Chris@102
|
1 /* boost random/detail/polynomial.hpp header file
|
Chris@102
|
2 *
|
Chris@102
|
3 * Copyright Steven Watanabe 2014
|
Chris@102
|
4 * Distributed under the Boost Software License, Version 1.0. (See
|
Chris@102
|
5 * accompanying file LICENSE_1_0.txt or copy at
|
Chris@102
|
6 * http://www.boost.org/LICENSE_1_0.txt)
|
Chris@102
|
7 *
|
Chris@102
|
8 * See http://www.boost.org for most recent version including documentation.
|
Chris@102
|
9 *
|
Chris@102
|
10 * $Id$
|
Chris@102
|
11 */
|
Chris@102
|
12
|
Chris@102
|
13 #ifndef BOOST_RANDOM_DETAIL_POLYNOMIAL_HPP
|
Chris@102
|
14 #define BOOST_RANDOM_DETAIL_POLYNOMIAL_HPP
|
Chris@102
|
15
|
Chris@102
|
16 #include <cstddef>
|
Chris@102
|
17 #include <limits>
|
Chris@102
|
18 #include <vector>
|
Chris@102
|
19 #include <algorithm>
|
Chris@102
|
20 #include <boost/assert.hpp>
|
Chris@102
|
21 #include <boost/cstdint.hpp>
|
Chris@102
|
22
|
Chris@102
|
23 namespace boost {
|
Chris@102
|
24 namespace random {
|
Chris@102
|
25 namespace detail {
|
Chris@102
|
26
|
Chris@102
|
27 class polynomial_ops {
|
Chris@102
|
28 public:
|
Chris@102
|
29 typedef unsigned long digit_t;
|
Chris@102
|
30
|
Chris@102
|
31 static void add(std::size_t size, const digit_t * lhs,
|
Chris@102
|
32 const digit_t * rhs, digit_t * output)
|
Chris@102
|
33 {
|
Chris@102
|
34 for(std::size_t i = 0; i < size; ++i) {
|
Chris@102
|
35 output[i] = lhs[i] ^ rhs[i];
|
Chris@102
|
36 }
|
Chris@102
|
37 }
|
Chris@102
|
38
|
Chris@102
|
39 static void add_shifted_inplace(std::size_t size, const digit_t * lhs,
|
Chris@102
|
40 digit_t * output, std::size_t shift)
|
Chris@102
|
41 {
|
Chris@102
|
42 if(shift == 0) {
|
Chris@102
|
43 add(size, lhs, output, output);
|
Chris@102
|
44 return;
|
Chris@102
|
45 }
|
Chris@102
|
46 std::size_t bits = std::numeric_limits<digit_t>::digits;
|
Chris@102
|
47 digit_t prev = 0;
|
Chris@102
|
48 for(std::size_t i = 0; i < size; ++i) {
|
Chris@102
|
49 digit_t tmp = lhs[i];
|
Chris@102
|
50 output[i] ^= (tmp << shift) | (prev >> (bits-shift));
|
Chris@102
|
51 prev = tmp;
|
Chris@102
|
52 }
|
Chris@102
|
53 output[size] ^= (prev >> (bits-shift));
|
Chris@102
|
54 }
|
Chris@102
|
55
|
Chris@102
|
56 static void multiply_simple(std::size_t size, const digit_t * lhs,
|
Chris@102
|
57 const digit_t * rhs, digit_t * output)
|
Chris@102
|
58 {
|
Chris@102
|
59 std::size_t bits = std::numeric_limits<digit_t>::digits;
|
Chris@102
|
60 for(std::size_t i = 0; i < 2*size; ++i) {
|
Chris@102
|
61 output[i] = 0;
|
Chris@102
|
62 }
|
Chris@102
|
63 for(std::size_t i = 0; i < size; ++i) {
|
Chris@102
|
64 for(std::size_t j = 0; j < bits; ++j) {
|
Chris@102
|
65 if((lhs[i] & (digit_t(1) << j)) != 0) {
|
Chris@102
|
66 add_shifted_inplace(size, rhs, output + i, j);
