annotate DEPENDENCIES/generic/include/boost/random/poisson_distribution.hpp @ 125:34e428693f5d vext

Vext -> Repoint
author Chris Cannam
date Thu, 14 Jun 2018 11:15:39 +0100
parents c530137014c0
children
rev   line source
Chris@16 1 /* boost random/poisson_distribution.hpp header file
Chris@16 2 *
Chris@16 3 * Copyright Jens Maurer 2002
Chris@16 4 * Copyright Steven Watanabe 2010
Chris@16 5 * Distributed under the Boost Software License, Version 1.0. (See
Chris@16 6 * accompanying file LICENSE_1_0.txt or copy at
Chris@16 7 * http://www.boost.org/LICENSE_1_0.txt)
Chris@16 8 *
Chris@16 9 * See http://www.boost.org for most recent version including documentation.
Chris@16 10 *
Chris@101 11 * $Id$
Chris@16 12 *
Chris@16 13 */
Chris@16 14
Chris@16 15 #ifndef BOOST_RANDOM_POISSON_DISTRIBUTION_HPP
Chris@16 16 #define BOOST_RANDOM_POISSON_DISTRIBUTION_HPP
Chris@16 17
Chris@16 18 #include <boost/config/no_tr1/cmath.hpp>
Chris@16 19 #include <cstdlib>
Chris@16 20 #include <iosfwd>
Chris@16 21 #include <boost/assert.hpp>
Chris@16 22 #include <boost/limits.hpp>
Chris@16 23 #include <boost/random/uniform_01.hpp>
Chris@16 24 #include <boost/random/detail/config.hpp>
Chris@16 25
Chris@16 26 #include <boost/random/detail/disable_warnings.hpp>
Chris@16 27
Chris@16 28 namespace boost {
Chris@16 29 namespace random {
Chris@16 30
Chris@16 31 namespace detail {
Chris@16 32
Chris@16 33 template<class RealType>
Chris@16 34 struct poisson_table {
Chris@16 35 static RealType value[10];
Chris@16 36 };
Chris@16 37
Chris@16 38 template<class RealType>
Chris@16 39 RealType poisson_table<RealType>::value[10] = {
Chris@16 40 0.0,
Chris@16 41 0.0,
Chris@16 42 0.69314718055994529,
Chris@16 43 1.7917594692280550,
Chris@16 44 3.1780538303479458,
Chris@16 45 4.7874917427820458,
Chris@16 46 6.5792512120101012,
Chris@16 47 8.5251613610654147,
Chris@16 48 10.604602902745251,
Chris@16 49 12.801827480081469
Chris@16 50 };
Chris@16 51
Chris@16 52 }
Chris@16 53
Chris@16 54 /**
Chris@16 55 * An instantiation of the class template @c poisson_distribution is a
Chris@16 56 * model of \random_distribution. The poisson distribution has
Chris@16 57 * \f$p(i) = \frac{e^{-\lambda}\lambda^i}{i!}\f$
Chris@16 58 *
Chris@16 59 * This implementation is based on the PTRD algorithm described
Chris@16 60 *
Chris@16 61 * @blockquote
Chris@16 62 * "The transformed rejection method for generating Poisson random variables",
Chris@16 63 * Wolfgang Hormann, Insurance: Mathematics and Economics
Chris@16 64 * Volume 12, Issue 1, February 1993, Pages 39-45
Chris@16 65 * @endblockquote
Chris@16 66 */
Chris@16 67 template<class IntType = int, class RealType = double>
Chris@16 68 class poisson_distribution {
Chris@16 69 public:
Chris@16 70 typedef IntType result_type;
Chris@16 71 typedef RealType input_type;
Chris@16 72
Chris@16 73 class param_type {
Chris@16 74 public:
Chris@16 75 typedef poisson_distribution distribution_type;
Chris@16 76 /**
Chris@16 77 * Construct a param_type object with the parameter "mean"
Chris@16 78 *
Chris@16 79 * Requires: mean > 0
Chris@16 80 */
Chris@16 81 explicit param_type(RealType mean_arg = RealType(1))
Chris@16 82 : _mean(mean_arg)
Chris@16 83 {
Chris@16 84 BOOST_ASSERT(_mean > 0);
Chris@16 85 }
Chris@16 86 /* Returns the "mean" parameter of the distribution. */
Chris@16 87 RealType mean() const { return _mean; }
Chris@16 88 #ifndef BOOST_RANDOM_NO_STREAM_OPERATORS
Chris@16 89 /** Writes the parameters of the distribution to a @c std::ostream. */
Chris@16 90 template<class CharT, class Traits>
Chris@16 91 friend std::basic_ostream<CharT, Traits>&
