Mercurial > hg > vamp-build-and-test
comparison DEPENDENCIES/generic/include/boost/accumulators/statistics/p_square_quantile.hpp @ 16:2665513ce2d3
Add boost headers
author | Chris Cannam |
---|---|
date | Tue, 05 Aug 2014 11:11:38 +0100 |
parents | |
children |
comparison
equal
deleted
inserted
replaced
15:663ca0da4350 | 16:2665513ce2d3 |
---|---|
1 /////////////////////////////////////////////////////////////////////////////// | |
2 // p_square_quantile.hpp | |
3 // | |
4 // Copyright 2005 Daniel Egloff. Distributed under the Boost | |
5 // Software License, Version 1.0. (See accompanying file | |
6 // LICENSE_1_0.txt or copy at http://www.boost.org/LICENSE_1_0.txt) | |
7 | |
8 #ifndef BOOST_ACCUMULATORS_STATISTICS_P_SQUARE_QUANTILE_HPP_DE_01_01_2006 | |
9 #define BOOST_ACCUMULATORS_STATISTICS_P_SQUARE_QUANTILE_HPP_DE_01_01_2006 | |
10 | |
11 #include <cmath> | |
12 #include <functional> | |
13 #include <boost/array.hpp> | |
14 #include <boost/mpl/placeholders.hpp> | |
15 #include <boost/type_traits/is_same.hpp> | |
16 #include <boost/parameter/keyword.hpp> | |
17 #include <boost/accumulators/framework/accumulator_base.hpp> | |
18 #include <boost/accumulators/framework/extractor.hpp> | |
19 #include <boost/accumulators/numeric/functional.hpp> | |
20 #include <boost/accumulators/framework/parameters/sample.hpp> | |
21 #include <boost/accumulators/framework/depends_on.hpp> | |
22 #include <boost/accumulators/statistics_fwd.hpp> | |
23 #include <boost/accumulators/statistics/count.hpp> | |
24 #include <boost/accumulators/statistics/parameters/quantile_probability.hpp> | |
25 | |
26 namespace boost { namespace accumulators | |
27 { | |
28 | |
29 namespace impl | |
30 { | |
31 /////////////////////////////////////////////////////////////////////////////// | |
32 // p_square_quantile_impl | |
33 // single quantile estimation | |
34 /** | |
35 @brief Single quantile estimation with the \f$P^2\f$ algorithm | |
36 | |
37 The \f$P^2\f$ algorithm estimates a quantile dynamically without storing samples. Instead of | |
38 storing the whole sample cumulative distribution, only five points (markers) are stored. The heights | |
39 of these markers are the minimum and the maximum of the samples and the current estimates of the | |
40 \f$(p/2)\f$-, \f$p\f$- and \f$(1+p)/2\f$-quantiles. Their positions are equal to the number | |
41 of samples that are smaller or equal to the markers. Each time a new samples is recorded, the | |
42 positions of the markers are updated and if necessary their heights are adjusted using a piecewise- | |
43 parabolic formula. | |
44 | |
45 For further details, see | |
46 | |
47 R. Jain and I. Chlamtac, The P^2 algorithm for dynamic calculation of quantiles and | |
48 histograms without storing observations, Communications of the ACM, | |
49 Volume 28 (October), Number 10, 1985, p. 1076-1085. | |
50 | |
51 @param quantile_probability | |
52 */ | |
53 template<typename Sample, typename Impl> | |
54 struct p_square_quantile_impl | |
55 : accumulator_base | |
56 { | |
57 typedef typename numeric::functional::fdiv<Sample, std::size_t>::result_type float_type; | |
58 typedef array<float_type, 5> array_type; | |
59 // for boost::result_of | |
60 typedef float_type result_type; | |
61 | |
62 template<typename Args> | |
63 p_square_quantile_impl(Args const &args) | |
64 : p(is_same<Impl, for_median>::value ? 0.5 : args[quantile_probability | 0.5]) | |
65 , heights() | |
66 , actual_positions() | |
67 , desired_positions() | |
68 , positions_increments() | |
69 { | |
70 for(std::size_t i = 0; i < 5; ++i) | |
71 { | |
72 this->actual_positions[i] = i + 1.; | |
73 } | |
74 | |
75 this->desired_positions[0] = 1.; | |
76 this->desired_positions[1] = 1. + 2. * this->p; | |
77 this->desired_positions[2] = 1. + 4. * this->p; | |
78 this->desired_positions[3] = 3. + 2. * this->p; | |
79 this->desired_positions[4] = 5.; | |
80 | |
81 this->positions_increments[0] = 0.; | |
82 this->positions_increments[1] = this->p / 2.; | |
83 this->positions_increments[2] = this->p; | |
84 this->positions_increments[3] = (1. + this->p) / 2.; | |
85 this->positions_increments[4] = 1.; | |
86 } | |
87 | |
88 template<typename Args> | |
89 void operator ()(Args const &args) | |
90 { | |
91 std::size_t cnt = count(args); | |
92 | |
93 // accumulate 5 first samples | |
94 if(cnt <= 5) | |
95 { | |
96 this->heights[cnt - 1] = args[sample]; | |
97 | |
98 // complete the initialization of heights by sorting | |
99 if(cnt == 5) | |
100 { | |
101 std::sort(this->heights.begin(), this->heights.end()); | |
102 } | |
103 } | |
104 else | |
105 { | |
106 std::size_t sample_cell = 1; // k | |