|
Chris@102
|
67 }
|
Chris@102
|
68 }
|
Chris@102
|
69 }
|
Chris@102
|
70 }
|
Chris@102
|
71
|
Chris@102
|
72 // memory requirements: (size - cutoff) * 4 + next_smaller
|
Chris@102
|
73 static void multiply_karatsuba(std::size_t size,
|
Chris@102
|
74 const digit_t * lhs, const digit_t * rhs,
|
Chris@102
|
75 digit_t * output)
|
Chris@102
|
76 {
|
Chris@102
|
77 if(size < 64) {
|
Chris@102
|
78 multiply_simple(size, lhs, rhs, output);
|
Chris@102
|
79 return;
|
Chris@102
|
80 }
|
Chris@102
|
81 // split in half
|
Chris@102
|
82 std::size_t cutoff = size/2;
|
Chris@102
|
83 multiply_karatsuba(cutoff, lhs, rhs, output);
|
Chris@102
|
84 multiply_karatsuba(size - cutoff, lhs + cutoff, rhs + cutoff,
|
Chris@102
|
85 output + cutoff*2);
|
Chris@102
|
86 std::vector<digit_t> local1(size - cutoff);
|
Chris@102
|
87 std::vector<digit_t> local2(size - cutoff);
|
Chris@102
|
88 // combine the digits for the inner multiply
|
Chris@102
|
89 add(cutoff, lhs, lhs + cutoff, &local1[0]);
|
Chris@102
|
90 if(size & 1) local1[cutoff] = lhs[size - 1];
|
Chris@102
|
91 add(cutoff, rhs + cutoff, rhs, &local2[0]);
|
Chris@102
|
92 if(size & 1) local2[cutoff] = rhs[size - 1];
|
Chris@102
|
93 std::vector<digit_t> local3((size - cutoff) * 2);
|
Chris@102
|
94 multiply_karatsuba(size - cutoff, &local1[0], &local2[0], &local3[0]);
|
Chris@102
|
95 add(cutoff * 2, output, &local3[0], &local3[0]);
|
Chris@102
|
96 add((size - cutoff) * 2, output + cutoff*2, &local3[0], &local3[0]);
|
Chris@102
|
97 // Finally, add the inner result
|
Chris@102
|
98 add((size - cutoff) * 2, output + cutoff, &local3[0], output + cutoff);
|
Chris@102
|
99 }
|
Chris@102
|
100
|
Chris@102
|
101 static void multiply_add_karatsuba(std::size_t size,
|
Chris@102
|
102 const digit_t * lhs, const digit_t * rhs,
|
Chris@102
|
103 digit_t * output)
|
Chris@102
|
104 {
|
Chris@102
|
105 std::vector<digit_t> buf(size * 2);
|
Chris@102
|
106 multiply_karatsuba(size, lhs, rhs, &buf[0]);
|
Chris@102
|
107 add(size * 2, &buf[0], output, output);
|
Chris@102
|
108 }
|
Chris@102
|
109
|
Chris@102
|
110 static void multiply(const digit_t * lhs, std::size_t lhs_size,
|
Chris@102
|
111 const digit_t * rhs, std::size_t rhs_size,
|
Chris@102
|
112 digit_t * output)
|
Chris@102
|
113 {
|
Chris@102
|
114 std::fill_n(output, lhs_size + rhs_size, digit_t(0));
|
Chris@102
|
115 multiply_add(lhs, lhs_size, rhs, rhs_size, output);
|
Chris@102
|
116 }
|
Chris@102
|
117
|
Chris@102
|
118 static void multiply_add(const digit_t * lhs, std::size_t lhs_size,
|
Chris@102
|
119 const digit_t * rhs, std::size_t rhs_size,
|
Chris@102
|
120 digit_t * output)
|
Chris@102
|
121 {
|
Chris@102
|
122 // split into pieces that can be passed to
|
Chris@102
|
123 // karatsuba multiply.