Chris@16 92 operator<<(std::basic_ostream<CharT, Traits>& os,
Chris@16 93 const param_type& parm)
Chris@16 94 {
Chris@16 95 os << parm._mean;
Chris@16 96 return os;
Chris@16 97 }
Chris@16 98
Chris@16 99 /** Reads the parameters of the distribution from a @c std::istream. */
Chris@16 100 template<class CharT, class Traits>
Chris@16 101 friend std::basic_istream<CharT, Traits>&
Chris@16 102 operator>>(std::basic_istream<CharT, Traits>& is, param_type& parm)
Chris@16 103 {
Chris@16 104 is >> parm._mean;
Chris@16 105 return is;
Chris@16 106 }
Chris@16 107 #endif
Chris@16 108 /** Returns true if the parameters have the same values. */
Chris@16 109 friend bool operator==(const param_type& lhs, const param_type& rhs)
Chris@16 110 {
Chris@16 111 return lhs._mean == rhs._mean;
Chris@16 112 }
Chris@16 113 /** Returns true if the parameters have different values. */
Chris@16 114 friend bool operator!=(const param_type& lhs, const param_type& rhs)
Chris@16 115 {
Chris@16 116 return !(lhs == rhs);
Chris@16 117 }
Chris@16 118 private:
Chris@16 119 RealType _mean;
Chris@16 120 };
Chris@16 121
Chris@16 122 /**
Chris@16 123 * Constructs a @c poisson_distribution with the parameter @c mean.
Chris@16 124 *
Chris@16 125 * Requires: mean > 0
Chris@16 126 */
Chris@16 127 explicit poisson_distribution(RealType mean_arg = RealType(1))
Chris@16 128 : _mean(mean_arg)
Chris@16 129 {
Chris@16 130 BOOST_ASSERT(_mean > 0);
Chris@16 131 init();
Chris@16 132 }
Chris@16 133
Chris@16 134 /**
Chris@16 135 * Construct an @c poisson_distribution object from the
Chris@16 136 * parameters.
Chris@16 137 */
Chris@16 138 explicit poisson_distribution(const param_type& parm)
Chris@16 139 : _mean(parm.mean())
Chris@16 140 {
Chris@16 141 init();
Chris@16 142 }
Chris@16 143
Chris@16 144 /**
Chris@16 145 * Returns a random variate distributed according to the
Chris@16 146 * poisson distribution.
Chris@16 147 */
Chris@16 148 template<class URNG>
Chris@16 149 IntType operator()(URNG& urng) const
Chris@16 150 {
Chris@16 151 if(use_inversion()) {
Chris@16 152 return invert(urng);
Chris@16 153 } else {
Chris@16 154 return generate(urng);
Chris@16 155 }
Chris@16 156 }
Chris@16 157
Chris@16 158 /**
Chris@16 159 * Returns a random variate distributed according to the
Chris@16 160 * poisson distribution with parameters specified by param.
Chris@16 161 */
Chris@16 162 template<class URNG>
Chris@16 163 IntType operator()(URNG& urng, const param_type& parm) const
Chris@16 164 {
Chris@16 165 return poisson_distribution(parm)(urng);
Chris@16 166 }
Chris@16 167
Chris@16 168 /** Returns the "mean" parameter of the distribution. */
Chris@16 169 RealType mean() const { return _mean; }
Chris@16 170
Chris@16 171 /** Returns the smallest value that the distribution can produce. */
Chris@16 172 IntType min BOOST_PREVENT_MACRO_SUBSTITUTION() const { return 0; }
Chris@16 173 /** Returns the largest value that the distribution can produce. */
Chris@16 174 IntType max BOOST_PREVENT_MACRO_SUBSTITUTION() const
Chris@16 175 { return (std::numeric_limits<IntType>::max)(); }
Chris@16 176
Chris@16 177 /** Returns the parameters of the distribution. */
Chris@16 178 param_type param() const { return param_type(_mean); }
Chris@16 179 /** Sets parameters of the distribution. */
Chris@16 180 void param(const param_type& parm)
Chris@16 181 {
Chris@16 182 _mean = parm.mean();
Chris@16 183 init();
Chris@16 184 }
Chris@16 185
Chris@16 186 /**
Chris@16 187 * Effects: Subsequent uses of the distribution do not depend
Chris@16 188 * on values produced by any engine prior to invoking reset.