107 | |
108 // find cell k such that heights[k-1] <= args[sample] < heights[k] and adjust extreme values | |
109 if (args[sample] < this->heights[0]) | |
110 { | |
111 this->heights[0] = args[sample]; | |
112 sample_cell = 1; | |
113 } | |
114 else if (this->heights[4] <= args[sample]) | |
115 { | |
116 this->heights[4] = args[sample]; | |
117 sample_cell = 4; | |
118 } | |
119 else | |
120 { | |
121 typedef typename array_type::iterator iterator; | |
122 iterator it = std::upper_bound( | |
123 this->heights.begin() | |
124 , this->heights.end() | |
125 , args[sample] | |
126 ); | |
127 | |
128 sample_cell = std::distance(this->heights.begin(), it); | |
129 } | |
130 | |
131 // update positions of markers above sample_cell | |
132 for(std::size_t i = sample_cell; i < 5; ++i) | |
133 { | |
134 ++this->actual_positions[i]; | |
135 } | |
136 | |
137 // update desired positions of all markers | |
138 for(std::size_t i = 0; i < 5; ++i) | |
139 { | |
140 this->desired_positions[i] += this->positions_increments[i]; | |
141 } | |
142 | |
143 // adjust heights and actual positions of markers 1 to 3 if necessary | |
144 for(std::size_t i = 1; i <= 3; ++i) | |
145 { | |
146 // offset to desired positions | |
147 float_type d = this->desired_positions[i] - this->actual_positions[i]; | |
148 | |
149 // offset to next position | |
150 float_type dp = this->actual_positions[i + 1] - this->actual_positions[i]; | |
151 | |
152 // offset to previous position | |
153 float_type dm = this->actual_positions[i - 1] - this->actual_positions[i]; | |
154 | |
155 // height ds | |
156 float_type hp = (this->heights[i + 1] - this->heights[i]) / dp; | |
157 float_type hm = (this->heights[i - 1] - this->heights[i]) / dm; | |
158 | |
159 if((d >= 1. && dp > 1.) || (d <= -1. && dm < -1.)) | |
160 { | |
161 short sign_d = static_cast<short>(d / std::abs(d)); | |
162 | |
163 // try adjusting heights[i] using p-squared formula | |
164 float_type h = this->heights[i] + sign_d / (dp - dm) * ((sign_d - dm) * hp | |
165 + (dp - sign_d) * hm); | |
166 | |
167 if(this->heights[i - 1] < h && h < this->heights[i + 1]) | |
168 { | |
169 this->heights[i] = h; | |
170 } | |
171 else | |
172 { | |
173 // use linear formula | |
174 if(d > 0) | |
175 { | |
176 this->heights[i] += hp; | |
177 } | |
178 if(d < 0) | |
179 { | |
180 this->heights[i] -= hm; | |
181 } | |
182 } | |
183 this->actual_positions[i] += sign_d; | |
184 } | |
185 } | |
186 } | |
187 } | |
188 | |
189 result_type result(dont_care) const | |
190 { | |
191 return this->heights[2]; | |
192 } | |
193 | |
194 private: | |
195 float_type p; // the quantile probability p | |
196 array_type heights; // q_i | |
197 array_type actual_positions; // n_i | |
198 array_type desired_positions; // n'_i | |
199 array_type positions_increments; // dn'_i | |
200 }; | |
201 | |
202 } // namespace detail | |
203 | |
204 /////////////////////////////////////////////////////////////////////////////// | |
205 // tag::p_square_quantile | |
206 // | |
207 namespace tag | |
208 { | |
209 struct p_square_quantile | |
210 : depends_on<count> | |
211 { | |
212 /// INTERNAL ONLY | |
213 /// | |
214 typedef accumulators::impl::p_square_quantile_impl<mpl::_1, regular> impl; | |
215 }; | |
216 struct p_square_quantile_for_median | |
217 : depends_on<count> | |
218 { | |
219 /// INTERNAL ONLY | |
220 /// | |
221 typedef accumulators::impl::p_square_quantile_impl<mpl::_1, for_median> impl; | |
222 }; | |
223 } | |
224 | |
225 /////////////////////////////////////////////////////////////////////////////// | |
226 // extract::p_square_quantile | |
227 // extract::p_square_quantile_for_median | |
228 // | |
229 namespace extract | |
230 { | |
231 extractor<tag::p_square_quantile> const p_square_quantile = {}; | |
232 extractor<tag::p_square_quantile_for_median> const p_square_quantile_for_median = {}; | |
233 | |
234 BOOST_ACCUMULATORS_IGNORE_GLOBAL(p_square_quantile) | |
235 BOOST_ACCUMULATORS_IGNORE_GLOBAL(p_square_quantile_for_median) | |
236 } | |
237 | |
238 using extract::p_square_quantile; | |
239 using extract::p_square_quantile_for_median; | |
240 | |
241 // So that p_square_quantile can be automatically substituted with | |
242 // weighted_p_square_quantile when the weight parameter is non-void | |
243 template<> | |
244 struct as_weighted_feature<tag::p_square_quantile> | |
245 { | |
246 typedef tag::weighted_p_square_quantile type; | |
247 }; | |
248 | |
249 template<> | |
250 struct feature_of<tag::weighted_p_square_quantile> | |
251 : feature_of<tag::p_square_quantile> | |
252 { | |
253 }; | |
254 | |
255 }} // namespace boost::accumulators | |
256 | |
257 #endif |