|
Chris@102
|
124 while(lhs_size != 0) {
|
Chris@102
|
125 if(lhs_size < rhs_size) {
|
Chris@102
|
126 std::swap(lhs, rhs);
|
Chris@102
|
127 std::swap(lhs_size, rhs_size);
|
Chris@102
|
128 }
|
Chris@102
|
129
|
Chris@102
|
130 multiply_add_karatsuba(rhs_size, lhs, rhs, output);
|
Chris@102
|
131
|
Chris@102
|
132 lhs += rhs_size;
|
Chris@102
|
133 lhs_size -= rhs_size;
|
Chris@102
|
134 output += rhs_size;
|
Chris@102
|
135 }
|
Chris@102
|
136 }
|
Chris@102
|
137
|
Chris@102
|
138 static void copy_bits(const digit_t * x, std::size_t low, std::size_t high,
|
Chris@102
|
139 digit_t * out)
|
Chris@102
|
140 {
|
Chris@102
|
141 const std::size_t bits = std::numeric_limits<digit_t>::digits;
|
Chris@102
|
142 std::size_t offset = low/bits;
|
Chris@102
|
143 x += offset;
|
Chris@102
|
144 low -= offset*bits;
|
Chris@102
|
145 high -= offset*bits;
|
Chris@102
|
146 std::size_t n = (high-low)/bits;
|
Chris@102
|
147 if(low == 0) {
|
Chris@102
|
148 for(std::size_t i = 0; i < n; ++i) {
|
Chris@102
|
149 out[i] = x[i];
|
Chris@102
|
150 }
|
Chris@102
|
151 } else {
|
Chris@102
|
152 for(std::size_t i = 0; i < n; ++i) {
|
Chris@102
|
153 out[i] = (x[i] >> low) | (x[i+1] << (bits-low));
|
Chris@102
|
154 }
|
Chris@102
|
155 }
|
Chris@102
|
156 if((high-low)%bits) {
|
Chris@102
|
157 digit_t low_mask = (digit_t(1) << ((high-low)%bits)) - 1;
|
Chris@102
|
158 digit_t result = (x[n] >> low);
|
Chris@102
|
159 if(low != 0 && (n+1)*bits < high) {
|
Chris@102
|
160 result |= (x[n+1] << (bits-low));
|
Chris@102
|
161 }
|
Chris@102
|
162 out[n] = (result & low_mask);
|
Chris@102
|
163 }
|
Chris@102
|
164 }
|
Chris@102
|
165
|
Chris@102
|
166 static void shift_left(digit_t * val, std::size_t size, std::size_t shift)
|
Chris@102
|
167 {
|
Chris@102
|
168 const std::size_t bits = std::numeric_limits<digit_t>::digits;
|
Chris@102
|
169 BOOST_ASSERT(shift > 0);
|
Chris@102
|
170 BOOST_ASSERT(shift < bits);
|
Chris@102
|
171 digit_t prev = 0;
|
Chris@102
|
172 for(std::size_t i = 0; i < size; ++i) {
|
Chris@102
|
173 digit_t tmp = val[i];
|
Chris@102
|
174 val[i] = (prev >> (bits - shift)) | (val[i] << shift);
|
Chris@102
|
175 prev = tmp;
|
Chris@102
|
176 }
|
Chris@102
|
177 }
|
Chris@102
|
178
|
Chris@102
|
179 static digit_t sqr(digit_t val) {
|
Chris@102
|
180 const std::size_t bits = std::numeric_limits<digit_t>::digits;
|
Chris@102
|
181 digit_t mask = (digit_t(1) << bits/2) - 1;
|
Chris@102
|
182 for(std::size_t i = bits; i > 1; i /= 2) {
|
Chris@102
|
183 val = ((val & ~mask) << i/2) | (val & mask);
|
Chris@102
|
184 mask = mask & (mask >> i/4);
|
Chris@102
|
185 mask = mask | (mask << i/2);
|
Chris@102
|
186 }
|
Chris@102
|
187 return val;
|
Chris@102
|
188 }
|
Chris@102
|
189
|
Chris@102
|
190 static void sqr(digit_t * val, std::size_t size)
|
Chris@102
|
191 {
|
Chris@102
|
192 const std::size_t bits = std::numeric_limits<digit_t>::digits;
|
Chris@102
|
193 digit_t mask = (digit_t(1) << bits/2) - 1;
|
Chris@102
|
194 for(std::size_t i = 0; i < size; ++i) {
|
Chris@102
|
195 digit_t x = val[size - i - 1];
|
Chris@102
|
196 val[(size - i - 1) * 2] = sqr(x & mask);
|
Chris@102
|
197 val[(size - i - 1) * 2 + 1] = sqr(x >> bits/2);
|
Chris@102
|
198 }
|
Chris@102
|
199 }
|
Chris@102
|
200
|
Chris@102
|
201 // optimized for the case when the modulus has few bits set.