Chris@16 189 */
Chris@16 190 void reset() { }
Chris@16 191
Chris@16 192 #ifndef BOOST_RANDOM_NO_STREAM_OPERATORS
Chris@16 193 /** Writes the parameters of the distribution to a @c std::ostream. */
Chris@16 194 template<class CharT, class Traits>
Chris@16 195 friend std::basic_ostream<CharT,Traits>&
Chris@16 196 operator<<(std::basic_ostream<CharT,Traits>& os,
Chris@16 197 const poisson_distribution& pd)
Chris@16 198 {
Chris@16 199 os << pd.param();
Chris@16 200 return os;
Chris@16 201 }
Chris@16 202
Chris@16 203 /** Reads the parameters of the distribution from a @c std::istream. */
Chris@16 204 template<class CharT, class Traits>
Chris@16 205 friend std::basic_istream<CharT,Traits>&
Chris@16 206 operator>>(std::basic_istream<CharT,Traits>& is, poisson_distribution& pd)
Chris@16 207 {
Chris@16 208 pd.read(is);
Chris@16 209 return is;
Chris@16 210 }
Chris@16 211 #endif
Chris@16 212
Chris@16 213 /** Returns true if the two distributions will produce the same
Chris@16 214 sequence of values, given equal generators. */
Chris@16 215 friend bool operator==(const poisson_distribution& lhs,
Chris@16 216 const poisson_distribution& rhs)
Chris@16 217 {
Chris@16 218 return lhs._mean == rhs._mean;
Chris@16 219 }
Chris@16 220 /** Returns true if the two distributions could produce different
Chris@16 221 sequences of values, given equal generators. */
Chris@16 222 friend bool operator!=(const poisson_distribution& lhs,
Chris@16 223 const poisson_distribution& rhs)
Chris@16 224 {
Chris@16 225 return !(lhs == rhs);
Chris@16 226 }
Chris@16 227
Chris@16 228 private:
Chris@16 229
Chris@16 230 /// @cond show_private
Chris@16 231
Chris@16 232 template<class CharT, class Traits>
Chris@16 233 void read(std::basic_istream<CharT, Traits>& is) {
Chris@16 234 param_type parm;
Chris@16 235 if(is >> parm) {
Chris@16 236 param(parm);
Chris@16 237 }
Chris@16 238 }
Chris@16 239
Chris@16 240 bool use_inversion() const
Chris@16 241 {
Chris@16 242 return _mean < 10;
Chris@16 243 }
Chris@16 244
Chris@16 245 static RealType log_factorial(IntType k)
Chris@16 246 {
Chris@16 247 BOOST_ASSERT(k >= 0);
Chris@16 248 BOOST_ASSERT(k < 10);
Chris@16 249 return detail::poisson_table<RealType>::value[k];
Chris@16 250 }
Chris@16 251
Chris@16 252 void init()
Chris@16 253 {
Chris@16 254 using std::sqrt;
Chris@16 255 using std::exp;
Chris@16 256
Chris@16 257 if(use_inversion()) {
Chris@16 258 _exp_mean = exp(-_mean);
Chris@16 259 } else {
Chris@16 260 _ptrd.smu = sqrt(_mean);
Chris@16 261 _ptrd.b = 0.931 + 2.53 * _ptrd.smu;
Chris@16 262 _ptrd.a = -0.059 + 0.02483 * _ptrd.b;
Chris@16 263 _ptrd.inv_alpha = 1.1239 + 1.1328 / (_ptrd.b - 3.4);
Chris@16 264 _ptrd.v_r = 0.9277 - 3.6224 / (_ptrd.b - 2);
Chris@16 265 }
Chris@16 266 }
Chris@16 267
Chris@16 268 template<class URNG>
