |
314 } /* namespace detail */ | |
315 | |
316 template <typename Graph, typename Visitor> | |
317 inline void | |
318 tiernan_all_cycles(const Graph& g, | |
319 Visitor vis, | |
320 std::size_t minlen, | |
321 std::size_t maxlen) | |
322 { | |
323 BOOST_CONCEPT_ASSERT(( VertexListGraphConcept<Graph> )); | |
324 typedef typename graph_traits<Graph>::vertex_iterator VertexIterator; | |
325 | |
326 VertexIterator i, end; | |
327 for(boost::tie(i, end) = vertices(g); i != end; ++i) { | |
328 detail::all_cycles_from_vertex(g, *i, vis, minlen, maxlen); | |
329 } | |
330 } | |
331 | |
332 template <typename Graph, typename Visitor> | |
333 inline void | |
334 tiernan_all_cycles(const Graph& g, Visitor vis, std::size_t maxlen) | |
335 { | |
336 typedef typename graph_traits<Graph>::directed_category Dir; | |
337 tiernan_all_cycles(g, vis, detail::min_cycles<Dir>::value, maxlen); | |
338 } | |
339 | |
340 template <typename Graph, typename Visitor> | |
341 inline void | |
342 tiernan_all_cycles(const Graph& g, Visitor vis) | |
343 { | |
344 typedef typename graph_traits<Graph>::directed_category Dir; | |
345 tiernan_all_cycles(g, vis, detail::min_cycles<Dir>::value, | |
346 (std::numeric_limits<std::size_t>::max)()); | |
347 } | |
348 | |
349 template <typename Graph> | |
350 inline std::pair<std::size_t, std::size_t> | |
351 tiernan_girth_and_circumference(const Graph& g) | |
352 { | |
353 std::size_t | |
354 min_ = (std::numeric_limits<std::size_t>::max)(), | |
355 max_ = 0; | |
356 tiernan_all_cycles(g, find_min_max_cycle(min_, max_)); | |
357 | |
358 // if this is the case, the graph is acyclic... | |
359 if(max_ == 0) max_ = min_; | |
360 | |
361 return std::make_pair(min_, max_); | |
362 } | |
363 | |
364 template <typename Graph> | |
365 inline std::size_t | |
366 tiernan_girth(const Graph& g) | |
367 { return tiernan_girth_and_circumference(g).first; } | |
368 | |
369 template <typename Graph> | |
370 inline std::size_t | |
371 tiernan_circumference(const Graph& g) | |
372 { return tiernan_girth_and_circumference(g).second; } | |
373 | |
374 } /* namespace boost */ | |
375 | |
376 #endif |