|
Chris@102
|
202 struct sparse_mod {
|
Chris@102
|
203 sparse_mod(const digit_t * divisor, std::size_t divisor_bits)
|
Chris@102
|
204 {
|
Chris@102
|
205 const std::size_t bits = std::numeric_limits<digit_t>::digits;
|
Chris@102
|
206 _remainder_bits = divisor_bits - 1;
|
Chris@102
|
207 for(std::size_t i = 0; i < divisor_bits; ++i) {
|
Chris@102
|
208 if(divisor[i/bits] & (digit_t(1) << i%bits)) {
|
Chris@102
|
209 _bit_indices.push_back(i);
|
Chris@102
|
210 }
|
Chris@102
|
211 }
|
Chris@102
|
212 BOOST_ASSERT(_bit_indices.back() == divisor_bits - 1);
|
Chris@102
|
213 _bit_indices.pop_back();
|
Chris@102
|
214 if(_bit_indices.empty()) {
|
Chris@102
|
215 _block_bits = divisor_bits;
|
Chris@102
|
216 _lower_bits = 0;
|
Chris@102
|
217 } else {
|
Chris@102
|
218 _block_bits = divisor_bits - _bit_indices.back() - 1;
|
Chris@102
|
219 _lower_bits = _bit_indices.back() + 1;
|
Chris@102
|
220 }
|
Chris@102
|
221
|
Chris@102
|
222 _partial_quotient.resize((_block_bits + bits - 1)/bits);
|
Chris@102
|
223 }
|
Chris@102
|
224 void operator()(digit_t * dividend, std::size_t dividend_bits)
|
Chris@102
|
225 {
|
Chris@102
|
226 const std::size_t bits = std::numeric_limits<digit_t>::digits;
|
Chris@102
|
227 while(dividend_bits > _remainder_bits) {
|
Chris@102
|
228 std::size_t block_start = (std::max)(dividend_bits - _block_bits, _remainder_bits);
|
Chris@102
|
229 std::size_t block_size = (dividend_bits - block_start + bits - 1) / bits;
|
Chris@102
|
230 copy_bits(dividend, block_start, dividend_bits, &_partial_quotient[0]);
|
Chris@102
|
231 for(std::size_t i = 0; i < _bit_indices.size(); ++i) {
|
Chris@102
|
232 std::size_t pos = _bit_indices[i] + block_start - _remainder_bits;
|
Chris@102
|
233 add_shifted_inplace(block_size, &_partial_quotient[0], dividend + pos/bits, pos%bits);
|
Chris@102
|
234 }
|
Chris@102
|
235 add_shifted_inplace(block_size, &_partial_quotient[0], dividend + block_start/bits, block_start%bits);
|
Chris@102
|
236 dividend_bits = block_start;
|
Chris@102
|
237 }
|
Chris@102
|
238 }
|
Chris@102
|
239 std::vector<digit_t> _partial_quotient;
|
Chris@102
|
240 std::size_t _remainder_bits;
|
Chris@102
|
241 std::size_t _block_bits;
|
Chris@102
|
242 std::size_t _lower_bits;
|
Chris@102
|
243 std::vector<std::size_t> _bit_indices;
|
Chris@102
|
244 };
|
Chris@102
|
245
|
Chris@102
|
246 // base should have the same number of bits as mod
|
Chris@102
|
247 // base, and mod should both be able to hold a power
|
Chris@102
|
248 // of 2 >= mod_bits. out needs to be twice as large.