Chris@16 269 IntType generate(URNG& urng) const
Chris@16 270 {
Chris@16 271 using std::floor;
Chris@16 272 using std::abs;
Chris@16 273 using std::log;
Chris@16 274
Chris@16 275 while(true) {
Chris@16 276 RealType u;
Chris@16 277 RealType v = uniform_01<RealType>()(urng);
Chris@16 278 if(v <= 0.86 * _ptrd.v_r) {
Chris@16 279 u = v / _ptrd.v_r - 0.43;
Chris@16 280 return static_cast<IntType>(floor(
Chris@16 281 (2*_ptrd.a/(0.5-abs(u)) + _ptrd.b)*u + _mean + 0.445));
Chris@16 282 }
Chris@16 283
Chris@16 284 if(v >= _ptrd.v_r) {
Chris@16 285 u = uniform_01<RealType>()(urng) - 0.5;
Chris@16 286 } else {
Chris@16 287 u = v/_ptrd.v_r - 0.93;
Chris@16 288 u = ((u < 0)? -0.5 : 0.5) - u;
Chris@16 289 v = uniform_01<RealType>()(urng) * _ptrd.v_r;
Chris@16 290 }
Chris@16 291
Chris@16 292 RealType us = 0.5 - abs(u);
Chris@16 293 if(us < 0.013 && v > us) {
Chris@16 294 continue;
Chris@16 295 }
Chris@16 296
Chris@16 297 RealType k = floor((2*_ptrd.a/us + _ptrd.b)*u+_mean+0.445);
Chris@16 298 v = v*_ptrd.inv_alpha/(_ptrd.a/(us*us) + _ptrd.b);
Chris@16 299
Chris@16 300 RealType log_sqrt_2pi = 0.91893853320467267;
Chris@16 301
Chris@16 302 if(k >= 10) {
Chris@16 303 if(log(v*_ptrd.smu) <= (k + 0.5)*log(_mean/k)
Chris@16 304 - _mean
Chris@16 305 - log_sqrt_2pi
Chris@16 306 + k
Chris@16 307 - (1/12. - (1/360. - 1/(1260.*k*k))/(k*k))/k) {
Chris@16 308 return static_cast<IntType>(k);
Chris@16 309 }
Chris@16 310 } else if(k >= 0) {
Chris@16 311 if(log(v) <= k*log(_mean)
Chris@16 312 - _mean
Chris@16 313 - log_factorial(static_cast<IntType>(k))) {
Chris@16 314 return static_cast<IntType>(k);
Chris@16 315 }
Chris@16 316 }
Chris@16 317 }
Chris@16 318 }
Chris@16 319
Chris@16 320 template<class URNG>
Chris@16 321 IntType invert(URNG& urng) const
Chris@16 322 {
Chris@16 323 RealType p = _exp_mean;
Chris@16 324 IntType x = 0;
Chris@16 325 RealType u = uniform_01<RealType>()(urng);
Chris@16 326 while(u > p) {
Chris@16 327 u = u - p;
Chris@16 328 ++x;
Chris@16 329 p = _mean * p / x;
Chris@16 330 }
Chris@16 331 return x;
Chris@16 332 }
Chris@16 333
Chris@16 334 RealType _mean;
Chris@16 335
Chris@16 336 union {
Chris@16 337 // for ptrd
Chris@16 338 struct {
Chris@16 339 RealType v_r;
Chris@16 340 RealType a;
Chris@16 341 RealType b;
Chris@16 342 RealType smu;
Chris@16 343 RealType inv_alpha;
Chris@16 344 } _ptrd;
Chris@16 345 // for inversion
Chris@16 346 RealType _exp_mean;
Chris@16 347 };
Chris@16 348
Chris@16 349 /// @endcond
Chris@16 350 };
Chris@16 351
Chris@16 352 } // namespace random
Chris@16 353
Chris@16 354 using random::poisson_distribution;
Chris@16 355
Chris@16 356 } // namespace boost
Chris@16 357
Chris@16 358 #include <boost/random/detail/enable_warnings.hpp>
Chris@16 359
Chris@16 360 #endif // BOOST_RANDOM_POISSON_DISTRIBUTION_HPP