|
Chris@102
|
249 static void mod_pow_x(boost::uintmax_t exponent, const digit_t * mod, std::size_t mod_bits, digit_t * out)
|
Chris@102
|
250 {
|
Chris@102
|
251 const std::size_t bits = std::numeric_limits<digit_t>::digits;
|
Chris@102
|
252 const std::size_t n = (mod_bits + bits - 1) / bits;
|
Chris@102
|
253 const std::size_t highbit = mod_bits - 1;
|
Chris@102
|
254 if(exponent == 0) {
|
Chris@102
|
255 out[0] = 1;
|
Chris@102
|
256 std::fill_n(out + 1, n - 1, digit_t(0));
|
Chris@102
|
257 return;
|
Chris@102
|
258 }
|
Chris@102
|
259 boost::uintmax_t i = std::numeric_limits<boost::uintmax_t>::digits - 1;
|
Chris@102
|
260 while(((boost::uintmax_t(1) << i) & exponent) == 0) {
|
Chris@102
|
261 --i;
|
Chris@102
|
262 }
|
Chris@102
|
263 out[0] = 2;
|
Chris@102
|
264 std::fill_n(out + 1, n - 1, digit_t(0));
|
Chris@102
|
265 sparse_mod m(mod, mod_bits);
|
Chris@102
|
266 while(i--) {
|
Chris@102
|
267 sqr(out, n);
|
Chris@102
|
268 m(out, 2 * mod_bits - 1);
|
Chris@102
|
269 if((boost::uintmax_t(1) << i) & exponent) {
|
Chris@102
|
270 shift_left(out, n, 1);
|
Chris@102
|
271 if(out[highbit / bits] & (digit_t(1) << highbit%bits))
|
Chris@102
|
272 add(n, out, mod, out);
|
Chris@102
|
273 }
|
Chris@102
|
274 }
|
Chris@102
|
275 }
|
Chris@102
|
276 };
|
Chris@102
|
277
|
Chris@102
|
278 class polynomial
|
Chris@102
|
279 {
|
Chris@102
|
280 typedef polynomial_ops::digit_t digit_t;
|
Chris@102
|
281 public:
|
Chris@102
|
282 polynomial() : _size(0) {}
|
Chris@102
|
283 class reference {
|
Chris@102
|
284 public:
|
Chris@102
|
285 reference(digit_t &value, int idx)
|
Chris@102
|
286 : _value(value), _idx(idx) {}
|
Chris@102
|
287 operator bool() const { return (_value & (digit_t(1) << _idx)) != 0; }
|
Chris@102
|
288 reference& operator=(bool b)
|
Chris@102
|
289 {
|
Chris@102
|
290 if(b) {
|
Chris@102
|
291 _value |= (digit_t(1) << _idx);
|
Chris@102
|
292 } else {
|
Chris@102
|
293 _value &= ~(digit_t(1) << _idx);
|
Chris@102
|
294 }
|
Chris@102
|
295 return *this;
|
Chris@102
|
296 }
|
Chris@102
|
297 reference &operator^=(bool b)
|
Chris@102
|
298 {
|
Chris@102
|
299 _value ^= (digit_t(b) << _idx);
|
Chris@102
|
300 return *this;
|
Chris@102
|
301 }
|
Chris@102
|
302
|
Chris@102
|
303 reference &operator=(const reference &other)
|
Chris@102
|
304 {
|
Chris@102
|
305 return *this = static_cast<bool>(other);
|
Chris@102
|
306 }
|
Chris@102
|
307 private:
|
Chris@102
|
308 digit_t &_value;
|
Chris@102
|
309 int _idx;
|
Chris@102
|
310 };
|
Chris@102
|
311 reference operator[](std::size_t i)
|
Chris@102
|
312 {
|
Chris@102
|
313 static const std::size_t bits = std::numeric_limits<digit_t>::digits;
|
Chris@102
|
314 ensure_bit(i);
|
Chris@102
|
315 return reference(_storage[i/bits], i%bits);
|
Chris@102
|
316 }
|
Chris@102
|
317 bool operator[](std::size_t i) const
|
Chris@102
|
318 {
|
Chris@102
|
319 static const std::size_t bits = std::numeric_limits<digit_t>::digits;
|
Chris@102
|
320 if(i < size())
|
Chris@102
|
321 return (_storage[i/bits] & (digit_t(1) << (i%bits))) != 0;
|
Chris@102
|
322 else
|
Chris@102
|
323 return false;
|
Chris@102
|
324 }
|
Chris@102
|
325 std::size_t size() const
|
Chris@102
|
326 {
|
Chris@102
|
327 return _size;
|
Chris@102
|
328 }
|
Chris@102
|
329 void resize(std::size_t n)
|
Chris@102
|
330 {
|
Chris@102
|
331 static const std::size_t bits = std::numeric_limits<digit_t>::digits;
|
Chris@102
|
332 _storage.resize((n + bits - 1)/bits);
|
Chris@102
|
333 // clear the high order bits in case we're shrinking.
|
Chris@102
|
334 if(n%bits) {
|
Chris@102
|
335 _storage.back() &= ((digit_t(1) << (n%bits)) - 1);
|
Chris@102
|
336 }
|
Chris@102
|
337 _size = n;
|
Chris@102
|
338 }
|
Chris@102
|
339 friend polynomial operator*(const polynomial &lhs, const polynomial &rhs);
|
Chris@102
|
340 friend polynomial mod_pow_x(boost::uintmax_t exponent, polynomial mod);
|
Chris@102
|
341 private:
|
Chris@102
|
342 std::vector<polynomial_ops::digit_t> _storage;
|
Chris@102
|
343 std::size_t _size;
|
Chris@102
|
344 void ensure_bit(std::size_t i)
|
Chris@102
|
345 {
|
Chris@102
|
346 if(i >= size()) {
|
Chris@102
|
347 resize(i + 1);
|
Chris@102
|
348 }
|
Chris@102
|
349 }
|
Chris@102
|
350 void normalize()
|
Chris@102
|
351 {
|
Chris@102
|
352 while(size() && (*this)[size() - 1] == 0)
|
Chris@102
|
353 resize(size() - 1);
|
Chris@102
|
354 }
|
Chris@102
|
355 };
|
Chris@102
|
356
|
Chris@102
|
357 inline polynomial operator*(const polynomial &lhs, const polynomial &rhs)
|
Chris@102
|
358 {
|
Chris@102
|
359 polynomial result;
|
Chris@102
|
360 result._storage.resize(lhs._storage.size() + rhs._storage.size());
|
Chris@102
|
361 polynomial_ops::multiply(&lhs._storage[0], lhs._storage.size(),
|
Chris@102
|
362 &rhs._storage[0], rhs._storage.size(),
|
Chris@102
|
363 &result._storage[0]);
|
Chris@102
|
364 result._size = lhs._size + rhs._size;
|
Chris@102
|
365 return result;
|
Chris@102
|
366 }
|
Chris@102
|
367
|
Chris@102
|
368 inline polynomial mod_pow_x(boost::uintmax_t exponent, polynomial mod)
|
Chris@102
|
369 {
|
Chris@102
|
370 polynomial result;
|
Chris@102
|
371 mod.normalize();
|
Chris@102
|
372 std::size_t mod_size = mod.size();
|
Chris@102
|
373 result._storage.resize(mod._storage.size() * 2);
|
Chris@102
|
374 result._size = mod.size() * 2;
|
Chris@102
|
375 polynomial_ops::mod_pow_x(exponent, &mod._storage[0], mod_size, &result._storage[0]);
|
Chris@102
|
376 result.resize(mod.size() - 1);
|
Chris@102
|
377 return result;
|
Chris@102
|
378 }
|
Chris@102
|
379
|
Chris@102
|
380 }
|
Chris@102
|
381 }
|
Chris@102
|
382 }
|
Chris@102
|
383
|
Chris@102
|
384 #endif // BOOST_RANDOM_DETAIL_POLYNOMIAL_HPP
|